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ABSTRACT: We explore the interaction between a liquid drop (initially at
room temperature) and a bath of liquid nitrogen. In this scenario, heat
transfer occurs through film-boiling: a nitrogen vapor layer develops that may
cause the drop to levitate at the bath surface. We report the phenomenology
of this inverse Leidenfrost effect, investigating the effect of the drop size and
density by using an aqueous solution of a tungsten salt to vary the drop
density. We find that (depending on its size and density) a drop either
levitates or instantaneously sinks into the bulk nitrogen. We begin by
measuring the duration of the levitation as a function of the radius R and
density ρd of the liquid drop. We find that the levitation time increases
roughly linearly with drop radius but depends weakly on the drop density. However, for sufficiently large drops, R ≥ Rc(ρd), the
drop sinks instantaneously; levitation does not occur. This sinking of a (relatively) hot droplet induces film-boiling, releasing a
stream of vapor bubbles for a well-defined length of time. We study the duration of this immersed-drop bubbling finding similar
scalings (but with different prefactors) to the levitating drop case. With these observations, we study the physical factors limiting
the levitation and immersed-film-boiling times, proposing a simple model that explains the scalings observed for the duration of
these phenomena, as well as the boundary of (R,ρd) parameter space that separates them.

■ INTRODUCTION
When a liquid droplet is deposited onto a hot solid surface the
drop may, provided the solid surface is hot enough, levitate on a
cushion of its own vapor. This phenomenon was described first
by Leidenfrost in the 18th century1 and is therefore known as
the Leidenfrost effect. Similarly, the critical substrate temper-
ature above which the “film-boiling” that makes levitation
possible is called the Leidenfrost temperature. In everyday life,
the Leidenfrost effect is used to test whether a frying pan is hot
enough: flicking a drop of water into the pan will lead to the
drop skiting about only if the pan is above the Leidenfrost
temperature of water (around 200 °C). Although classical, this
intriguing effect has experienced a renaissance of research effort
recently with a number of studies focusing on the origin of the
film-boiling regime2,3 and its relation to surface properties.4

Other studies have focused on the possibility of generating
motion in this way;5−10 indeed the sublimation of dry ice
(CO2) blocks, the solid analogue of the Leidenfrost effect, has
been proposed both as the cause of the eroded gullies that are
observed on Mars11 and a basic mechanism that could power
an engine there.12

In these common scenarios, levitation is limited by the time
taken for the levitating object to evaporate. An alternative
scenario is the “inverse” Leidenfrost effect13 in which a water
droplet is placed on the surface of a bath of a cryogenic liquid
with low boiling point, e.g., liquid nitrogen. In this case, the
deposited droplet causes the evaporation of the substrate,
keeping its own mass constant during levitation. Instead of
being limited by the mass of the drop, the duration of the

inverse Leidenfrost effect is limited by the heat energy stored
within the drop: levitation can only occur while the drop
remains hot enough to sustain the film boiling of the liquid
nitrogen. After levitation ceases, the drop comes into contact
with the bath, which (since the density of water is greater than
that of liquid nitrogen) usually means that the drop then sinks
below the surface,14−19 even though floating should be possible
for sufficiently small drops.20 This phenomenon has been
investigated in relation to the film-boiling-mediated heat
transfer between two liquids at different temperatures, which
occurs in propellant spillage accidents:21 if liquid propellant
spills accidentally during the test-stand or launching operations
of a rocket, a catastrophic explosion (resulting from the
detonation of the fuel and oxidizer) is possible.14,21

Even though the basic mechanism behind this liquid-on-
liquid levitation is essentially the same as that responsible for
the usual Leidenfrost effect, our quantitative understanding of it
remains only partial.14−18 Previous studies focused on modeling
the duration of levitation and its dependence on the radius of
the drop.15,16,18 However, due to the relative paucity of
experimental data, which in any case concentrated on simple
liquid drops,14,15,17 a complete understanding of the inverse
Leidenfrost mechanism is lacking. Furthermore, levitation is
only possible for sufficiently small droplets; above a critical size,
droplets immediately sink and undergo film-boiling within the
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bulk. Here, we explore this phenomenon using water based
solutions at various densities and droplet radii. We are then able
to investigate the conditions that allow for the droplets to
levitate as well as the duration of the inverse Leidenfrost effect
in each of the floating/levitating and sinking states.
This paper is organized as follows: we begin by giving a more

detailed account of our experimental protocol, before giving
some raw experimental results. These experiments highlight
some discrepancies with previously proposed models and so we
then go on to develop a new mathematical model to describe
the levitation and film-boiling regimes. This allows us to
reassess the experimental data, by making a quantitative
comparison between theory and experiment.

