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The interfacial mechanics of soft elastic networks plays a central role in biological and technological
contexts. Yet, effects of solid capillarity have remained controversial, primarily due to the strain-dependent
surface energy. Here we derive the equations that govern the selection of contact angles of liquid drops on
elastic surfaces from variational principles. It is found that the substrate’s elasticity imposes a nontrivial
condition that relates pinning, hysteresis, and contact line mobility to the so-called Shuttleworth effect.
We experimentally validate our theory for droplets on a silicone gel, revealing an enhanced contact line
mobility when stretching the substrate.
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The functionality of extremely soft materials emerges
from a combination of bulk elasticity and surface effects
[1–5]. However, the interfacial mechanics of soft solids,
typically reticulated polymer networks, is notoriously
difficult to probe experimentally [6,7]. A very promising
route to quantitatively measure solid surface tension is via
the contact angles of liquid drops [8–10]. The wetting on
soft solids is intermediate between the case of rigid solids
for which the contact angle is selected by Young’s law,
and the case of a liquid-liquid interface for which contact
angles are selected by Neumann’s law [11–15]. However,
the interpretation of contact angles on stretched solids
has recently raised a controversy, with similar experiments
leading opposite conclusions on the coupling between
elasticity and surface tension [9,10]. In this Letter, we
resolve this paradox by deriving the equilibrium condi-
tions at the contact line from first principles. We reveal a
previously ignored condition that must be satisfied to
avoid pinning and contact angle hysteresis. Predictions are
validated by dynamical experiments [16–20], elucidating
how stretching the substrate affects hysteresis and contact
line mobility.
The challenge arises due to the fundamental difference

between the capillarity of solids and liquids. For solid
interfaces, the excess energy γ per unit area generically
depends on the surface strain ϵ. Contrarily to liquid
interfaces, the surface tension ϒ in the interface therefore
differs from γ owing to the “Shuttleworth effect”: surface
energy and surface tension are related by the Shuttleworth
equation [3,4,21]

ϒðϵÞ ¼ d
dϵ

½ð1þ ϵÞγðϵÞ� ¼ γ þ ð1þ ϵÞγ0: ð1Þ

Since we do not wish to restrict the analysis to small strain,
we here retain the factor (1þ ϵ) on the right. The first

evidence of a strong coupling between surface energy and
strain—a strong Shuttleworth effect—for reticulated poly-
mers was obtained using an elastic (polyvinylsiloxane)
Wilhelmy plate, which allows for the measurement of the
difference γ0SL − γ0SV between solid-liquid and solid-vapor
interfaces [3,22]. Recent studies addressed the Shuttleworth
effect through contact angles of liquid drops (cf. Fig. 1), in
particular their variation when stretching the substrate
[9,10]. Intriguingly, the observations led to contradictory
interpretations. Xu et al. [9] observed that stretching a
silicone gel leads to a significant increase of the solid angle
θS, which was attributed to a strong Shuttleworth effect,
i.e., to a large value of γ0=γ. Schulman et al. [10], by
contrast, conclude that there is no Shuttleworth effect
(γ0 ¼ 0) for a broad range of different elastomers. This
is based on the striking absence of any dependence on

FIG. 1. Contact angles on a soft solid: The liquid angle θL of
the drop (main panel) and the solid angle θS of the wetting ridge
(zoom). In the presented theory, the three interfaces (i ¼ 1, 2, 3)
are parametrized using curvilinear coordinates s, related to the
reference coordinate S by the strain ϵiðSÞ, while the local angle of
the interface is θiðSÞ. The interfaces meet at the contact line
position x⃗cl. The effect of surface tensions ϒSV and ϒSL is
illustrated by a force balance on the circular zone near the contact
line on the right [Eqs. (7), (8)].
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strain of the liquid angle θL: While the contact angle on
(stiff) glassy polymers varies with the external strain, no
variation of θL was found for (soft) elastomers up to 100%
strain.
Exact wetting conditions from variational analysis.—

