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Capillarity of soft amorphous solids: A microscopic model for surface stress
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The elastic deformation of a soft solid induced by capillary forces crucially relies on the excess stress inside the
solid-liquid interface. While for a liquid-liquid interface this “surface stress” is strictly identical to the “surface
free energy,” the thermodynamic Shuttleworth equation implies that this is no longer the case when one of the
phases is elastic. Here we develop a microscopic model that incorporates enthalpic interactions and entropic
elasticity, based on which we explicitly compute as the surface stress and surface free energy. It is found that the
compressibility of the interfacial region, through the Poisson ratio near the interface, determines the difference
between surface stress and surface energy. We highlight the consequence of this finding by comparing with recent
experiments and simulations on partially wetted soft substrates.
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I. INTRODUCTION

In the past few decades, surface effects in solid-state
physics have been widely investigated from the applied and
fundamental points of view. An appropriate thermodynamic
framework has been developed to describe the interplay
between elasticity and surface effects in crystalline solids
[1–8]. An essential result is that the concept of surface tension
cannot be applied without any caution to a solid condensed
phase. This description is usually, however, not considered
in works on elastocapillary phenomena, e.g., for the bending
of slender bodies or deformation of an elastomer by a liquid
drop [9–33].

As already pointed out in Ref. [34] a correct treatment of
elastocapillarity requires distinguishing between two excess
interfacial quantities: the surface energy and the surface stress,
cf. Fig. 1. A thermodynamical approach to derive the relation
between surface energy and surface stress yields the well-
known Shuttleworth-relation [35],

ϒAB = dγAB

dε‖
+ γAB. (1)

with ε‖ the elastic strain parallel to the interface. From this
relation it is immediately clear that for incompressible liquids,
and only for such systems, the surface energy and surface
stress are equal and are usually called “surface tension.”
The aim of this paper is to adapt this framework previously
proposed for crystalline solids to the case of elastomers and
gels: We will extend the concept of surface stress to the
case of two soft condensed phases in contact. Specifically,
we will propose a microscopic model for these macroscopic
excess quantities, in the case of soft elastic amorphous solids,
based on the density functional theory (DFT) in the sharp
interface approximation [36–39]. The assumptions are tailored
for systems where the surface energies are dominated by
enthalpic interactions, far away from the critical point. We
will show that the compressibility of the superficial layer,
quantified by the Poisson ratio ν, is the key characteristic of
elastomers for elastocapillary effects. The central result will be
that the solid-liquid surface stress ϒSL relates to the interfacial

energies in the following way:

ϒSL = ν

1 − ν
γSL + 1 − 2ν

1 − ν
(γSV + γLV ) , (2)

which is expected to apply far from the critical point. If the
surface layer is perfectly incompressible, i.e., ν = 1/2, this
gives a strict equality between surface energy and surface
stress: ϒSL = γSL, as for liquid interfaces. The other extreme
limit is that the stress directions perfectly decouple, i.e., ν = 0,
for which ϒSL = γSV + γLV .

In Sec. II we derive a microscopic model to describe fluid
and solid behavior, which we use to derive ϒSL in Sec. III. The
consequence of this result [Eq. (2)] will be discussed in detail
in the discussion of Sec. IV, where we compare our findings
to recent experiments and numerical results.

II. MICROSCOPIC MODEL

A. Microscopic and macroscopic stress in a condensed phase

We wish to define a model to compute the mechanical
stresses that arise in the vicinity of a fluid-fluid or fluid-solid
interface. These surface or capillary forces originate from
molecular interactions, and predicting their strength thus calls
for a description at that scale. Before developing this in detail,
let us first consider the purely macroscopic viewpoint and
define a macroscopic (or thermodynamic) stress tensor �̄.
In the absence of bulk forces, the mechanical equilibrium
condition is

�∇ · �̄ = 0. (3)

For a planar interface whose normal points along the z

direction, this implies that the normal stress �zz is constant
and is identical in both phases (assuming homogeneity in the
x,y directions). When the interface is curved, the boundary
condition at the interface involves a normal stress discontinuity
to account macroscopically for the microscopic interactions
in the surface layers. For a fluid-fluid interface, this can
be expressed as the difference in thermodynamic pressure,
�P = γ κ , where γ is the surface tension and κ is the
curvature [40].

