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The contact angle that a liquid drop makes on a soft substrate does not obey the classical Young’s
relation, since the solid is deformed elastically by the action of the capillary forces. The finite
elasticity of the solid also renders the contact angles different from that predicted by Neumann’s
law, which applies when the drop is floating on another liquid. Here we derive an elasto-capillary
model for contact angles on a soft solid, by coupling a mean-field model for the molecular interactions
to elasticity. We demonstrate that the limit of vanishing elastic modulus yields Neumann’s law or a
slight variation thereof, depending on the force transmission in the solid surface layer. The change
in contact angle from the rigid limit (Young) to the soft limit (Neumann) appears when the length
scale defined by the ratio of surface tension to elastic modulus γ/E reaches a few molecular sizes.

The wetting of liquid drops on deformable solids is im-
portant in many circumstances, with examples from bi-
ology to microfluidic devices [1–4]. When the solid is
soft or flexible, the shape of both the solid and the liq-
uid are determined by elasto-capillary interactions, i.e.
by the elastic response to the capillary forces [5, 6]. Till
date, however, the most basic characterization of wetting
has remained elusive for highly deformable solids [7–10]:
What is the contact angle that a liquid makes on a soft
solid?

The geometry of the interfaces near the three-phase
contact line is governed by two classical laws that de-
scribe the macroscopic boundary condition for the con-
tact angles [11]. Young’s law applies in the case where the
substrate is perfectly rigid, with elastic modulus E =∞,
while Neumann’s law holds for liquid lenses floating on
another liquid “substrate”. A question that naturally
arises is whether the contact angles vary from “Young”
to “Neumann” upon reducing the elastic modulus of the
substrate: in other words, does one recover Neumann’s
angles in the limit E → 0? Interestingly, the ratio of
liquid-vapor surface tension γ to elastic modulus E has
the dimension of a length. It has remained an object of
discussion whether, for the solid to become highly de-
formable, this elastic length γ/E should be comparable
to a molecular size [12, 13] or to a macroscopic length
such as the size of the drop [14, 15].

The difficulty of the problem results from its inherently
multi-scale nature. On one hand, the capillary forces are
localized in the vicinity of the contact-line. On the other
hand, the Green function giving the surface displacement
δh(x), induced by a Dirac force distribution of resultant
fz applied at the boundary of a two-dimensional elastic
medium, scales as [16]

δh(x) ∼ −fz
E

ln |x|, (1)

and is therefore singular at both small and large distance

x from the contact line. An outer cut-off is naturally
provided by the thickness h of the elastic film or the
size of the drop [12, 17, 18]. The inner regularization
is commonly assumed to originate from the finite range
of intermolecular capillary forces [7, 10, 13], or by the
breakdown of linear elasticity [19]. Hence, the transition
from Young’s to Neumann’s contact angles calls for an
unprecedented, fully self-consistent treatment of elastic
and capillary interactions.

In this Letter, we solve the elasto-capillary contact an-
gle selection within the framework of the Density Func-
tional Theory, using the sharp-kink approximation. The
evolution of the contact angles with stiffness is summa-
rized in Fig. 1. The central result is that the liquid con-
tact angle is selected at the molecular scale a and there-
fore exhibits a transition from “Young” to “Neumann”
around a dimensionless number γ/(Ea) of order unity.
We propose an analytical description of this transition,
which agrees quantitatively with the full numerical solu-
tion of the coupled DFT and elasticity models. Above
this transition, the elastic solid is deformed by the cap-
illary forces over the length γ/E. When the latter be-
comes larger than the system size (the layer thickness h
in Fig. 1c), the elastic deformation saturates.