Here we set out to derive the complete set of equilibrium
conditions for soft wetting, by minimizing the sum of
elastic and capillary energies. The geometry is sketched in
Fig. 1, showing the three interfaces near the contact line.
The index i ¼ 1 refers to the solid-vapor interface, i ¼ 2
refers to the solid-liquid interface, and i ¼ 3 refers to the
liquid-vapor interface. From the outset we consider that the
size of elastic deformation ∼γ=G is large compared to
molecular scales (G being the static shear modulus), so that
a wetting ridge develops and the interfaces are sharp. The
free energy per unit width reads

F ¼ F e þ
X
i

Z
ri

−∞
γiðϵiÞds; ð2Þ

where Fe is the elastic energy, and s is the curvilinear
coordinate along each of the interfaces. The integrals run
from a position far from the contact line (“−∞”) to the
contact line (s ¼ ri). The strain field ϵi is defined for the
elastic interfaces (i ¼ 1, 2) and is actually a function of
the reference coordinate S. This coordinate refers to a
material point at the interface in its undeformed state prior
to the deposition of the liquid drop. The geometric
connection between the deformed state and reference state
(Fig. 1) reads ds ¼ ð1þ ϵiÞdS. Hence, the variation of
surface energy gives δ½γiðϵiÞds� ¼ ϒδϵiðSÞdS, with ϒi as
defined in Eq. (1). The interfaces are fully specified when
complementing the strain with the local angle θiðSÞ, which
must also be varied to obtain the equilibrium. Minimization
of F then implies δFe=δϵi þϒi ¼ 0 and δFe=δθi ¼ 0.
It is convenient to express the derivatives of the elastic

energy in terms of the elastic traction σ⃗, defined as the
elastic force per unit (deformed) area. It can be inferred
from the variation of interface displacements δu⃗, as derived
in the Supplemental Material [23]. From the kinematic
connection between δϵ, δθ, and δu⃗, one finds (omitting the
indices i ¼ 1, 2)

σ⃗ðsÞ ¼ δFe

δu⃗ðsÞ ¼ −
d
ds

�
δFe

δϵðSÞ ⃗tþ
1

1þ ϵ

δFe

δθðSÞ n⃗
�
: ð3Þ

Here ⃗t and n⃗, respectively, are tangential and normal unit
vectors along the interfaces. Combined with the mentioned
conditions for δF ¼ 0, the traction (3) becomes

σ⃗ðsÞ ¼ dðϒ⃗tÞ
ds

¼ ϒ
dθ
ds

n⃗þ dϒ
ds

⃗t: ð4Þ

The elastic traction σ⃗ balances the normal Laplace pressure
due to curvature, as in liquid capillarity and tangential

Marangoni stress due to gradients of surface tension,
originating here from inhomogeneities of ϵðSÞ.
The key purpose of the analysis, however, is to derive the

boundary conditions at the contact line. For this we need
to specify how the three interfaces i ¼ 1, 2, 3 are connected
at their respective end points at S ¼ Ri. Obviously, the
interfaces meet at a common position x⃗cl (Fig. 1), which
must be imposed as a constraint. The constraint does not
affect Eq. (4), but is crucial for the boundary conditions
that are obtained by virtual displacements of the contact
line. A first mode of displacement consists of varying the
contact line position δx⃗cl while keeping the material coor-
dinates at the contact line fixed [δRi ¼ 0, see Fig. 2(a)].
This gives a boundary condition evaluated at the contact line
(Supplemental Material [23]):

X
ϒi ⃗ti ¼ 0⃗: ð5Þ

This is theNeumann law that determines θS, commonly used
but here derived from variational principles. Importantly,
Eq. (5) is obtained by a variation of the contact line position
while keeping S ¼ R1 and S ¼ R2 constant; i.e., the three-
phase system surrounding the contact line is displaced as a
whole, without relative motion [Fig. 2(a)]. The free energy,
however, should not only beminimizedwhen the contact line
ismaterially displaced by δx⃗cl, but in additionwhen the liquid
at the contact line is moved with respect to the solid. In the
absence of contact line pinning (no heterogeneities of
the substrate), one should therefore consider changes of
the material point below the contact line. As is illustrated in
Fig. 2(b), the liquid can freely move and change the solid
molecules that are present at x⃗cl. This must be accounted for
by allowing the variation δR1 ¼ −δR2, exchanging material
points from the dry (i ¼ 1) to the wetted interface (i ¼ 2).
The variation δR gives a new boundary condition at the
contact line, which will be referred to as the no-pinning
condition:

(a) (b)

FIG. 2. Equilibrium requires that the energy is stationary with
respect to any possible mode of contact line displacement, as
sketched in panels (a) and (b). (a) Displacement mode at fixed
material point (δR ¼ 0), where the molecules from each phase
joining at the contact line are moved together, gives rise to the
Neumann condition (5). (b) Displacement mode with variable
material point (δR ≠ 0) gives rise to a no-pinning condition (6).
Color indicates whether material points prior to displacement
belonged to the wet part (green) or dry part (red) of the solid.
At equilibrium, both Eqs. (5) and (6) must be satisfied.

PHYSICAL REVIEW LETTERS 121, 068003 (2018)

068003-2



Δ
�
ð1þ ϵÞ2γ0ðϵÞ − ∂Fe

∂R
�
¼ 0: ð6Þ

Here Δ½� � �� denotes the difference between both sides of
the contact line along the solid (Supplemental Material
[23]). Equilibrium thus imposes two boundary conditions
(5) and (6), both of which must be satisfied. Although the
appearance of two conditions is logically associated with
the position x⃗cl and the material coordinate of the solid Ri,
Eq. (6) had never been considered so far.
The new condition can be interpreted by analogy with

the equality of “chemical potentials” at a liquid-vapor
interface: while the chemical potential governs the equi-
librium with respect to transport of material across such an
interface, Eq. (6) ensures the equilibrium with respect to
transport of elastic material (by δRi) across the contact line.
For a given combination of γSVðϵÞ and γSLðϵÞ, the strain
must thus adapt in order to satisfy (6). This is analogous to
the adaptation of liquid and vapor densities at two-phase
coexistence.
In order to compare to macroscopic experiments, we

need to translate these results to regions far away from the
wetting ridge (Fig. 1). To this end we first integrate Eq. (4)
across the contact line, which using Eq. (5) gives

ϒSL −ϒSV þ γLV cos θL ¼ e⃗x ·
Z

∞

−∞
σ⃗ds; ð7Þ

γLV sin θL ¼ e⃗y ·
Z

∞

−∞
σ⃗ds: ð8Þ

This expresses the resultant force of the three surface
tensions on the volume indicated in Fig. 1, which must be
balanced by the elastic stress integrated over the contact
line region. Besides the normal force, we recover the
appearance of a tangential stress across the contact line
[3,22,24]. Recombining these equations with the no-pinning
condition (6) this can be expressed as

ð1þ ϵ∞ÞðγSL − γSV þ γLV cos θLÞ

¼ −Δ½ð1þ ϵÞ2γ0� þ
Z

∞

−∞
σ⃗ · ½ð1þ ϵÞ⃗t − ð1þ ϵ∞Þe⃗x�ds:

ð9Þ

This is the generalization of Young’s law for the liquid
angle θL far away from the contact line, also applicable
when the substrate is uniaxially strained to a value ϵ∞.
The paradox.—So far the derivation has been fully

exact and provides the thermodynamic framework for
partial wetting on soft solids, valid also for large
deformations. Resolving the experimental controversy
regarding the Shuttleworth effect calls for a quantitative
prediction, and for this reason we evaluate these exact
results in the framework of linear elasticity for which
jϵj ≪ 1. The elastic energy is then obtained by the surface

integral Fe ¼
R
ds 1

2
u⃗ · σ⃗. Hence, the boundary condition

(6) then simplifies to Δ½γ0ð0Þ − 1
2
u⃗ · σ⃗� ¼ 0. A stress

discontinuity is not admitted in linear elasticity, as it
would lead to a logarithmic singularity of slope. Hence,
we deduce that the newly found no-pinning condition (6)
enforces continuity of γ0ð0Þ, so that γ0SV ¼ γ0SL. Far from
the contact line this implies that Eq. (9) reduces to the
standard Young equation γSL − γSV þ γLV cos θL ¼ 0.
All the above remains valid for large ϵ∞, as long as the
perturbation induced by the deposited drop remains in
the regime of linear response.
This explains why θL must remain constant on stretched