■ EXPERIMENTAL METHODS AND OBSERVATIONS
Our experiments were conducted in a homemade cryostat designed to
allow imaging at the boiling temperature of nitrogen. The cryostat is
principally built from a styrofoam box (labeled 1 in Figure 1). To have

a side view of the experiment, an opening was cut in one wall and two
plexiglass plates glued (one to each side), making a double-paned
window (labeled 2 in Figure 1). To avoid the window frosting, a
continuous flow of dry air at room temperature was maintained within
the gap. The box is closed with a plexiglass plate on its top, keeping a
small opening in order to allow gaseous nitrogen to escape.
With the details so far described, this cryostat does not insulate the

liquid nitrogen well: liquid nitrogen placed inside a beaker boils,
creating a rough, bubbling surface. This is not suitable for experiments
on the inverse Leidenfrost effect, which require a relatively calm,
smooth liquid surface to avoid premature sinking of droplets. To
remedy this problem, we used two different nitrogen baths: a sacrif icial
bath (labeled 3 in Figure 1) contained within a large crystallizing dish
(⌀ = 14 cm) and sitting on the bottom of the cryostat. The sacrificial
bath boils permanently, producing a continuous flow of gaseous
nitrogen at its boiling temperature. The cryostat is then completely
filled with a thermalized atmosphere of gaseous nitrogen. Within this
bath we then place a study bath (labeled 4 in Figure 1), which is
contained in a beaker sitting on an aluminum block. As this bath is
surrounded by boiling nitrogen and its vapor, it is well isolated
(thermally) and does not spontaneously boil. Its surface is smooth and
only evaporates when heated by the proximity of a relatively warm
droplet. Within this simple experimental design, we are able to
accurately measure the levitation time of a droplet and capture its
dynamics (or to measure the film-boiling time for an immersed
droplet).

We deliver an aqueous droplet to the surface of the study bath using
a micropipette. The use of a micropipette allows for droplets of
effective spherical radius, R = (3V/4π)1/3 (based on the droplet
volume V imposed with an accuracy of 2 μL), in the range 0.5 mm ≤ R
≤ 3 mm. This droplet is initially at room temperature (and hence
liquid) but cools and ultimately freezes, becoming opaque in the
process (Figure 2a). In some cases, a droplet breaks into two parts

during freezing. We suspect that this behavior originates from the
initial formation of an outer frozen shell, which is broken as the
remainder of the drop freezes and, hence, expands. However, the fact
that this does not always occur indicates that such an outer shell does
not always form, and hence that the heat transfer from the droplet to
the study bath is, in general, anisotropic.

If several droplets are deposited on the interface at the same time,
they move together and (if this aggregation occurs before the drops
freeze) coalesce into a larger drop. We do not study this aggregation
here, but attribute it to the interfacial deformations caused by each
droplet, which are well-known to cause floating bodies to aggregate
the “Cheerios effect”.22 However, even an isolated droplet moves
laterally at the surface (see movie in the Supporting Information); we
believe that this motion is caused by small imbalances in the film of
vapor on which the droplet levitates. We do not study this motion here
but conjecture that a small perturbation in one direction leads to a self-

Figure 1. Schematic of the homemade cryostat used in our
experiments. The cryostat is built from a 15 × 20 × 18 cm3 styrofoam
box (1) in which a double-paned window is mounted (2) to allow a
side-view of the experiment. To avoid condensation and frosting of
this window, a flux of dry air is maintained between the panes. A
sacrificial bath (3) sits on the bottom of the cryostat to prevent
vigorous boiling of the study bath (4), which is contained in a beaker
sitting on an aluminum block within the sacrificial bath.