Density Functional Theory – The multi-scale nature of
elasticity makes it convenient to treat the wetting inter-
actions in a continuum framework, such as the DFT. We
consider a simplified DFT model in which the solid and
the liquid are treated as homogeneous phases that mutu-
ally attract, while the interface is assumed to be infinitely
thin [20–22]. This model captures the microscopic prop-
erties such as the stress-anisotropy near the interface, the
disjoining pressure and the line tension and is consistent
with macroscopic thermodynamics in the form of Laplace
pressure and Young’s law [20–23].

The idea underlying this DFT model is to separate
the molecular interactions into a long-range attractive
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FIG. 1: Geometry near the three-phase contact line obtained by coupling elasticity to a DFT model. Contact angles continuously
vary from Young’s law to Neumann’s law by reducing the stiffness of the solid. (a) Rigid solid, γ/(Ea) � 1. The surface is
undeformed and the liquid contact angle follows Young’s law down to molecular scale a. (b) Soft solid, γ/(Ea) � 1. Surface
elasticity is negligible on the scale of molecular interactions, and the contact angles obey Neumann’s law. The solid is deformed
over a distance ∼ γ/E from the contact line. (c) Very soft solid, γ/(Eh) ∼ 1. The change of the contact angles saturates when
γ/E becomes comparable to the thickness of the elastic film. The solid angle measured at scale h becomes identical to the
microscopic solid angle at scale a.

potential ϕ(r), which takes into account the pair corre-
lation function, and a hard core repulsion that acts as
a contact force. For van der Waals interactions this po-
tential decays as 1/r6, which is cut-off at a microscopic
distance r = a that corresponds to the repulsive core. In
the model, it turns out that all the capillary forces can
be expressed in terms of the integrated potential [13],

Φαβ (r) = ραρβ

∫
α

dr′ ϕαβ (|r− r′|) . (2)

This represents the potential energy in phase β due
to phase α, where the phases can be liquid (L), solid
(S) or vapor (V ). ρα and ρβ are the corresponding ho-
mogeneous densities. The repulsive core at r = a en-
sures that the integrals over the entire domain α con-
verge, and is modeled by an isotropic internal pressure
that ensures incompressibility. As detailed in [13, 24],
the model distinguishes three types of attractive inter-
actions: liquid-liquid, solid-solid and solid-liquid inter-
actions, which can be expressed directly in terms of the
surface tensions γ, γSV and γSL [13, 21, 25]. The liquid-
vapor surface tension γ characterises the liquid-liquid in-
teractions. The strength of the solid-liquid interactions
is characterized by Young’s contact angle θY , defined by
cos θY = (γSV − γSL)/γ. The interaction with vapor can
be neglected in the limit of a low vapor density. In the
full DFT numerical calculation, the equilibrium shape of
the liquid-vapor interface is determined iteratively using
the procedure described in previous papers [22, 23].

Selection of the liquid angle – An important feature is
that the strength of the capillary interactions depends
on the geometry of the deformable solid. We consider
the reference case of a solid shaped like a wedge of angle
θS (upper inset of Fig. 2). Similar to the case of a flat
surface, the force acting on a corner of liquid depends
only on its angle θL at a large distance from the contact
line, and can be determined exactly by integrating over

all the interactions in the DFT model [21, 22]. This force
on the liquid corner consists of three contributions that
are sketched in the lower inset of Fig. 2: (i) the force ex-
erted by the solid (solid-liquid interactions, black arrow),
(ii) the attractive force exerted by the rest of the liquid
(liquid-liquid interactions, white arrows), and (iii) the re-
pulsive force exerted by the rest of the liquid, induced by
the presence of the solid [26] (liquid-liquid interactions,
red arrow). This last force arises because the presence
of the solid leads to an increase of the liquid internal
pressure near the solid-liquid interface.