This macroscopic result can be contrasted with a purely
microscopic approach that explicitly includes the molecular
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FIG. 1. Schematic of a planar interface between a liquid and solid
phase. The surface free energy associated with this interface is γSL =
(∂F/∂A)T ,V,n. In the case of a solid-liquid interface this surface free
energy is generally not equal to the surface stress (force per unit
length) at the interface (ϒSL), indicated by the arrows at the dashed
control volume.

interactions. Microscopically, the interfacial region will be
continuous, but one should still recover as a result that the
bulk stress far away from a curved interface is different in
the two phases. For fluid-fluid interfaces, such a microscopic
framework has been developed based on density functional
theory using the so-called sharp-kink approximation [36,37].
As will be further outlined in the next subsection, the key
assumption of this theory is that the molecular interactions
can be split into a long-range attractive part and a short-ranged
repulsive interaction [39]. The attraction is described by a
(mean-field) potential φ, while the repulsion is a contact
interaction described by a microscopic stress tensor σ̄ . The
mechanical equilibrium equation then reads

�∇ · σ̄ − �∇φ = 0. (4)

DFT with the sharp interface approximation assumes that the
interface between the two phases is perfectly sharp but that
the interaction potential is long-ranged and extends across
the interface—most notably, the potential varies only near
the interface and �∇φ directly accounts for interfacial stresses.
Since capillary effects are already included in this description,
the boundary condition is now the continuity of the normal
stress σzz across the interface. The sharp-kink approximation
is expected to work well for fluids that are far from the critical
point, i.e., fluids of which the typical interface width is only
a few molecular diameters. It has been shown to capture
features such as disjoining pressure, line tension, and the total
force exerted by liquid onto elastic solids, while recovering
all macroscopic thermodynamics of capillarity [29,36,37,39].
The approximation will clearly break down when reaching the
critical point, which is beyond the scope of the present work.

This model is very close to the original work by
Laplace [41], who postulated an internal pressure to balance
the strong attractive forces between molecules. For incom-
pressible liquids near a straight interface, we will derive the
following connection between macroscopic and microscopic
stress:

�ij = σij − (φ + φ0)δij , (5)

where φ0 is a constant. One should bear in mind that even
under atmospheric conditions, the repulsive stress σij is orders

of magnitude larger than �ij , as it balances the strong attractive
interaction φ. An estimate for the repulsive pressure is obtained
by γ /a, where a is the scale of the repulsion (a few angstroms)
and thus pr = −σii ∼ 108 N/m2, as already estimated by
Laplace [41].

The description above is valid for fluids. Below, we will
generalize this formulation to account for elastic solids whose
elastic properties arise from entropic effects. In other words,
the description focuses on solids such as gels and elastomers,
which are polymer solutions in which there is no connected
structure based on enthalpic (chemical) elastic effects. The
goal is to derive an expression for the surface stress [Eq. (2)]
from the microscopic interactions.

B. Density functional theory in the sharp interface
approximation for liquids

We consider a simple model of liquid based on a pair
potential ϕ. The key idea of the density functional theory is to
express the grand potential � = U − T S − μN = F − μN

as a functional of the particle density ρ and to perform
a functional minimization for given values of the chemical
potential μ and of the temperature T . The free energy F is not
known explicitly and needs to be built by integration, starting
from the free energy of a known state. For a perturbation theory,
one may choose hard spheres or the same system with only a
repulsive potential and then treat the van der Waals attraction
as a corrective effect.

In the sharp interface approximation, one uses a standard
van der Waals expansion of the free energy around the
hard-sphere reference system [whose pair potential is denoted
ϕHS(r)], computed in the local density approximation,

F [ρ] =
∫

fHS(ρ(�r))d�r

+1

2

∫ 1

0
dλ

∫
d�r1

∫
d�r2ρ(�r1)ρ(�r2)gλ(�r1,�r2)ϕ(|�r2 − �r1|),

(6)

where gλ is the pair correlation function in a system of
same geometry and same volume, for which the interaction is
ϕλ(r) = ϕHS(r) + λ[ϕ(r) − ϕHS(r)] above the sphere radius.
One can use, for instance, a low-density approximation for gλ

as follows:

gλ(r) ∼ exp(−ϕλ(r)/kBT ), (7)

where kB is Boltzmann’s constant and T the temperature. We
now apply the Gibbs interface idealization and assume that
the density is homogeneous on both sides of the interface.
We furthermore extend the description to several phases and
introduce φαβ(�r), the effective potential associated to the
influence of phase α on phase β, at �r ,

