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Width distribution of contact lines on a disordered substrate
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We have studied the roughness of a contact line on a disordered substrate by measuring its width distribu-
tion, which characterizes the roughness completely. The measured distribution is in excellent agreement with
the distribution calculated in previous works, extended here to the case of open boundary conditions. This type
of analysis, which is performed here on experimental data, provides a strong confirmation that the Joanny–de
Gennes model is not sufficient to describe the dynamics of the contact line at the depinning threshold.
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The physics of elastic interfaces in random media is
volved in a vast class of problems, such as domain wall
ferromagnetic@1# or ferroelectric@2# systems, and the propa
gation of cracks in solids@3#. A notorious example of an
elastic interface is provided by the contact line of a liqu
meniscus on a disordered substrate@4–7#.

In the past years, much effort has been devoted to s
light on both the equilibrium properties and dynamics of t
system@8–10#, which is characterized by long-range intera
tions. Very recently, experiments with water or helium mo
ing on a substrate characterized by a well controlled diso
@10,11#, have explored the depinning threshold. In this
gime @12,13# the contact line, driven by an external forc
moves very slowly. The study of the roughness of the in
face, and in particular its scaling behavior, turns out to b
fundamental tool to test our understanding of the physics
systems in which the elasticity and the disorder compete
determining the shape of the interface.

In Fig. 1 we display an experimental sample: a glass p
with chromium impurities~clear dots!, partially covered by a
water meniscus~dark region!. The so-called contact line i
separating the wet and dry regions. The contact line is
fined by an internal coordinatex and by the heighth along
the motion direction. We observe that a single-valued he
function h(x) is sufficient to characterize the shape of t
contact line. A sample of sizeL5500 mm extracted from the
image is also shown in Fig. 1; to analyze its geometric pr
erties we are interested in the deviations from the m
height u(x)5h(x)2^h&, with ^ . . . &51/L*0

Ldx . . . . The
mean square width is defined asw25^u2(x)&. The rough-
ness exponentz is introduced by considering an ensemble
lines of sizeL, whereL must be larger than the lengths whic
characterize the disorder. Averaging over this ensemble,
obtainw2}L2z @12#.

The theoretical evaluation of the exponentz has, up to
now, been based on the assumption that the motion of
line at the threshold is quasi-static@13#; this assumption was
shown to be valid for most viscous fluids@11#. This means
that the equation of motion of the heighth(x) can be derived
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from an energy function, which incorporates the poten
energy due to the driving forcef and the disorder potentia
h(x,h), as well as an elastic energy. According to this h
pothesis, the equation of motion forh(x) at zero temperature
is

]

]t
h~x!5 f 1h~x,h!2kE dx1

h~x!2h~x1!

~x2x1!2
. ~1!

The last term in Eq.~1! accounts for the long-range elast
force calculated by Joanny and de Gennes@4#. At the equi-
librium, independent approaches within Eq.~1! led consis-
tently to the valuez51/3 @7,8,14#. At the depinning thresh-
old, the determination of the roughness exponent stimula
a large debate@7,13,15,16#: finally, extended renormalization
group calculations up to the two-loop order proved thatz is
larger than 1/3@17#. This finding was confirmed by a numer
cal study by means of an exact algorithm, which is able
detect directly the blocked interface at the depinning thre
old: the precise resulting value isz50.38860.002@18#.

In spite of the large amount of theoretical work devoted
the subject, experiments are very few. The main difficulty
measuring zeta is to design a random substrate. In m

FIG. 1. Bottom: image of a water meniscus receding on a d
ordered substrate. The wet region is darker. Chromium defects
pear as clear dots on the dry region. Top: sample of sizeL
5500 mm extracted from the digitized contact line.u(x) is the
deviation from the mean height averaged over the sample.
©2004 The American Physical Society03-1
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experiments, the disorder is not properly characterized@19#.
Di Meglio @20# and, later on, Patersonet al. @21#, overcame
this difficulty by using computer generated patterns; we h
followed the same scheme@11#. Small squares of chromium
~size: 10310 mm2) were deposited randomly on a gla
plate, such that the 22% of the surface is covered. This
cedure generates a disorder correlated on a scalej;10 mm,
sufficiently large to prevent thermal fluctuations from pla
ing any role. The correlation lengthj is more than two orders
of magnitude below the capillary lengthLc ~;2.5 mm in this
system! where gravity begins to limit the fluctuations. Whe
the experiment is carried out, the glass plate is withdra
very slowly from the liquid bath at a fixed velocity rangin
between 0.2 and 20mm/s. The liquid is pure water or a
aqueous solution of glycerol with a viscosity up to 20 tim
that of water. One observes that the shape of the contact
is independent of the velocity. This is a clear signature of
depinning limit @11#. From these measurements it has be
obtained, for 2j<L<Lc/2, z50.5160.03, in disagreemen
with all theoretical predictions@18#.