The balance of forces in Fig. 2 provides the equilib-
rium θL for arbitrary θS (details are worked out in the
Supplementary [24]):

cos θL =
1

2
[cos θY [1− cos θS ]

− sin θS

√
2

1− cos θS
− cos2 θY

]
. (3)

This result is independent of the microscopic length a
and the functional form of ϕ(r). For a flat surface
(θS = π), the solid-on-liquid force is oriented vertically,
with fSL = γ sin θL. In this case the force balance re-
duces to Young’s law, and the liquid angle θL = θY .
However, (3) predicts that θL increases when θS is re-
duced (Fig. 2, solid line). Physically, this is due to the
reduction of the solid volume for smaller θS : this lowers
the total solid-liquid interaction, making the solid wedge
more “hydrophobic”.
Selection of the solid angle – If the phase S behaves as

a perfect liquid, its mechanical equilibrium gives a sec-
ond equation for the angles. This can be deduced from
(3) by exchanging the roles of L and S, which indeed
result into θS and θL according to Neumann’s law [24].
In the elasto-capillary problem, by contrast, the solid S
can resist shear. One therefore needs to express how the
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FIG. 2: (Color online) Main graph: Relation between θL and
θS predicted by the DFT model. The solid line is the analytic
formula (3) for θY = 0.96. Symbols are the angles obtained
numerically for the normal force transmission model (�) and
the vectorial force transmission model (•), as defined in the
text. Upper inset: definition of θL and θS . Lower inset: forces
acting on a corner of liquid (bright region, light blue). Black:
force exerted by the solid. Red: repulsive liquid-liquid force
induced by the presence of the solid. White: attractive force
exerted by the liquid, due to the missing half domain of liquid.

capillary stress σ applied at the free surface deforms the
solid. We treat the substrate as an incompressible elastic
body (Poisson ratio ν = 1/2) with Young’s modulus E,
as is typical for soft elastomers. Introducing the Green’s
function R, which depends on the elastic properties and
the geometry of the substrate, we get the surface dis-
placement:

δh(x) =
1

E

∫ ∞
−∞

R(x− x′;h) · σ(x′)dx′.

The contact line is considered to be invariant in one
direction, so that R and σ have two components cor-
responding to the normal and the tangential directions
to the substrate. The elastic kernel requires a cut-off
length at large scale, which for our numerical calcula-
tions arises due to the finite elastic film thickness h [14].
The capillarity-induced σ can be expressed in terms of
the Φαβ [24], and the integrals of (2) can be evaluated
numerically for arbitrary shape of the liquid and solid do-
mains. This closes the elasto-capillary problem and the
resulting numerical profiles are provided in Fig. 1.

At intermediate distances from the contact line, a �
x � h, the Green’s function for the elastic response is
given by Eq. (1). The slope of the solid-liquid interface
thus scales as δh′ ∼ fz/(Ex). Importantly, the angle θL
of the liquid is selected at the micro-scale a. Therefore,

FIG. 3: (Color online) Forces acting on the corner of solid near
the contact line (indicated by the bright (light orange) region
near the contact line). (a) Normal force transmission model.
Black: force exerted by the liquid. Red: force exerted by
the solid due to pressure-build induced by the liquid. White:
force exerted by the solid, due to the missing half domain of
solid. (b) Vectorial force transmission model. The difference
with respect to (a) is the absence of pressure build-up in the
surface layer (red).

the relevant solid angle θS induced by elastic deforma-
tions must be defined at that scale. This is confirmed
by the agreement between the prediction of (3) and the
numerical solution of the fully coupled elasticity-DFT
model: the symbols in Fig. 2 are obtained by measur-
ing θS in the numerics at a distance a from the contact
line. With this information, one can obtain an approx-
imate equation for the selection of θS by evaluating (1)
at x = a:

δh′ ∼ tan

(
π − θS

2

)
∼ fz
Ea

. (4)

The force acting on the solid corner. – The final step
is to express the vertical force fz exerted on the solid
corner in the vicinity of the contact line (bright, light
orange region in Fig. 3). Using the approximation that
the solid domain is a perfect wedge and assuming that the
liquid is at equilibrium, we can derive the tangential and
normal components of this force due to the liquid-solid
interaction [24],

f tLS
γ

= (1 + cos θY )
cos θL2 sin θS

2

sin θL+θS
2

, (5)

fnLS
γ

=
(1 + cos θY )

2

(
sin θS +

cos θS

tan θL+θS
2

)

+
(1− cos θY )

2
cotan

θL
2
. (6)

As emphasized in recent papers, this force is oriented
towards the interior of the liquid and therefore presents
a large tangential component, even in the limit of a flat
surface [13, 27].