φαβ(�r) = ραρβ

∫
Vα

d�r ′ϕαβ(|�r − �r ′|)gr,αβ(|�r − �r ′|). (8)

Note that in general φαβ �= φβα , unless the domains of α and
β have an identical shape. Altogether, we get contribution to
the free energy associated to the phase L as

FL =
∫
VL

[
pr (�r) + 1

2
φLL(�r) + φSL(�r)

]
d�r, (9)
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where the factor 1/2 arises to avoid double counting of the
LL interactions, as the integration domains exactly overlap.
More generally, when considering the free energy of phase
α this factor 1/2 arises before the φαα term. The long-range
attractive interaction between liquid and solid molecules gives
rise to a potential φSL, i.e., an energy per unit volume. The
short-range repulsive interactions are assumed to lead to an
isotropic stress, i.e., to a contact pressure pr [42].

Minimizing the free energy, we obtain the (microscopic)
equilibrium condition inside the liquid,

∇ (pr + φLL + φSL) = 0, (10)

so the total potential pr + φLL + φSL must be homoge-
neous [36,37]. This is the same result as obtained in Eq. (5),
as for liquids σ̄ = −pr and the macroscopic stress �̄ is
homogeneous in the liquid phase.

In this work, we work with planar interfaces only and
therefore, for future reference, we define the potential φ in
phase α due to the presence of a semi-infinite phase β at
distance h from an interface as

�αβ(h) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

h

φαβ(|�r|)dzdydx, (11)

Note that, although in general φαβ �= φβα , the equivalence
�αβ = �βα does hold, since in that case the phases α and
β are identically shaped (both are infinite half-spaces). Within
this formalism we can readily compute the adhesion energies
and, hence, the surface free energies. As the surface tensions
are defined for flat interfaces between two semi-infinite phases,
these energies can be expressed in terms of integrals over �

and one finds [29]

AAB = −
∫ ∞

0
�AB(z) dz = γA + γB − γAB, (12)

AAA = −
∫ ∞

0
�AA(z) dz = 2γA, (13)

ABB = −
∫ ∞

0
�BB(z) dz = 2γB. (14)

C. DFT description extended to solids

We now extend the density theory description to describe
soft solids such as elastomers or gels. The elastic properties in
such solids are of entropic origin and their structure is close to
that of a liquid. Therefore, we hypothesize that these solids can
be described using the density functional theory in the sharp
interface approximation by replacing the repulsive pressure
−pr by an elastic stress tensor σ̄ . As the surface energies of
the solids of our interest are dominated by enthalpic effects,
just like the liquid in the previous section for liquids, this
solid is assumed to be submitted to the long-range attractive
potentials φLS and φSS , which are not included in the stress
tensor σ̄ . We therefore get a very similar expression as in the
liquid case,

�∇ · σ̄ − �∇(φSS + φSL) = 0, (15)

as anticipated in Eq. (4).
The next step is to find expressions for the components of �̄

and σ̄ , which are generally not isotropic in the elastic case. The

description of the solid differs from the liquid discussed in the
previous section by the existence of a base state with respect to
which deformations are measured. One standardly considers,
for bulk elasticity, a base state which is stress free. However,
this choice is problematic for capillary effects as these induce
a prestress, even when no external force is exerted on the solid.
To follow experimental constraints, we will therefore consider
that the base state is the state in which the system was prepared.
If a gel is prepared in a solid mold as in Refs. [25,43], the base
state will therefore be sensitive to the molecular interactions
between this mold and the gel. For the sake of simplicity, we
will reduce the discussion to the case were the solid is prepared
in void.