The discrepancy between the theoretical and the meas
roughness exponent suggest that a richer model, more c
plicated than the one described by Eq.~1!, is needed to ac-
count for the critical behavior of the contact line at the d
pinning. However, as the range of accessible scales is
than two orders of magnitude, a rigorous determination
the exponentz is a very delicate experimental task. In th
paper we present on analysis approach which allows u
study the universal properties of the roughness, by com
ing the complete width distributionP(w2). The main advan-
tage consists of providing an accurate description of fin
size effects, which are instead difficult to evaluate with t
traditional analysis method based on the direct measurem
of the critical exponents. The method we apply here i
general tool to characterize rough interfaces, and we prop
its further application to other kinds of systems, e.g.
crack propagation.

The theoretical studies performed on systems without
order such as stochastic models@22–24# or magnetic systems
@25# have shown that it is possible to expressP(w2) in a
universal scaling form:

P~w2!5
1

w2
f~x5w2/w2!, ~2!

wherex is the renormalized widthw2/w2. In Eq. ~2! the size
dependence appears only through the averagew2: the non-
trivial scaling functionf(x) is universal and characterizes
full class of systems. Recently@26#, the same scaling prop
erties have been proved for elastic interfaces in random
dia at the depinning threshold. The width distribution
these systems is, for all intents and purposes, given b
generalized Gaussian approximation of independent mo
which decay with a characteristic propagatorG(q);qd12z.
Within this approximation, for interfaces of a fixed intern
dimension and for the required boundary conditions,f(x)
depends only on the roughness exponentz.
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In order to determine the experimental width distributi
we have employed the same experimental setup as desc
in Ref. @11#; the contact line is imaged with a progressi
scan CCD camera equipped with a microscope. Two dif
ent magnifications are used, corresponding to pixels of s
Dx56.10 and 2.14mm. After the analysis of the images w
obtain a digitized line of 760 pixels. Thanks to the go
contrast and signal-to-noise ratio of the CCD, the final re
lution is still one pixel. The experimental lines are cut in
samples of sizeL5nDx, wheren is the number of pixels in
the sample. From each line we extract an ensemble of (
2n) samples, whose width is simply given byw2

51/n( i 51
n ui

2 . These operations are repeated over all
configurations detected by the camera. Clearly the value
w2 are not independent@33#, but this procedure ensures th
no information is lost.

The histogram derived by the data gives access to
universal functionfexp(x) which is plotted in Fig. 2 for vari-
ous sizesL and for various experimental conditions. F
samples of size in the range 300mm,L,800 mm, the ob-
tained functionfexp(x) is independent of the size, the vis
cosity and the velocity of the receding meniscus. In sma
samples (100mm,L,300 mm), the distribution is sensi-
tive to finite size effect related to the details of the way t
disorder is created. Samples bigger thanL5800 mm cannot
be treated due to the significant statistical noise.

At this stage, the universal functionf(x), which we have
extracted from experiments can be compared to the theo
ical evaluation within the Gaussian approximation. Previo
theoretical works@22–24,26# dealt with samples where th
boundary conditions were periodic, which is obviously n
the case of our experiment~see Fig. 1!. In order to calculate
f(x) in the Gaussian approximation for open boundary c
ditions, we generalize the discussion of Ref.@26#. The main

FIG. 2. Experimental scaling functionfexp(x): study of finite
size effects. Open symbols: Aqueous solution of glycerol,v
51 mm/s ~square:L5124 mm; circle: L5186 mm; triangle: L
5372 mm). Full symbols: water ~circle: L5366 mm, v
520 mm/s; square:L5500 mm, v51 mm/s). We observe tha
for L.300 mm the finite size effects are negligible and the scat
of the data is mostly due to the finite width of histogram bins.
this way we have access to the large scale form offexp(x).
3-2
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difference, as briefly discussed in Refs.@27,28#, lies in the
Fourier decomposition of the pathu(x). In the case of open
boundary conditions, the general path of sizeL takes the
form

u~x!5 (
n51

`

an cos~ q̃nx!, ~3!

where q̃n5pn/L. The probability associated with this pa
is

P@u#5N)
n51

`

e21/2an
2Gn

21
, ~4!

where N is the normalization factor and, for largeL, the
exact disorder-averaged two-point functionGn takes the
form Gn→C/n112z. The expression forP(w2) follows from
the generating functions of the moments:

W~z!5E
0

`

dw2P~w2!e2zw2
. ~5!

