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The surface free energy, or surface tension, of a liquid interface gives rise to a pressure jump when the

interface is curved. Here we show that a similar capillary pressure arises at the interface of soft solids. We

present experimental evidence that immersion of a thin elastomeric wire into a liquid induces a substantial

elastic compression due to the solid capillary pressure at the bottom. We quantitatively determine the

effective surface tension from the elastic displacement field and find a value comparable to the liquid-

vapor surface tension. Most importantly, these results also reveal the way the liquid pulls on the solid close

to the contact line: the capillary force is not oriented along the liquid-air interface, nor perpendicularly to

the solid surface, as previously hypothesized, but towards the interior of the liquid.

DOI: 10.1103/PhysRevLett.108.094301 PACS numbers: 46.05.+b

Surfaces of crystalline solids can be shaped by surface
stresses [1]. These stresses induce phenomena as surface
reconstruction [2,3], surface segregation [4], surface ad-
sorption [5], elastic instabilities [1], self-assembly [6,7],
and nanostructuration [8]. On the contrary, much less is
known about surface stress or surface tension in soft amor-
phous materials, such as gels and elastomers. A simple
physical picture is that these materials are essentially
liquidlike, with a small elastic modulus to resist shear
deformations [9]. Can such soft solids be shaped by cap-
illary forces, just like ordinary liquids? Recent experiments
provide evidence that this is indeed possible [10–13]. A
thin filament of a solid gel was observed to exhibit a
Rayleigh-Plateau instability [12]: analogous to liquid
jets, surface variations appear in order to lower the surface
free energy. Similarly, Jerison et al. [13] demonstrated that
deformations of an elastic film by a liquid drop can only be
explained quantitatively by accounting for the free energy
of the solid surface. They argued that one should include an
additional stress due to the curvature of the solid that is
induced by the presence of the liquid. This raises the
intriguing prospect of a solid capillary pressure, arising
when a solid-liquid interface is curved: can it be measured,
what is its magnitude, and what are its physical
consequences?

In this Letter we demonstrate that, when immersed in a
liquid, curved surfaces of elastomeric solids experience a
capillary pressure (or Laplace pressure). The magnitude of
this solid capillary pressure is determined by accurately
measuring the deformation of a thin elastomeric wire
suspended in a liquid reservoir (Fig. 1). It is found that
the immersed part of the wire is compressed, consistent
with a capillary pressure pushing on the wire from below—
this scenario is sketched in Fig. 1(c). The effective surface
tension associated with this effect, �, is measured to be
comparable to the liquid-vapor surface tension �LV ,

consistent with recent predictions [14]. The key finding
of our Letter, however, is that the experiments reveal a
highly unexpected force transmission at the contact line:
the liquid-vapor surface tension is not pulling along the
interface, but the force on the solid is oriented towards the
interior of the liquid [Fig. 1(c)].
The existence of a capillary pressure at the solid-liquid

interface has striking consequences. While the total force
on a partially immersed elastic wire is easily measured as
the external force Fext, it has remained unclear how this
force is distributed along the wire [10,11,14–22].
Thermodynamics dictates that Fext ¼ �LV cos� per unit
contact line [15,22], where � is the contact angle of the
liquid—this principle is widely used to measure the liquid-
vapor surface tension.
However, the literature on the spatial transmission of

this resultant thermodynamic force can be divided into
three distinct scenarios. Figure 1(a): The contact line
region exerts a purely normal force on the solid
[10,11,16–19], with no component parallel to the solid
surface. Thermodynamic consistency with the vertical
force Fext requires a capillary pressure, pulling downward,
localized in the curved region at the bottom of the wire
(� ¼ ��LV cos�). Figure 1(b): The contact line region
exerts a force parallel to the liquid-vapor interface
[19–21]. The downward component parallel to the inter-
face is exactly �LV cos�; hence, there is no capillary pres-
sure at the bottom (� ¼ 0). Figure 1(c): There is an upward
capillary pressure at the bottom of the wire, with effective
surface tension � ¼ �LV [14]. Thermodynamic consis-
tency is recovered only when the force near the contact
line has a downward parallel component �LVð1þ cos�Þ.
The correct scenario for force transmission cannot be