In order to express the constitutive relation of the material,
we split both stresses into a reference part that is associated
with the base state and the elastic contribution relative to this
base state,

�̄ = �̄ref + �̄el, (16)

σ̄ = σ̄ ref + σ̄ el. (17)

�̄ref and σ̄ ref are the stresses in a reference state, taken as a
semi-infinite solid in contact with vacuum (i.e., a solid-vacuum
interface). For �̄el and σ̄ el we apply Hooke’s law. We will write
the expressions using the thermodynamic stress �el

ij only, but
the same relations hold for the microscopic stress σ el

ij . Hooke’s
law relates the components of the stress �̄el to the elastic
strain ε̄,

�el
ij = E

1 + ν

[
εij + ν

1 − 2ν
εllδij

]
(18)

or, equivalently,

εij = 1 + ν

E
�el

ij − ν

E
�el

kkδij , (19)

where

εij = 1
2 (∂iuj + ∂jui), (20)

where ui is the displacement vector and E is the Young’s
modulus. Surface stress is defined as the excess stress while the
bulk of the solid remains in its base state. This means that the
strain is zero everywhere along the xy plane [5] (εxx = εyy =
0, with the z direction normal to the interface), otherwise the
solid displacement would increase linearly and indefinitely in
space. We find, therefore,

�el
xx = ν

1 − ν
�el

zz. (21)

As explained above, the same expression holds for σ el
ij , so

σ el
xx = ν

1 − ν
σ el

zz. (22)

This relation between the xx and zz components of the stress
tensor is at the core of the inequality between γSL and ϒSL.
Note that the stress tensor for an incompressible surface layer
(ν = 1/2) is isotropic (σ el

xx = σ el
zz) and we would recover liquid

behavior: γSL = ϒSL.
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(a) (b)

FIG. 2. Schematic of a liquid and solid interface. (a) A liquid-
vapor interface located at z = 0. The vapor above the liquid is at
pressure P . Due to the low density of the vapor phase, this pressure
P consists entirely of short-ranged repulsive (kinetic) stress such that
pr = P . Since pr is continuous at the interface this can be used as a
boundary condition for Eq. (10). (b) A solid-vacuum interface, which
serves as the reference system without elastic stresses (�̄el = σ̄ el =
�0). Similarly as in the liquid, this system fixes the value of σ ref

zz =
−P = 0 at z = 0, providing the boundary condition for Eq. (15).

D. Equilibrium conditions at planar interfaces

We now consider the equilibrium near a planar interface,
as sketched in Fig. 2. First, we note that the macroscopic
equilibrium condition for the fluid reads

�ij = −Pδij everywhere, (23)

where P is the thermodynamic pressure. In the liquid case we
find that, cf. Eq. (10),

pr + φLL + φSL = const. (24)

The unknown constant is set by both equilibrium conditions—
Eqs. (23) and (24)—at the liquid-vapor (or, equivalently, for
a liquid-liquid) interface, Fig. 2(a), with the vapor phase at
pressure P . At the liquid-vapor interface [z = 0, cf. Fig. 2(a)]
the local potential due to liquid-liquid interactions reads φLL =
�LL(0) and due to the absence of any solid φSL = 0. The
vapor phase above the liquid is of such low density that only
the repulsive contribution applies, and therefore we find in
the vapor pr = P . Furthermore, the microscopic stress tensor
must be continuous at z = 0, which implies pr = P at z = 0.
This allows us to compute the integration constant in Eq. (24),
and we obtain

pr + φLL + φSL = P + �LL(0) (25)

everywhere within the liquid. It is important to note that
this expression is only valid when the vapor phase has a
density negligible compared to that of the liquid. Otherwise,
the interactions with the vapor phase cannot be neglected and
the vapor must be treated as a condensed phase, like a liquid.

We now have an explicit relation between the thermo-
dynamic pressure P (or stress �̄) and the microscopic
contributions to the pressure pr and φ. In planar geometries,
we recover that in the liquid phase φLL = 2�LL(0) − �LL(z)
[Fig. 3(a)], where the 2�LL(0) term represents the attractive
interactions due to the surrounding liquid in the bulk and the
�LL(z) term the missing interactions (compared to the bulk)
due to the presence of an interface at distance z. We then find,
for the liquid, using Eq. (25),

pr = P − �LL(0) + �LL(z) − φSL. (26)

In the bulk of the liquid, where �LL(z → ∞) = 0 and φSL =
0, pr tends to

pbulk
r = P − �LL(0). (27)

Finally, we derive the microscopic equilibrium equation for
the elastic solid. We define the base state as the state where
the solid is in contact with vacuum. By definition, the elastic
stress σ̄ ref then vanishes. We follow the same path as in the
liquid case, with the distinction that in the solid case the stress
tensor is not isotropic. At the solid-vacuum interface [z = 0, cf.
Fig. 2(b)] we find σ ref

zz = 0, because a vacuum represents P =
0. We use this boundary condition to determine the integration
constant in Eq. (15) and find that