Figure 2. (a) Closeup of a droplet (volume V = 70 μL, effective radius
R ≈ 2.5 mm, and density ρd = 1.04 g/cm3) levitating at the surface of
the study bath. We see that the droplet remains approximately
spherical while levitating. (b) The same drop after sinking is no longer
surrounded by a vapor film and the emission of bubbles stops almost
immediately. (c) A drop of volume V = 70 μL, effective radius R ≈ 2.5
mm, and density ρd = 1.08 g/cm3 that does not levitate initially instead
sinks to the bottom of the study bath and undergoes film boiling there.
Here the drop sits at the bottom of the beaker and emits a string of
rising bubbles, which can be seen, albeit slightly blurred by their fast
motion, above the drop. (d) When the vapor film disappears, emission
of bubbles stops almost immediately revealing that the frozen drop has
adopted a “pear-shaped” form. In both (a) and (c) the drop is
surrounded by a vapor film: its apparent thick dark surface is due to
internal total reflection on the interface between the liquid and gaseous
nitrogen. (See also the movie in the Supporting Information.)

Langmuir Article

DOI: 10.1021/acs.langmuir.6b00574
Langmuir 2016, 32, 4179−4188

4180

http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.6b00574/suppl_file/la6b00574_si_001.avi
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.6b00574/suppl_file/la6b00574_si_001.avi
http://dx.doi.org/10.1021/acs.langmuir.6b00574


perpetuating asymmetry and hence to sustained motion in the
direction of the perturbation, analogous to the “walking droplets”
observed on a vibrating liquid bath.23

Depending on the size and density of the droplets, the initial
levitation reported above may be replaced by instantaneous sinking of
the droplet. As well as varying the radius of the droplet (as described
above), we therefore varied the droplet density, ρd. To achieve a broad
range of density variation, we used various dilutions of LST FastFloat
(low toxicity sodium heteropolytungstates dissolved in water, supplied
by SIGMA); this allowed us to create drops with densities in the range
1.02 g/cm3 ≤ ρd ≤ 2.8 g/cm3 (undiluted FastFloat). For a given
droplet density, levitation is possible only if the radius is below a
critical value: above this critical value, the droplet sinks into the liquid
but remains surrounded by a film of vapor. The immersed drop then
provokes vigorous boiling of the surrounding liquid nitrogen. The
durations of levitation and this immersed-boiling are, for a given value
of drop radius, of the same order of magnitude. In the cases of both
levitation and immersed boiling, the droplet ultimately freezes but the
final frozen shape of the droplet in each case is quite different: drops
that levitate remain roughly spherical (Figure 2b), while those that sink
while undergoing boiling exhibit a pear shape (Figure 2d).
Examination of video footage (Supporting Information) shows that
these drops are spherical when fully liquid (so that the shear stress of
the rising bubbles does not significantly deform them). Instead, we
believe that the vapor layer is thinner at the base than the top, and
hence that cooling occurs more rapidly at the base. In this way the
rising bubbles guide the expansion of the droplet on freezing to form
the tip of the “pear”. While this shape is reminiscent of the cusplike
singularity when a drop sitting on a plane is frozen from below,24 our
drop has a slightly different form as the heat exchange occurs through
a hemispherical surface and the vigorous film-boiling smooths the
cusp.

■ EXPERIMENTAL RESULTS

Using the experimental apparatus described above, we have
investigated the inverse Leidenfrost behavior of droplets over a
large range of radii and densities. Two key questions that we
seek to address are the following: (i) For how long does the
inverse Leidenfrost phenomenon persist? (ii) For which values
of radius R and density ρd does the droplet levitate at the
surface of the bath, rather than becoming immersed in the
bath? We find that, for a given density, droplets levitate
provided that their radius is below some critical value, R <
Rc(ρd); this is precisely analogous to the surface-tension-
supported flotation of small dense objects, which sink above a
critical size that depends on their density.20 Here we therefore
consider first the question of the levitation time of drops for
which R < Rc(ρd) before extending this to the case of immersed
droplets, R > Rc(ρd). Finally, we describe the boundary between
levitation and immersion, i.e., we study the form of Rc(ρd).
Levitation Time. Our measurements of the time for which

a drop is able to levitate (see open circles in Figure 3) suggest
that this time scale is dependent on the drop radius but is
relatively insensitive to the density: with almost a factor of 3
increase in density, we see an increase of only a few seconds in
the levitation time. However, as already indicated, the
maximum radius for which levitation is possible does depend
on the density.
Immersed Boiling Time. Drops with a given density, ρd,

are only able to levitate if their radius (or equivalently volume)
is below a critical value, R < Rc(ρd). Larger drops
instantaneously become immersed in the liquid bath, sinking
to the bottom of the study bath. Nevertheless, such drops still
exhibit the Leidenfrost phenomenon: liquid nitrogen boils,
rising from the drop in a column that destabilizes into bubbles.
The measured bubbling time (the time for which the