inferred from either macroscopic or mesoscopic (i.e., in-
troducing disjoining pressure effects) calculations of the
liquid free energy: before applying the virtual work
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principle to the solid, one needs to include the contribution
of solid deformations to the free energy. This issue has
been properly addressed in the case of crystalline solids
[1], but not yet for soft solids. Experimentally, however, the
elastic deformation of the wire provides a clear answer: the
immersed part of the wire is either (a) stretched,
(b) unaffected, or (c) compressed with respect to its dry
reference state. The experiments described below show a
clear compression for soft elastomers, quantitatively con-
sistent with the third scenario. Therefore, we indeed find
that the force on the solid near the contact line is directed
towards the interior of the liquid—this is the central finding
of this Letter.

Experimental setup.—The experimental setup is de-
picted in Fig. 2. The elastic wire is a filament made of
low modulus polyvinylsiloxane elastomer (RTV EC00).
Glass capillary tubes (Ringcaps 5 �L) are filled with a
mixture of polymer and curing agent containing dispersed
polystyrene beads (Dynoseeds TS 20) of diameter 20 �m,
used as position markers. Once the polymer is cured, the
glass capillary is cut and the filament is slid out of the
capillary. With this procedure one finally obtains a
cylindrical elastic rod of radius R ¼ 150 �m and of length

20 mm, glued at one end inside a 5 mm piece of the glass
capillary [Fig. 2(c)]. The immersion fluid is a 96% ethanol.
Its density �l ¼ 803� 1 kgm�3 is measured at room
temperature (T ¼ 23:4 �C) using a pycnometer of volume
calibrated with ultrapure water (18:1 M�cm�1). The
liquid-vapor surface tension is measured within 1% with
a tensiometer Krüss MK100, �LV ¼ 22:8 mNm�1.
Young’s modulus of the bulk elastomer is calibrated in
the linear elastic regime (strain lower than 1%) to E ¼
35 kPa. In comparison to experiments on single drops [13],
the present setup allows for a direct, robust test of the
thermodynamic scenarios of Fig. 1.
The goal of the experiment is to measure the elastic

deformation of the wire before and after the immersion.
This is done by measuring the displacement of markers
inside the wire [Fig. 2(d)]. The immersion is regulated by
changing the level of the liquid, while the wire is held at the
same location. The wire is imaged by two cameras Nikon
D300 (4288� 2848 pixels, 16 bits raw images) mounted
with extension tubes and macrolenses, positioned at 90� on

FIG. 2. Schematic representation of the experiment: (a) side
view and (b) top view. The vertical axis is denoted z, with z ¼ 0
at the liquid free surface. The deformation is characterized by a
vertical displacement field uðzÞ, determined from markers in the
wire [by convention, uð0Þ ¼ 0]. The horizontal axes are noted x
and y, with x ¼ 0 and y ¼ 0 at the intersection of the camera
optical axes. One camera is used to accurately calibrate the scale
of the other. (c),(d) Images of the wire with markers used to
determine the displacement u.

FIG. 1. Top: Scenarios for distribution of capillary forces on
an elastic wire partially immersed in a liquid [10,11,14–21]. The
liquid-on-solid force near the contact line (black arrows) could
be oriented (a) normal to the wire, (b) along the liquid-vapor
interface, (c) pointing into the liquid phase. Recovering the total
thermodynamic force (per unit contact line), Fext ¼ �LV cos�,
requires a liquid-induced capillary pressure on the bottom of the
wire (gray arrows) with an effective surface tension:
(a) � ¼ ��LV cos�, (b) � ¼ 0, (c) � ¼ �LV .
Bottom: Displacement field uðzÞ inside the wire due to immer-
sion. Depending on the spatial distribution of capillary forces,
these result into (a) a stretching, (b) no deformation, or (c) a
compression of the immersed part of the wire.
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an optical table. The absolute scale is then around
2 pixels�m�1. Focusing is controlled by translating each
camera with a linear stage. The crucial step for accurate
resolution of the displacements of the markers is the cali-
bration of relative scales between an empty and a filled
container. This calibration is achieved by printing a
12 000 dpi test pattern composed of an alternate array of
60 �m wide black and white strips. From the correlation
function between two images of the pattern we determine
the relative scale within 0.1%. The local displacement of
polystyrene particles is obtained within 1 pixel by cross
correlation of images [Fig. 2(d)].