σ ref
zz = �SS(0) − �SS(z), (28)

where we used that φSS anywhere in the solid phase at
distance z from the interface is given by 2�SS(0) − �SS(z), cf.
Fig. 3(a). Furthermore, since �∇ · �̄ = 0 and �zz(z = 0) = 0
we find

�ref
zz = 0. (29)

In order to calculate the excess stress in Sec. III, a relation
between �ref

xx and σ ref
xx is required. Posing that the excess

stress in the bulk is zero (which is the definition of an excess
quantity), we find that in the bulk

σ ref,bulk
xx = �ref

xx + �SS(0). (30)

This is the solid analog of (27) for the liquid. Although the
bulk value of σ ref

xx is now known, we did not yet account for

(a) (b)

FIG. 3. Schematics on the construction of the integration domains required to evaluate the potential on the edge of the control volume
(Fig. 4) due to the absence of a semi-half-space of material α at distance h. (a) The potential at the indicated point in the condensed phase
(at distance h from the vacuum interface) is constructed by subtracting the potential due to a semi-infinite volume of the condensed phase at
distance h [�αα(h)] from the potential of a complete, infinite volume of the condensed phase [2�αα(0)]. (b) To evaluate the potential at the
edge of the control volume as indicated in Fig. 4, we only take into account the potential due to material outside this control volume, which is
a quarter-space, thus only half of the result from (a). Finally, one obtains �αα(0) − �αα(h)/2.

042408-4



CAPILLARITY OF SOFT AMORPHOUS SOLIDS: A . . . PHYSICAL REVIEW E 89, 042408 (2014)

the presence of the vacuum, which is felt at small distances
from an interface. Analogously to the liquid in Eq. (26) this
will give the following:

σ ref
xx = �ref

xx + �SS(0) − �SS(z). (31)

Note that the term −�SS(z) does not change the value of the
stress in the bulk, Eq. (30), as it vanishes at large z. We also
anticipate that we do not require an explicit expression for
�ref

xx , as it will cancel out when computing the excess stress as
described in the next section.

III. EXCESS QUANTITIES AND SURFACE STRESS

In this section, we derive the surface stress by calculating
the total excess stress across the interface. Introducing the
coordinate z normal to the interface the interfacial excess
quantity of an extensive measure M is defined as

MAB = SAB

∫
[m(z) − mAθ (z) − mBθ (−z)]dz, (32)

with m(z) the corresponding intensive quantity and θ the
Heaviside step function. The total excess M is therefore the
(integrated) difference between the bulk values of mA and
mB and the true value of m(z) that varies continuously in
the vicinity of the interface. Throughout the analysis we will
use superscripts to denote the bulk value of a given phase.
Thermodynamic quantities such as mass density, entropy,
or energy exhibit an interfacial excess. For example, the
surface free energy γAB can be evaluated from the microscopic
interactions using the classical relations (12)–(14).

In this section we calculate the surface stress ϒAB, which is
depicted schematically in Fig. 4. The surface stress is defined
as the integrated excess stress and has the dimension of a force
per unit length or, equivalently, of an energy per unit area.
While for liquid-vapor or liquid-liquid interfaces the surface
stress ϒAB is identical to the surface free energy γAB (following
from the virtual work principle), this is not the case when one
of the phases is elastic. In this section we provide explicit

FIG. 4. Schematic of a planar interface between two semi-infinite
phases A and B. Near the interface, an excess stress develops and the
total (integrated) excess stress is defined as the surface stress ϒAB.
Note that, by definition, the excess stress is zero in the bulk (far
from the interface). To evaluate the surface stress associated with this
interface ϒAB we define a control surface perpendicular to the AB
interface, across which the excess stress on the control volume (left)
due to contact forces and long-range forces originating from outside
the control volume is integrated.

expressions for ϒAB, starting from the definition

Fx = ϒAB +
∫ ∞

0
dz�A

xx +
∫ 0

−∞
dz�B

xx, (33)

where �A
ij and �B

ij are thermodynamic bulk stresses; note
that these thermodynamic stresses implicitly contain all
microscopic interactions (short- and long-ranged), so for
the liquid one simply recovers the thermodynamic pressure
�ij = −Pδij . Fx is the total force per unit length acting on
the control volume AB, left of the dashed line in Fig. 4,
projected parallel to the interface. This force is exerted by
the volume indicated A′B′, which is to the right of the dashed
line in Fig. 4. By computing this force Fx explicitly from the
microscopic models described in the previous section, we will
obtain explicit expressions for ϒAB for all combinations of
liquid-vapor, liquid-liquid, and solid-liquid interfaces.