soft solids [10], even when the Shuttleworth effect leads to
a change of θS, an experimental fact that has been observed
by simultaneous measurement of θS and θL in PDMS in
Ref. [9]. Namely, the no-pinning condition γ0SV ¼ γ0SL
imposes that the difference γSV − γSL stays constant.
Hence, as long as the drop’s distortion of the solid is
within linear response, the constancy of θL is a direct
consequence of the lack of hysteresis, and as such θL
cannot predict the absence or presence of the Shuttleworth
effect on soft elastic solids. The situation is different for
glassy polymers, which are much stiffer and for which
changes of θL have been observed when stretching the
substrate [10]. In that case the associated deformations
∼γ=G are subnanometric so that the solid remains essen-
tially flat. In our macroscopic framework, this corresponds
to the rigid limit in which the droplet does not induce any
elastic deformation—hence, the strain remains everywhere
fixed at the experimentally imposed value ϵ∞. The variation
of the horizontal contact line position is then naturally
connected to a variation of the material point according to
δxcl ¼ ð1þ ϵ∞ÞδR so that the no-pinning condition (due to
δR) is the same as Young’s equation (due to δxcl in the rigid
limit). So indeed, for stiff polymers there is no thermody-
namic reason why θL should remain constant when the
externally imposed strain ϵ∞ is varied experimentally.
Turning back to the case of soft reticulated polymer

networks, for which γ=G is significantly larger than the
molecular scale, the equality γ0SV ¼ γ0SL at small strain is not
expected to be universally obeyed. This will depend on the
relevant constitutive relations γðϵÞ, which is a topic that is
currently beginning to be explored [25,26]. One could
expect the emergence of large strain at the contact line to
satisfy the no-pinning condition (6). If such an equilibrium
of chemical potential is not compatible with the constitutive
relations, pinning must be observed. Indeed, elastomeric
surfaces can exhibit a strong contact angle hysteresis,
which we suggest finds its origin in the Shuttleworth
effect. For example, the Wilhelmy plate experiment of
Ref. [22] for which strong hysteresis was present, exhibited
γ0SL ≠ γ0SV as inferred from the tangential stress balance (7).
Contact angle selection from dynamic spreading.—We

now experimentally validate this interpretation framework:
linear response and absence of hysteresis necessarily imply
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the equality γ0SV ¼ γ0SL—and hence θL independent of
strain. Since hysteresis plays a key role in our theory,
we set out to perform a proper quantification of hysteresis.
This calls for dynamic spreading experiments, where the
contact angle is measured versus contact line velocity v [27].
The hysteresis is then inferred from the limit of vanishing
velocity, comparing the advancing motion (v → 0þ) and the
receding motion (v → 0−). Here we use the same set up as
in Ref. [20] to measure the macroscopic contact angle θL,
adapted to impose a uniaxial strain ϵ∞ to a 6 mm thick
PDMS gel (Dow Corning CY52-276, prepared in 1∶1 ratio)
molded in a Petri dish. After curing at room temperature
during 24 h, 20 mm-wide strips are cut, stretched, and
clamped on a rigid plate. A liquid droplet is inflated or
deflated with a syringe to impose an advancing or a receding
motion, measured along the stretching direction. Milli-Q
water and fluorosilicone oil (poly(3,3,3-trifluoropropylme-
thylsiloxane), Gelest FMS 121) were used.
The resulting liquid contact angle θL is shown in Fig. 3(a)

as a function of the contact line velocity v, for unstrained
(closed circles) and strained samples (open circles). The
curves are apparently continuous at v ¼ 0, pointing to a

nearly perfect absence of hysteresis. Both the advancing
and receding motions exhibit a power-law dependence
θL − θa=r ∼ jvjn over more than two decades in velocity
[Fig. 3(b)]. This allows us to determine accurately the
advancing θa and receding θr angles, revealing a small
(∼1°) constant hysteresis [Fig. 3(c)]. Furthermore, the
equilibrium liquid angle θa ≃ θr is independent of the
imposed strain ϵ∞, consistently with previous independent
experiments [9,10]. The condition γ0SL ¼ γ0SV, predicted by
our theory in the absence of hysteresis, is therefore fulfilled
in our experiment.
Another remarkable result of Fig. 3 is that the spreading