Leidenfrost phenomenon is observed) is shown by the crosses
in Figure 3. The bubbling time of immersed drops is shorter
than the levitation time of drops with similar radius
(presumably due to the fact that they lose heat over a larger
surface area). However, this bubbling time is of the same order
of magnitude as the levitation time, and depends on the drop
radius in a similar manner.

Floating vs Sinking Condition. Finally, we investigate the
regimes of (ρd,R) parameter space for which the droplet
levitates, or sinks. In the first case, the vapor produced by the
Leidenfrost effect is enough to keep the droplet at the surface.
In the second, the bubbles that the drop generates are not
enough to lift it back to the surface and it remains immersed at
the bottom of the study bath.
Figure 4 presents the experimentally determined regime

diagram, and shows the regions of (ρd,R)-space for which each
of these possibilities is observed. We observe that, for a given
droplet density, there is a sharp levitation-immersed boiling
transition at some critical radius, Rc(ρd). We further note that
Rc(ρd) appears to be a decreasing, continuous function of ρd:
even droplets with a very large density compared to that of the
liquid nitrogen are able to levitate provided they are small
enough.

■ MODELING APPROACHES
Based on our experiments, we make three observations of this
system that need to be explained quantitatively: the levitation
time of droplets (i) varies approximately linearly with the drop
radius and (ii) is approximately independent of the droplet
density; finally, (iii) there is a sharp transition between
levitation and immersed bubbling. We first turn to see which,
if any, of these observations may be explained by existing
models.

Previous Modeling Approaches. The mechanisms
involved in the inverse Leidenfrost effect have beed described
previously.14,15 The essential ingredient for levitation is that

Figure 3. Experimentally measured Leidenfrost time tL as a function of
radius of the drop R for various different drop densities. Each point
here is the mean of at least 10 repeat experiments, and the error bars
are smaller than the marker used. Experimental results are shown for
both drops levitating at the interface (○) and for those that
immediately sink, becoming immersed in the nitrogen bath (×).
The density of the droplet is encoded by its color with red
representing neat (undiluted) FastFloat (ρd = 2.8 g/cm3) and blue
the lightest droplets, which have ρd = 1.02 g/cm3. Note that the values
of R and ρd correspond to those at room temperature (300 K), and in
the liquid state.
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heat passes from the (relatively warm) drop to the liquid bath
beneath it and, in so doing, causes that liquid to evaporate. This
leads to the formation of a supporting vapor layer; in this layer,
vapor is created and squeezed between the deformed interface
and droplet surface eventually escaping into the nitrogen
atmosphere within the cryostat. The pressure field required to
perform this squeezing balances the weight of the droplet,
allowing it to levitate at the interface. Of course, the droplet
contains only a finite amount of thermal energy and, since the
evaporation of the liquid nitrogen requires the supply of latent
heat to the bath, the temperature of the droplet decreases until
it first freezes itself (releasing latent heat of fusion in the
process) before cooling further and ultimately reaches the
Leidenfrost temperature of the liquid nitrogen. At this point,
film boiling ceases, the vapor layer disappears and the droplet
sinks into the bath.
To quantify the above description requires a model of how

the mean vapor layer thickness, h, and the temperature of the
droplet, T, evolve. A key ingredient in this evolution is clearly
the heat transfer that occurs both within the droplet and
through the vapor layer. Previous detailed studies14,15 of the
film heat transfer coefficient found it to be k(1/R + 1/h) with k
the thermal conductivity of nitrogen vapor. It is clear that, for a
thin layer, h/R ≪ 1, the 1/R term should be neglected in
comparison to the 1/h term (as noted originally14,15).
However, subsequent works16,17 retained instead the 1/R
term; a scaling analysis shows that this leads to a quadratic
dependence of the floating time on the radius of the drop (see
discussion after eq 19 this paper), at odds with our
experimental results, which suggest something closer to linear.
Nevertheless, we note that the levitation times predicted by this
model are of the correct order of magnitude according to
experiments.14−17 As well as this confusion over the appropriate
heat transfer coefficient, previous studies solved the heat
transfer problem (i.e., the evolution of the droplet temperature)
under the assumption that the film thickness h does not vary
with time. In reality, h evolves as the temperature difference
that drives evaporation decreases; in particular, as the
temperature difference driving nitrogen boiling decreases, the