To express the solid-solid interactions, we need to
model the mechanical behavior of the surface layer of
the substrate. We consider two extreme cases of how the
liquid-on-solid force can be transmitted to the bulk of the
elastic solid. First, one can assume that only the normal
stress is transmitted, as would be the case for a liquid.
In terms of forces on the solid corner (bright region in
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FIG. 4: Transition of the contact angles θL (white), θS (gray)
upon increasing the “softness” parameter γ/(Ea) for θY =
0.96 and γSV = γ. Symbols correspond to DFT numerical
solutions for h/a = 1000 for the normal transmission force
(�) and for the vectorial transmission force (◦).

Fig. 3), the tangential component of fLS is balanced by
a pressure build-up in the surface layer. This is repre-
sented by the red arrow in Fig. 3a (in perfect analogy
to the red arrow in the liquid in Fig. 2). In this case of
normal force transmission, the total vertical force reads

fz = fnLS cos θSL+(−f tLS+γ−γSL) sin θSL−γSV sin θSV .
(7)

The angles θSL and θSV are defined with respect to the
undisturbed solid surface (Fig. 2).

Alternatively, one can hypothesize a perfect vectorial
force transmission, for which there is no such pressure
build-up in the surface layer (Fig. 3b). We recently pro-
posed an experimental test aiming to discriminate be-
tween the two force transmission models: it turned out
that the vectorial transmission model is the correct de-
scription for an elastomer [27]. Then, the tangential force
exerted by the liquid is transmitted to the bulk of the
elastic body, and the total force on the solid corner be-
comes (Fig. 3b)

fz = fnLS cos θSL + (−f tLS − γSV ) sin θSL − γSV sin θSV .
(8)

Discussion – The system of equations (3–6), closed by
Eq. (7) or Eq. (8), gives a prediction for θL and θS , and
forms the central result of our paper. It involves three
dimensionless parameters: the elasto-capillary number
γ/(Ea) and the surface tension ratios γSV /γ, γSL/γ. The
resulting contact angles are shown as solid lines in Fig. 4.
The symbols provide a direct comparison with numerical

solution of the full elasticity-DFT model.

In the limit of strong elasticity, γ/(Ea) � 1, one re-
covers Young’s angle θL = θY and an undeformed solid
θS = π, regardless of the model of force transmission. In
the opposite limit of a soft solid, γ/(Ea) � 1, the elas-
ticity is too weak to resist any force near the contact line.
In this limit one thus finds that fz = 0, corresponding
to a perfect balance of capillary forces. Elementary alge-
bra shows that for the normal force transmission model
(Eq. 7), the angles θL, θS perfectly correspond to Neu-
mann’s triangle in the soft limit. Treating the capillary
force as perfectly localized [15], i.e. a = 0, corresponds
to this limiting case. However, a continuous transition
between “Young” and “Neumann” is observed in Fig. 4,
with a crossover around γ/(Ea) ∼ 1. A similar transition
of the contact angles is observed for the vectorial force
transmission model (Eq. 8), but with angles in the soft
limit different from Neumann’s law.

Capillarity induced surface deformations are known to
have major consequences for condensation of drops on
soft solids [28], as used for micropatterning of polymeric
surfaces [29], mechanical stability of gels [30], or wetting
on very soft coatings. The presented generalization of
the classical laws for the contact angle will provide the
essential boundary condition for such problems.