Elastocapillary derivation.—The elastic deformation of
the wire, characterized by the vertical displacement field
uðzÞ, depends on the spatial distribution of the capillary
stresses. The reference state for these displacements is the
freely suspended wire submitted to its own weight, not yet
in contact with the liquid reservoir. Hence, uðzÞ probes
only the liquid-induced stresses after immersion of the
wire. Above the contact line, z > 0, where the wire is still
dry, the only stress is due to the external force balancing the
thermodynamic force, 2�RFext ¼ 2�R�LV cos�. This in-
duces a vertical normal stress �zz ¼ 2�LV cos�=R, while
the radial stress �rr ¼ 0. Below the contact line, z < 0, the
radial stress exerted on the sidewalls of the wire consists of
the hydrostatic pressure inside the liquid and a solid cap-
illary pressure,

�rr ¼ �lgz� �=R; (1)

where �l is the density of the liquid. In analogy to the
Laplace pressure jump on a liquid-vapor interface, we
hypothesize that the solid capillary pressure is proportional
to the curvature of the solid-liquid interface. The unknown,
effective surface tension � is the central object of this
Letter. Similarly, the normal stress on the bottom of the
wire, i.e., at z ¼ �L, reads

�zz ¼ ��lgL� 2�=R: (2)

This is most easily seen when the bottom of the wire is a
hemispherical cap of radius R. The corresponding pressure
jump is then 2�=R, where the factor 2 arises from the two
identical principle curvatures. We emphasize, however,
that (2) is valid for arbitrary shapes of the edge of the
wire as long as R � L [23].

The displacement field induced by (1) and (2) can be
derived from standard elasticity. Like most elastomers, the
material used in the experiment is almost incompressible:
its Poisson ratio � is such that j�� 1=2j � 1. Under this
assumption, Hooke’s law relates the stress tensor ��ij to the

strain tensor �"ij and the pressure P (which is the isotropic

stress inside the solid) as [9] ��ij ¼ 2
3E �"ij � P�ij and

"ll ¼ 0. Considering the limit where the radius R is
small compared to the length of the wire, the strain is
homogeneous in a slice and depends only on the vertical
coordinates z, i.e., 	zz ¼ u0ðzÞ, where uðzÞ is the vertical

displacement, and 	rr ¼ 	��. Radial displacements are
much smaller than uðzÞ by a factor R=L � 1. Using the
incompressibility condition, one obtains 	zz ¼ u0ðzÞ ¼
�2	rr ¼ �2	��. After eliminating P, one relates the
vertical strain to the normal stress difference as 	zz ¼
ð�zz � �rrÞ=E.
The resulting displacements along the wire are obtained

by integration of the strain 	zz. Above the contact line, one
finds a homogeneous stretching of the wire as sketched in
Fig. 1,

uðzÞ ¼ 2�LV cos�z

ER
; for z > 0: (3)

Below the contact line, the stresses (1) and (2) yield

uðzÞ ¼ � �z

ER
� �lgzðzþ 2LÞ

2E
; for z < 0: (4)

Hence, there is a linear contribution due to the solid
capillary pressure. Depending on the sign of �, this corre-
sponds to compression [�> 0, Fig. 1(c)] or to stretching
[�< 0, Fig. 1(a)] in the vertical direction. The strain u0ðzÞ
thus provides a direct measurement of the sign and magni-
tude of the effective surface tension �.
Results and discussion.—Figure 3 shows the displace-

ment field obtained after immersion of a homogeneous
elastic wire. As expected, the displacements in the air
(z > 0, circles) correspond to a homogeneous stretching