film thickness must also decrease to ensure that sufficient
hydrodynamic pressure is supplied for the droplet to float.
Finally, and because these studies did not consider the vertical
force balance on the droplet, there is no previous criterion for
determining whether a drop of a given density and radius will
initially levitate or become immersed.

Simplifications and Assumptions. The thermal con-
ductivities of water, k ≈ 0.6 W/mK and ice k ≈ 2 W/mK, are
significantly larger than that of nitrogen vapor, 2 × 10−2 W/mK
≲ k ≲ 0.1 W/mK depending on the temperature.25 As a result,
while the droplet remains liquid (so that convection may
redistribute heat), and even once frozen, we expect the
temperature profile within the droplet to remain approximately
uniform and thermal conduction across the vapor layer to be
rate limiting; this corresponds to assuming that the Biot
number (the ratio of conductive flux within the drop to that out
of the drop) is small. In this small Biot number limit, the
relevant length scale for conduction is only the (unknown)
thickness of the thin Leidenfrost layer, h(θ, t). We further
assume that the energy conducted across this gap is
immediately converted into Latent heat of vaporization of the
gas, and so neglect the thermal profile within the liquid
nitrogen bath. The gas layer around the drop is assumed to be
thin so that the flow of the vapor beneath the drop may be
described by lubrication theory.26

In general, the thickness profile (i.e., the spatial variation) of
the vapor layer on which the droplet levitates is not known. For
the canonical problem of a droplet levitated above a rigid
substrate (as in the usual Leidenfrost problem), this problem
has been solved in detail27−29 and shows that for levitating
droplets larger than the capillary length a vapor-filled dimple
may form beneath the drop, as is observed experimentally.30,31

For drops smaller than the capillary length, the bottom of the
droplet approximately conforms to the flat substrate.29,31 Here,
the vapor layer is bounded by two deformable interfaces so that
the appropriate capillary length is larger than that of the bare
interface: the effective surface tension is larger and the
appropriate density is the difference between the droplet and
the bath. Our droplets are therefore in the “small droplet”
regime, so that we may simplify the problem (to allow as much
analytical progress as possible) by assuming that the thickness
of the vapor layer is approximately uniform, i.e., h(θ, t) = h(t)
(i.e., that the drop and bath interfaces conform to one another,
as in the small droplet limit of the regular Leidenfrost
problem). Furthermore, the surface tension of the drop−
vapor interface, γdv ≈ 72.8 mN/m, is significantly larger than
that of the bath−vapor interface, γN ≈ 8.85 mN/m). It is
therefore energetically favorable for the droplet interface to be
deformed as little as possible, at the expense of the bath
interface, and so we assume that the shape of the levitating
droplet is spherical, in agreement with our experimental
observations in Figure 2a and previous observations of droplets
levitating on a vibrated bath (but without phase change).32 The
simplified problem is illustrated schematically in Figure 5.
Finally, the physical parameters of the system (e.g., the

thermal conductivity k and vapor density ρg) vary with
temperature. We neglect these variations here, again to facilitate
analytical progress. The values of the various parameters that
we use here are given in Appendix A; generally we use values
for the vapor at a temperature of 200 K, which is roughly
midway between the temperature of the study bath (T = 77.36
K) and room temperature. (Choosing a round number for the