A. Force calculation

The interactions in the DFT models consist of a short-
ranged contact stress σij and long-ranged potential interactions
φαβ . The total mechanical force on the control volume
therefore reads

Fx =
∫ ∞

0
dz(σxx − φA′A − φB′A)

+
∫ 0

−∞
dz(σxx − φB′B − φA′B), (34)

where we integrated the the long-ranged forces per unit
volume, −∂φαβ/∂x, to the dashed line in Fig. 4. The terms
φA′A represents the potential induced by volume A′ (outside
the control volume) on the part of the same phase that
lies within the control volume. Note the subtle difference
with φAA appearing in the equilibrium for pr which is the
potential energy due to the entire volume. Combined with the
definition (33), we find the surface stress as follows:

ϒAB =
∫ ∞

0
dz

(
σxx − φA′A − �A

xx

)

+
∫ 0

−∞
dz

(
σxx − φB′B − �B

xx

)

−
∫ ∞

0
dz φB′A −

∫ 0

−∞
dz φA′B. (35)

As the long-ranged potentials φαβ follow from volume inte-
grals [see Eq. (8)], their contribution is completely independent
of the rheology of the materials and can be readily evaluated.
In addition, all the energies can be expressed directly in
terms of �αβ , for which phase α is a flat semi-infinite
space, due to the symmetry of the domains in Fig. 4. Let
us first exploit this connection for the “cross terms” B′A
and A′B. From the geometry one can see that φB′A = 1

2�BA,
due to a missing quadrant of phase B. Since by symmetry
φA′B = 1

2�AB = 1
2�BA, the last two terms in (35) combine to

an integral over �AB and, according to (12), this yields the
adhesion energy AAB = γA + γB − γAB. The terms A′A and
B′B are slightly more difficult to interpret, as can be seen from
Fig. 3. As explained in detail in the caption of the figure, one
finds φA′A = 1

2 (2�AA(0) − �AA(z)).
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Using the above expressions for the potentials, we can split
the surface stress (35) into three contributions as follows:

ϒAB = ϒA
AB + ϒB

AB + (γA + γB − γAB), (36)

where

ϒA
AB =

∫ ∞

0
dz

(
σxx − �AA(0) + 1

2
�AA(z) − �A

xx

)
, (37a)

ϒB
AB =

∫ 0

−∞
dz

(
σxx − �BB(0) + 1

2
�BB(−z) − �B

xx

)

=
∫ ∞

0
dz

(
σxx − �BB(0) + 1

2
�BB(z) − �B

xx

)
. (37b)

The last contribution of (36) is the work of adhesion; it
is completely independent of the elastic properties of phases
A and B. By contrast, the direct interactions ϒA

AB and ϒB
AB

involve the stress σxx , which has to be determined from the
constitutive relations.

B. The liquid-vapor interface: ϒLV = γLV

From Shuttleworth’s thermodynamic relation, it follows
that for incompressible liquids there is a strict equality between
surface energy and surface stress [34,35]. Hence, one usually
does not distinguish between the two concepts and simply
uses the nomenclature of surface tension. As a consistency
check for the formalism that is developed in this paper, we
first verify explicitly that this equality is recovered for a
liquid-vapor interface, i.e., ϒLV = γLV , and a liquid-liquid
interface, i.e., ϒAB = γAB, with A, B liquids. Then, we will
study the particular case of a liquid in contact with an elastic
solid, for which we will see that, in general, ϒSL �= γSL.

Let us therefore consider phase A to be a vacuum and
phase B to be a liquid. The thermodynamic stress inside the
liquid is isotropic, i.e., �B

xx = −P . For a true vacuum the
thermodynamic pressure is strictly zero, but in real physical
systems the liquid will equilibrate at a small nonzero vapor
pressure. For such a liquid-vapor interface, the surface energies
become γA = 0, γB = γLV , and γAB = γLV . As a consequence
of the vacuum, the work of adhesion γA + γB − γAB = 0 and
ϒA

AB = 0. Hence, the total surface stress ϒLV only receives a
contribution from liquid-liquid interactions, ϒLV = ϒL

LV , as
defined in (37).