6

4

2

0

-2

-4

706050403020100

FIG. 3 (color online). Local displacement uðzÞ of the elastic
wire compared to the situation when it is hanging from its own
weight. Each point corresponds to the displacement of one
polystyrene bead. Measurements above the contact line (�)
and below (4) are performed by raising the liquid level. Solid
dark gray (red) lines are the best fit by Eqs. (3) and (4). The
calibration error bars are shown by the colored regions. The light
gray (orange) line shows the (compressive) contribution of
hydrostatic pressure.
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of the wire. By contrast, we systematically observed a
compression of the submerged part of the wire (z < 0,
triangles). This is consistent with the scenario proposed
in Fig. 1(c), with a positive, nonzero surface tension �> 0.
Quantitatively, our data indeed agree with the recent pre-
diction � ¼ �LV [14]. Above the contact line, the best fit of
the data by Eq. (3) determines the dimensionless parameter
�LV cos�

ER ¼ 4:03� 10�3, within 2%. As there is no optical

scaling factor in this case, possible errors only result from
the detection of markers. In fact, measuring the contact
angle using a photograph ( cos� ¼ 0:7� 0:2) limits the
accuracy. The dimensionless elastocapillary parameter
�LV

ER is thus around 6� 2� 10�3, consistent with a cali-

brated value from a separate determination of Young’s
modulus (4:4� 10�3). Below the contact line, the best fit
of the data with Eq. (4), including the hydrostatic contri-

bution, gives �
ER ¼ 6:4� 10�3, within 15%. So indeed,

�

�LV

¼ 1:2� 0:3: (5)

These findings reveal that the capillary force near the
contact line is neither normal to the solid nor parallel to the
liquid-vapor interface, but is oriented toward the wedge of
liquid: as sketched in Fig. 1(c), thermodynamics is only
recovered when the force on the solid has a (downward)
tangential component Ft ¼ �þ �LV cos� � �LVð1þ
cos�Þ. This remarkable result can be explained from the
long-range van der Waals attractions of the liquid mole-
cules, pulling on the solid molecules near the surface. The
geometry near the contact line induces a resultant force
that is biased towards the direction of the liquid domain,
where most of the liquid molecules are located [Fig. 4(a)].
This bias can be computed exactly when assuming that the
liquid and solid constitute homogeneous phases that are
mutually attractive. Expressing the liquid potential energy
as �ls, one obtains the force density �r�ls inside the
solid. The tangential force on the solid follows from inte-
gration over the solid domain, Ft ¼

R
dxdz½�@z�ls� ¼R

dx�	
ls, where �	

ls is the liquid potential far away from

the contact line. A further simplification arises since away
from the contact line the liquid domain is a semi-infinite

phase: �	
sl is only a function of x, the distance to the solid-

liquid interface. It is known that the x integral over �	
ls is

normalized in terms of the surface tensions as �SL �
�SV � �LV ¼ ��LVð1þ cos�Þ [14,24,25], regardless of
the type of microscopic interaction. Hence, our mean field
model based on homogeneous attracting phases quantita-
tively captures the observed Ft and supports our experi-
mental result that the contact line force on the solid is
directed towards the interior of the liquid.
From a broader perspective, our work demonstrates that

the details of elastocapillary interactions cannot be cap-
tured by macroscopic thermodynamic arguments and re-
quires microscopic modeling. The surface of an elastomer
consists of free flexible polymers which are attracted by the
liquid, as shown in Fig. 4(b). The left-right symmetry of
the free chains is broken in the vicinity of the contact line,
resulting in a pulling force that is transmitted towards the
bulk of the elastomer. The transmission of such a tangential
capillary force is specific to a solid interface: a liquid
would be unable to sustain such a shear as it is able to
rearrange its molecules.
We thank D. Bartolo, J. Bico, P. Müller, E. Raphaël, B.
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