Figure 4. At a fixed droplet density, ρd, only drops below some critical
effective radius, Rc(ρd), will perform the Leidenfrost phenomenon
while levitating at the interface. Above this maximum radius, droplets
sink into the liquid, becoming fully immersed, and perform the
Leidenfrost phenomenon while immersed. Here points show the
experimentally determined value of Rc(ρd) for droplets of different
density, ρd, and volumes, V, with the effective radius defined to be R =
(3V/4π)1/3. All points carry error bars, though these are many times
smaller than the actual size of the point on the graph.
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temperature has the advantage that the thermal properties of
nitrogen gas have been tabulated at intervals of 100 K.25)
Conservation Laws and Solution. Our model for the

levitation of a droplet through the inverse Leidenfrost
phenomenon is based on the conservation of thermal energy,
the conservation of mass (of vapor) and vertical force balance
(on the drop). Since it is the temperature difference between
the droplet and the bath, ΔT = Td − TN, that drives the inverse
Leidenfrost effect, we begin by using conservation of energy to
discover how this “excess temperature” evolves. The situation is
complicated by the fact that the droplet solidifies as it levitates.
There are therefore three stages of levitation: in stage I the
droplet is liquid and the driving temperature ΔT evolves; in
stage II the droplet freezes, releasing the latent heat of fusion
but maintaining a constant ΔT (assuming conduction of the
latent heat is sufficiently fast) and in stage III the droplet is
solid and the driving temperature ΔT evolves once again.
In stage I, the global conservation of energy requires that the

rate at which the thermal energy of the (liquid) drop, ρdVcpΔT,
decreases, must equal the rate at which energy diffuses across
the Leidenfrost layer, kΔT/h, integrated over the surface area,
A, of the drop that is in close proximity to the nitrogen bath.
We therefore have that

ρ
Δ = − Δ

t
T

kA
c V

T
h

d
d

( )
d p (1)

This is an ordinary differential equation for ΔT but involves the
unknown thickness of the Leidenfrost layer, h(t); an additional
equation is required to determine h(t), as we shall discuss
shortly. A similar equation holds for the evolution of the excess
temperature in stage III once the drop has solidified; however,
the product of the liquid density and heat capacity, ρdcp, is
replaced by that of the solid droplet, ρd

(s)cp
(s).

In stage II, the freezing of the droplet, it is the latent heat of
fusion f that must be diffused away over the liquid gap. If we
denote by ϕl the proportion of drop that is in the liquid state
(so that ϕl = 1 at the beginning of stage II), then the
conservation of energy here reads

ϕ

ρ
= − Δ

t
kA
V

T
h

d

d
l

d
f

(2)

In each stage, therefore, we have an expression for the evolution
of either the driving temperature difference ΔT (stages I and
III, eq 1) or the liquid fraction within the droplet (stage II, eq
2). However, each of these evolution equations depends on the
(currently unknown) gap thickness h(t). We therefore now
turn to determining the evolution of h(t).
We assume that the thickness h(t) is determined by the

requirement that the vapor (which is generated by the heat flux
from the droplet) be able to drain out of the layer. To proceed,
we need to determine the areal flux (a volume per unit time,
per unit surface area) q of nitrogen vapor that is generated by
phase change. This flux q is determined by calculating the
volume q whose latent heat of vaporization, ρ qg

v , would carry

away the instantaneous heat flux, kΔT/h, across the layer, i.e.,
ρ= Δq k T h/( )g

v . Since the gap between the droplet and the

bath is assumed thin, we then use lubrication theory to describe
the motion of the nitrogen vapor (of viscosity μ) within this
layer and to determine the pressure field, p(θ, t), that drives this
flow. Combining the standard local conservation of mass
equation in lubrication theory26 with the source term that
comes from the generation of vapor, we have that

θ θ
θ

μ θ ρ
− ∂

∂
∂
∂

= Δ⎛
⎝⎜

⎞
⎠⎟

h
t R

h
R

p k T
h

d
d

1
sin

sin
12 g

v

3

(3)

Equation 3 may be solved, subject to a condition that p remains
finite at the base of the drop (θ = 0) and that the pressure is
atmospheric at some θ = θm, i.e. p(θ = θm) = 0. The pressure
within the vapor layer is then

μ
ρ

θ
θ

= − − Δ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡
⎣⎢

⎤
⎦⎥p

R
h

h
t

k T
h

24 d
d

log
cos( /2)

cos( /2)

2

3
g

v
m (4)

Note that the maximum angular position θm also enters the
conservation of energy eq 1 or 2 through the area A over which
conduction happens.
To progress further, we need to determine from eq 4 an

equation for dh/dt. This is achieved in different ways for each
of the two cases (levitating drops and immersed drops), and so
in Appendix B we consider each of these cases separately.
However, the result of each calculation is that the evolution
equation for the gap thickness may be written in the form