Similarly to the case of periodic boundary conditio
@26#, we write

W~z!5)
n

S 1

Gn
21z11

D 1/2

The functionf(x) is given by W(z) through an inverse-
Laplace transform:

f~x!5E
2 i`

1 i` dz

2p i
ezx)

n51

` S naA

z1naA
D 1/2

, ~6!

with A5 1
2 (n51

` (1/na) anda5112z. This complex integral
can be written as a sum of all the tadpole contributions:

f~x!5 (
n50

`
~21!n

p E
a1(n)

a2(n)

dzezx)
m51

` U maA

z1maA
U1/2

, ~7!

with a152A(2n12)a anda252A(2n11)a. The product
in Eq. ~7! converges slowly, and several thousand terms n
to be computed. Once this is done, however, only a f
terms in the external sum of Eq.~7! are sufficient to obtain
f(x) with high precision.

In Ref. @26# it was discussed how the width distribution
an interface moving in a random medium, characterized
short range elastic interactions, is described in an exce
way by the distribution obtained within the Gaussian a
proximation. For the sake of completeness, we show
scaling functionfnum(x) computed from the numerical stud
of Eq. ~1! at the depinning threshold. We use the algorith
from Ref. @18# and calculate critical lines of sizeL5256
with periodic boundary conditions.fnum(x) is obtained with
the same procedure employed to deal with experimental d
by using samples of sizeL532. In this way, we find the
scaling function corresponding to the case of open bound
conditions.
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In Fig. 3 we summarize our results. As expected fro
Ref. @26#, the functionfnum, derived from the numerica
study of Eq.~1!, is in perfect agreement with the functio
obtained in the Gaussian approximation withz50.39. The
shape offexp is also in good agreement with the calculat
function, but is clearly shifted with respect tofnum and best
approximated byz50.505.

To our knowledge, this kind of analysis is applied for th
first time to experimental data. It offers the possibility
evaluate the roughness exponent from a unique value oL,
and it can be useful if the accessible range of scaling
small. Moreover we have detected finite size effects that
invisible on the simple representation ofw2(L). Due to the
reduction of the range of scaling, the analysis ofw2(L)
yields z50.5260.04, slightly larger than the previous dete
mination @11#.

Our study confirms that a real contact line cannot be
scribed by the Joanny–de Gennes model. The same typ
equation of motion has been proposed to describe the pr
gation of crack fronts@3#. In this case the experiments yiel
z;0.5–0.6@29,30#. Dynamical mechanisms have been intr
duced recently@31# to account for the anomalous value ofz
for crack fronts. On the other hand, for the contact line
precise analysis of the motion justifies the quasistatic

FIG. 3. Top: we compare the scaling functionfexp(x) obtained
from the experimental data~squares: waterL5500 mm, v
51 mm/s) with the curves calculated by means of Eq.~7!. We
notice the good agreement with the curve obtained forz50.505
~continuum line!. Bottom: we compare the scaling functionfnum(x)
obtained from the numerical data~circles:L532, 106 independent
samples! with the curves calculated by means of Eq.~7!. We notice
a perfect agreement with the curve obtained forz50.39 ~dashed
line!.
3-3
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pothesis@11#, and no such dynamical mechanism has to
considered. The study of the width distribution of cra
fronts could help to understand if the two systems belong
the same universality class and to unravel the origin of
discrepancy between the theoretical and experimental va
of z. In fact, in both cases, the derivation of the long-ran
elastic term in Eq.~1! is obtained by a development to fir
order in the deformation. This truncation avoids the ex
tence in the equation of motion of non-harmonic correctio
which, as it has been shown for the short-range elastic in
actions@32#, can drastically change the critical behavior
d

ys

,

.
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the interface. Moreover the presence of nonlinear terms
already been introduced in Ref.@9# to understand the dynam
ics of a contact line in the high velocity limit. It would b
very interesting to study the effect of these terms on
critical properties at the depinning transition. Unfortunate
up to now the numerical computation of this equation
motion is impossible because of the presence of noncon
terms in the elastic energy.

We thank C. Guthmann, P. Le Doussal, J. Vannimen
and K. J. Wiese for useful discussions.
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