The integral (37b) involves σxx , which from Eqs. (24)
and (26) can be written

σxx = −pr = −P − �LL(0) + φLL

= −P + �LL(0) − �LL(−z). (38)

Inserting this in (37b), one finds a simplified expression,

ϒL
LV = −1

2

∫ 0

−∞
dz�LL(−z) = −1

2

∫ ∞

0
dz�LL(z). (39)

According to (13), the last integral can indeed be identified
with the surface energy γLV . This completes the demonstration
that the mechanical excess stress at the liquid-vapor interface,
defined in Fig. 4 and computed from the DFT model, is strictly
equal to the surface energy: ϒLV = γLV .

C. The liquid-liquid interface: ϒAB = γAB

We now consider an interface between two immiscible
liquids A and B, so again the stress tensor will be isotropic,
�A

xx = �B
xx = −P . Retracing the steps of the analysis for

the liquid-vapor interface, the main difference is that the
equilibrium equation for the repulsive pressure pr now has
a contribution φAB = �AB. Hence, one finds in phase A the
following:

σxx = −pr = −P + �AA(0) − �AA(z) + �AB(z), (40)

while in phase B

σxx = −pr = −P + �BB(0) − �BB(z) + �AB(−z). (41)

Note that this result is equivalent to Eq. (26), with the
solid phase replaced by the other liquid. This gives for the
integrals (37)

ϒA
AB = γA − (γA + γB − γAB) = γAB − γB,

ϒB
AB = γB − (γA + γB − γAB) = γAB − γA.

Adding the work of adhesion, one indeed obtains that the
surface stress is equal to the surface energy,

ϒAB = ϒA
AB + ϒB

AB + γA + γB − γAB = γAB. (42)

D. The solid-liquid interface

Finally, we discuss the solid-liquid interface. As before, we
evaluate the terms in the integral (37) separately. The elastic
properties of the solid enter through ϒS

LS , whereas ϒL
LS is the

same as that in the liquid-liquid case,

ϒL
LS = γSL − γSV . (43)

To obtain σxx in the equation for ϒS
LS [Eq. (37b)] we use

once more that the normal stress σzz is continuous across the
liquid-solid interface. At the liquid side we know that σzz(z =
0) = −pr = −P + �SL(0), which allows us to determine the
integration constant in Eq. (15) and we obtain, for the solid,

σzz(z) = −P + �SS(0) + �SL(z) − �SS(z). (44)

To obtain the elastic response due to the presence of the liquid,
we subtract the reference stress [solid in contact with vacuum,
Eq. (28)] and obtain the following:

σ el
zz(z) = �SL(z) − P. (45)

Compared to the base state (Sec. II C), the liquid interactions
�SL(z) are added to the pressure P . Then, via Hooke’s law we
get the following [Eq. (22)]:

σ el
xx(z) = ν

1 − ν
(�SL(z) − P ) (46)

and thus, following Eqs. (17) and (31),

σxx(z) = �ref
xx + �SS(0) − �SS(z) + ν

1 − ν
(�SL(z) − P ).

(47)

The final step before we can evaluate ϒS
SL is to determine �S

xx

by applying Hooke’s law on �el
zz = −P ,

�S
xx = �ref

xx − ν

1 − ν
P. (48)
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We can now evaluate ϒS
SL, Eq. (37b), and find

ϒS
LS =

∫ 0

−∞

(
−�SS(z)

2
+ ν

1 − ν
�SL(z)

)
dz

= γSV − ν

1 − ν
(γSV + γLV − γSL), (49)

and we obtain for the total surface stress the following:

ϒSL = ν

1 − ν
γSL + 1 − 2ν

1 − ν
(γSV + γLV ),

which is the central result of this paper, Eq. (2).