ρ
− Δ = −h

t
k T

h
ch

d
d g

v
3

(5)

for some dimensional constant c that varies with drop size,
density, etc.
To make further progress, we introduce dimensionless

variables

ρ
ρ ρ* = Δ * = Δ * =h hA V T

c
T t

kA
c V

t/ , ,d p

g
v

2

d p
2

(6)

Here, the gap thickness is essentially nondimensionalized by
the radius of the sphere, R, temperatures by the temperature
change of the droplet brought about by changing a unit mass of
liquid nitrogen into gas (modified by the density ratio between
the gas and the drop), and time is nondimensionalized by the
time scale of thermal conduction over the radius of the drop. In
these variables, the evolution eq 1 for stage I of the process
becomes

Figure 5. Model setup considered in the theoretical calculations
presented here: a spherical droplet sits at the interface of the liquid
nitrogen bath on a cushion of nitrogen vapor that makes up the
Leidenfrost layer. Here we assume that the thickness of this layer is
independent of angular position θ, but dependent on time, i.e., h(θ, t)
= h(t).
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*
Δ * = −

Δ *
*t

T
T

h
d

d
( )

(7)

while for stage II (freezing), we have the dimensionless version
of eq 2

ϕ ρ

ρ*
= −

Δ *
*t
T

h
d

d
l g

v

d
f

(8)

instead of eq 7. In stage III, eq 7 is modified to read

*
Δ * = −
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*t

T
c

c

T
h

d
d
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In each stage, the gap thickness evolves according to the
dimensionless version of eq 5, which may be written

*
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where the dimensionless constant
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where ρN is the density of liquid nitrogen. Using parameter
values typical of our experiments, we find that C ≫ 1 (typically
105 ≲ C ≲ 108). In this regime, eq 10 ensures that the thickness
of the film evolves approximately quasi-statically, i.e., h∗ ≈
(ΔT∗/C)

1/4 (see Appendix C). The largeness of C ensures that
h ≪ 1, i.e., that the cushioning layer of vapor is only a small
fraction of the drop radius, which is a required condition for
our use of lubrication theory to be valid.
In this quasi-static limit, we may eliminate h∗ ≈ (ΔT∗/C)

1/4

from the appropriate form of conservation of energy and solve
the resulting equation. For example, from eq 7, we find that

Δ * = * − *T
C

t t
4

( )4
c 4

(12)

and

* =
Δ * = * − *
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t t
1
4

( )
1/4

c

(13)

where the constant of integration

* = Δ *t T C4[ (0)/ ]c 1/4
(14)

is determined by the initial condition. Physically, the constant t∗
c

corresponds to the (dimensionless) time at which the excess
heat of the droplet would vanish if it remained liquid
throughout (i.e., in stage I). Of course, the duration of the
Leidenfrost phenomenon in this case is more complicated, not
least because of the three stages through which the motion
passes. We therefore turn now to consider the total duration of
the Leidenfrost phenomenon.
Duration of the Leidenfrost Phenomenon. The

duration of the first two stages of the motion are relatively
simple to calculate since, by definition, stage I ends once the
excess temperature ΔT reaches a critical value ΔTF = Tfreeze −
TN (with Tfreeze = −10 °C the estimated freezing temperature of
the polytungstate solution). In dimensionless terms,

* = Δ * − Δ *t
C

T T
4

[ (0) ](I)
1/4

1/4
F,

1/4

(15)

Stage II lasts as long as is required to dissipate the latent heat of
fusion. During this stage, the drop remains at Tfreeze. The
dimensionless duration reads

ρ
ρ* = Δ *

−t
C

T
1(II)
1/4

d
f

g
v F,

3/4

(16)

The final phase of motion is stage III in which the droplet has
frozen but continues to cool to the temperature of the bath. We
shall assume that this phase ceases when the temperature of the
droplet reaches the Leidenfrost temperature of nitrogen, Tc ≈
126 K.14 The dimensionless duration of stage III is thus

* = Δ − * − **t
C

c

c
T T T

4
[ ( ) ](III)