[1] J. Bico, B. Roman, L. Moulin, and A. Boudaoud, Nature
432, 690 (2004).

[2] J. W. van Honschoten, J. W. Berenschot, T. Ondaruhu,
R. G. P. Sanders, J. Sundaram, M. Elwenspoek, and
N. R. Tas, App. Phys. Lett. 97, 014103 (2010).

[3] S. Jung, P. M. Reis, J. James, C. Clanet, and J. W. M.
Bush, Phys. Fluids 21, 091110 (2009).

[4] C. Duprat, S. Protiere, A. Y. Beebe, and H. A. Stone,
Nature 482, 510 (2012).

[5] C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, and
C. N. Baroud, Phys. Rev. Lett. 98, 156103 (2007).

[6] J. Bico and B. Roman, J. Phys. Cond. Mat. 22, 493101
(2010).

[7] A. I. Rusanov, Coll. J. USSR 37, 614 (1975).
[8] S. H. Yuk and M. S. Jhon, J. Coll. Int. Sci. 110, 252

(1986).
[9] M. E. R. Shanahan, J. Phys. D App. Phys. 20, 945

(1987).
[10] L. R. White, J. Coll. Int. Sci. 258, 82 (2003).
[11] P.-G. de Gennes, F. Brochard-Wyart, and D. Quere, Cap-

illarity and Wetting Phenomena: Drops, Bubbles, Pearls,
Waves (Springer, New York, 2003).

[12] G. R. Lester, J. Coll. Int. Sci. 16, 315 (1961).
[13] S. Das, A. Marchand, B. Andreotti, and J. H. Snoeijer,

Phys. Fluids 23, 072006 (2011).
[14] E. R. Jerison, Y. Xu, L. A. Wilen, and E. R. Dufresne,

Phys. Rev. Lett. 106, 186103 (2011).
[15] R. W. Style and E. R. Dufresne, arXiv: p. 1203.1654

(2012).
[16] K. L. Johnson, Contact Mechanics (Cambridge Univer-

sity Press, Cambridge, 1985).



5

[17] D. J. Srolovitz, S. A. Safran, and R. Tenne, Phys. Rev.
E 49, 5260 (1994).

[18] Y.-S. Yu and Y.-P. Zhao, J. Coll. Int. Sci. 339, 489
(2009).

[19] M. S. Turner and P. Sens, Biophys. J 76, 564 (1999).
[20] T. Getta and S. Dietrich, Phys. Rev. E 57, 655 (1998).
[21] G. J. Merchant and J. B. Keller, Phys. Fluids A 4, 477

(1992).
[22] J. H. Snoeijer and B. Andreotti, Phys. Fluids 20, 057101

(2008).
[23] J. Weijs, A. Marchand, B. Andreotti, D. Lohse, and J. H.

Snoeijer, Phys. Fluids 23, 022001 (2011).
[24] S. Das, A. Marchand, B. Andreotti, and J. H. Snoeijer,

See Supplementary Material (2012).

[25] C. Bauer and S. Dietrich, Eur. Phys. J. B 10, 767 (1999).
[26] J. Nijmeijer, C. Bruin, A. Bakker, and J. Van Leeuwen,

Phys. Rev. A 42, 6052 (1990).
[27] A. Marchand, S. Das, J. H. Snoeijer, and B. Andreotti,

Phys. Rev. Lett. 108, 094301 (2012).
[28] M. Sokuler, G. K. Auernhammer, M. Roth, C. Liu,

E. Bonaccurso, and H.-J. Butt, Langmuir 26, 1544
(2010).

[29] S. Shojaei-Zadeh, S. Swanson, and S. L. Anna, Soft Mat-
ter 5, 743 (2009).

[30] S. Mora, T. Phou, J.-M. Fromental, L. M. Pismen, and
Y. Pomeau, Phys. Rev. Lett. 105, 214301 (2010).