IV. DISCUSSION

The Shuttleworth equation (1) is a thermodynamic relation
showing that one needs to distinguish between the surface
stress ϒ , i.e., the excess force per unit length in the interface
and the surface free energy γ . By computing the elastic and
enthalpic interactions from a microscopic model, we have
derived an explicit relation between ϒ and γ . We find that,
in general, the surface stress of a solid interface indeed differs
from the surface energy of the same interface, as is quantified
by Eq. (2). It turns out that the difference between surface
stress and surface energy depends on the compressibility in the
superficial zones of the solid-liquid interface, characterized by
the Poisson’s ratio ν. The relation shows that for solids that are
incompressible in the superficial zone (ν = 1/2) the surface
stress is equal to the surface energy, in line with the fact that for
incompressible liquids γ = ϒ . The model predicts an equality
γSV = ϒSV for a solid-vapor interface of arbitrary value of ν

[consider (2) with L = V and γV V = 0].
In our previous work [34] we have shown that the difference

between surface stress and surface energy is crucial for
understanding the elastic deformation of partially wetted
deformable surfaces. In particular, it was demonstrated that
the contact line region transmits a residual tangential force to
the substrate, which has to be balanced by bulk elasticity. The
magnitude of this tangential force can be expressed as (see
inset Fig. 5)

f el
t = (ϒSL − ϒSV ) − (γSL − γSV ) . (50)

With (2) this becomes

f el
t = 1 − 2ν

1 − ν
γ (1 + cos θ ). (51)

The key feature of this result is that a finite tangential
force is transmitted whenever the Poisson ratio ν �= 1/2,
see Fig. 5. We can directly compare this result with re-
cent force measurements performed in molecular dynamics
simulations [34]. The transmitted stress in this work could
be determined by measuring the strain discontinuity at the
contact line. For a cubic lattice with springs of equal spring
constant between nearest and next-nearest neighbors (as
used in Ref. [34]), it can be shown that ν = 0.2. In these
simulations, parameters were chosen such that γSL = γSV , so
cos θ = 0. The numerically measured value of the transmitted
tangential stress (f el

t /γ = 0.81 ± 0.17) agrees quantitatively
with Eq. (51), which predicts f el

t /γ = 0.75 for such a system.
Even though the assumptions behind our DFT-model differ
substantially from the lattice solid, it apparently captures the

0 0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1

no transmission
(liquid-like)

full
transmission

FIG. 5. Dependence of the transmitted tangential stress on the
superficial Poisson ratio ν: Eq. (51). The dashed circle indicate
a control volume around the contact line, which is larger than
the molecular interaction range. For ν = 0, the full stress on the
solid induced by the presence of the contact line is transmitted
to the solid bulk, where it is balanced by elastic effects. In the
incompressible limit ν = 1/2, no tangential stress is transmitted. This
must necessarily hold for liquids, which can offer no elastic resistance
to any transmitted tangential stress.

total force exerted by the liquid on the solid, as also directly
computed from the simulations [34].

These simulations also provide evidence against the recent
claim that the capillary force exerted by the liquid on the
solid is parallel to the liquid-vapor interface [44]. This was
concluded by treating the solid as a slender body whose bulk
properties would be affected by the presence of the liquid,
therefore missing a basic aspect of elastocapillary interactions
in the interfacial region: the bulk constitutive relation cannot
be affected by surface effects.

The influence of the tangential force recovered in Eq. (51) is
usually not taken into account when describing elastocapillary
deformations [9–28,30–33,45]. One might argue that for most
experiments this is a valid assumption: soft rubbers and
gels are essentially incompressible, in which case our model
recovers f el

t = 0. Intriguingly, however, recent experiments on
a soft elastomeric wire clearly demonstrate that a tangential
force is transmitted across the surface and give rise to a
significant tangential bulk strain [43]. This strongly suggests
that, while the bulk material clearly has ν ≈ 1/2, the interfacial
layers of soft elastomers do exhibit a substantial degree of
compressibility. This would be a possible explanation why a
tangential stress is transmitted in the vicinity of the contact
line, even for incompressible bulk materials. Clearly, more
work will be necessary to reveal the detailed elastocapillary
interactions, taking into account the molecular structure near
the surface of an elastomer. A final consequence of such
a tangential force is that the contact angles on very soft
surfaces do not follow Neumann’s law [46]. This provides a
strong limitation on the recently proposed method to determine
surface stresses from contact angle measurements [30]: This
method only works when surface stresses perfectly balance,
i.e., when ν = 1/2. If this is not the case, the residual tangential
stress affects the shape of the region near the contact line, and
it is not possible to obtain the surface stresses from the cusp
shape alone. In order to measure surface stress experimentally
in materials where ν �= 1/2, one needs to design an experiment
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in which a proper system is defined on which stresses can be
measured, as was done recently by Nadermann et al. [47].
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