velocities are strongly enhanced upon stretching the
solid. Namely, comparing the data for strained (open)
and unstrained (closed) samples for a given θL, the velocity
jvj is larger by a factor of 3. Hence, we observe that
stretching leads to an enhanced wetting mobility. Below we
demonstrate how this effect serves as a simple diagnostic
for the presence of a Shuttleworth effect.
The final step is to experimentally verify our assumption

of linear response and to explain the enhanced wetting
mobility on a stretched gel. The gel’s linear rheology under
uniaxial strain turns out to only weakly depend on the
imposed ϵ∞ (Supplemental Material [23]). The loss modu-
lus G00 depends as a power law of the angular frequency ω:
G00 ∝ GðωτÞn, where the cross-over time τ and the expo-
nent n marginally depend on ϵ∞ (Supplemental Material
[23]). This enables us to use the dynamical theory from
Ref. [20], relating θL to the contact line velocity v

θL − θa=r ¼ α

�
Gjvjτ

γLV sin θL

�
n
; ð10Þ

where the dimensionless friction factor α depends on the
geometry of the ridge. Indeed, the exponents n measured
for θL and in the linear rheological measurement are found
to be consistent, as predicted by Eq. (10). The agreement of
these exponents provides direct proof that the droplet
dynamics probes the substrate within linear response, even
when the prestrain ϵ∞ is not small.
The experimentally measured friction factor α defined

by Eq. (10) is reported as a function of ϵ∞ in Fig. 3(d).
The reduction of friction with strain can be attributed to
the Shuttleworth effect, via a gradual increase of θS:
A shallower wetting ridge leads to a smoother motion of
material points and hence to less dissipation. This effect
can be estimated from viscoelastic theory [20] (based on
constant surface tensions), suggesting the scaling

α ∼ cos1þnðθS=2Þ: ð11Þ

Hence, the reduced friction α in our spreading experiments
[Fig. 3(d)] points to a Shuttleworth-induced gradual
increase of θS with ϵ∞. This is consistent with direct
measurements of θS in Ref. [9] for a very similar PDMS
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FIG. 3. Pinning and enhanced contact line mobility. (a) Liquid-
vapor macroscopic contact angle θL with respect to the unde-
formed solid surface as a function of the contact line velocity v
(liquid: fluorosilicone oil). Closed and open symbols: unstrained
and strained (ϵ∞ ¼ 0.93) samples respectively. (b) Contact angle
rotations θL − θa=r vary like vn, with n obtained from loss
modulus measurement as expected from (10) (n ¼ 0.55 for
ϵ∞ ¼ 0 and n ¼ 0.50 for ϵ∞ ¼ 0.93). (c) Liquid contact angles
θa=r in the limit v → 0þ=0−, as a function of the applied strain
ϵ∞. (d) Contact line friction factor α defined by Eq. (10) as a
function of strain ϵ∞.
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system in the static limit—for which we remind that θL was
also found independent of strain. Obviously, an important
step for future work is to achieve fully self-consistent
computations of the ridge dynamics that includes the strains
induced by the Shuttleworth effect. This would, e.g., lead to
a fully quantitative prediction of αðθSÞ.
Outlook.—Our study offers a general framework that

establishes the laws of wetting on deformable soft solids,
and which is consistent with all experimental observations.
We have shown that equilibrium, in particular the lack
of hysteresis, requires the equality of Shuttleworth coef-
ficients γ0SL ¼ γ0SV for both the wet and dry solid. This sheds
an unexpected light on coupling of physical chemistry,
encoded in γðϵÞ, to the mechanics of wetting, and calls
for a better understanding of the molecular origin of the
Shuttleworth effect in cross-linked polymer networks
[25,26]. This is of prime importance for the design and
rheological characterisation of extremely soft materials, for
which the interfacial effects dominate over bulk elasticity.
From the perspective of wetting applications, we demon-
strate that the Shuttleworth effect offers a new route to
control the mobility of the contact line as illustrated here by
stretching-enhanced spreading velocities.
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