1/4
p
(s)

p
F,

1/4
L N

1/4

(17)

and the total dimensionless duration of the Leidenfrost
phenomenon is

* = * + * + * ∝ −t t t t CL (I) (II) (III) 1/4
(18)

The experimentally measured Leidenfrost time (nondimension-
alized as in eq 6), t*

L, is plotted as a function of the
dimensionless parameter C in Figure 6. This shows two key

features of the data: (i) experimental results over a range of size
and density (and floating in different states) approximately
collapse onto a single curve and (ii) the theoretical prediction
in eq 18) gives a reasonable estimate of the observed
Leidenfrost time (recalling that there are no fitting parameters
in our model), though the model does overestimate the
duration of the Leidenfrost phenomenon. Furthermore, the
experiments suggest a power law behavior t*

L ∼ C−1/4, as

Figure 6. Dimensionless levitation time t∗
L plotted as a function of the

single dimensionless parameter C given by eq 11. As in Figure 3,
experimental results are shown for both drops levitating at the
interface (○) and for those which immediately become immersed in
the nitrogen (×). The density of the droplet is encoded by its color
with red representing neat FastFloat (ρ = 2.8 g/cm3) and blue the
lightest droplets (very dilute solutions of FastFloat) for which ρ = 1.02
g/cm3; a more detailed color map is given in the legend. The solid line
shows the expression 18 obtained from this theory with a final
temperature at the end of the Leidenfrost phenomenon of TL = 126
K.16 Note that, in evaluating the dimensionless constant C and the
theoretical predictions, we have taken the values of k and μ at 200 K,
as detailed in Appendix A.
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predicted in eq 18. Finally, given that the duration of each stage
of the process scales with C in the same way means that we can
estimate the proportions that the drop spends in each stage; we
find that the ratios t(I):t(II):t(III) ≈ 1:2:3each stage occupies a
significant fraction of the whole experiment.
In dimensional terms, eq 18 may be written
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(19)

Since V/A ∼ R and C ∼ R3, we see immediately that tL ∼ R5/4,
which is almost linear in the droplet radius. Similarly, since
almost all occurrences of the drop density ρd are in
combination with the corresponding specific heat capacity cp
and if we assume, as discussed in Appendix A, that ρdcp ≈ cst
for our solutions, then eq 19 suggests that the Leidenfrost time
is almost independent of the droplet density (with at most a
ρd

1/4 dependence, observed in the levitating regime).
Scaling Analysis of Leidenfrost Duration. The detailed

theory above shows that the levitation time scales approx-
imately linearly with drop radius, in contrast with most
preceding analyses, which suggested a quadratic scaling.
Furthermore, this time is approximately independent of the
drop density. To understand these two surprising observations
better, it is worth re-evaluating our model with a brief scaling
analysis of the problem. Our key modeling assumption is that
the relevant heat flux limiting the cooling of the droplet (and
hence the duration of the Leidenfrost phenomenon) is the
conduction of heat across the vapor layer, of thickness h. We
therefore have, in scaling terms, that both the heat flux and the
volume flux of vapor into the lubricating layer, q ∼ ΔT/h. To
determine the gap thickness h we used lubrication theory,
which showed that the pressure drop within the lubricating
layer Δp ∼ μuR2/h2 (see eq 3) with u a typical horizontal
velocity scale, which must, by mass conservation, be u ∼ q/h.
We therefore have Δp ∼ μqR2/h3 ∼ μΔTR2/h4. This pressure
drop must be equated to either the pressure drop in the
external liquid (in the immersed case) or the additional
pressure required to support the drop (in the levitating case);
either way, we have on purely dimensional grounds that Δp ∼
ρ∗gR (with the value of the appropriate density ρ∗ depending
on the situation) so that ρ∗gR ∼ μΔTR2/h4 and hence h ∼
(μΔTR/ρ∗g)1/4. Crucially, this gap thickness is only weakly
dependent on the size of the droplet, R, and the droplet density
ρd. The surface-integrated heat flux out of the droplet, ∼ΔTR2/
h, and so the time to lose the initial heat energy of the droplet is
t ∼ Rh/ΔT ∼ R5/4/ρ∗

1/4, which is approximately linear in the
radius R and independent of the droplet density (since ρdcp is
approximately constant for dilute salt solutions, as discussed in
Appendix A). This argument makes it clear that the real root of
the quasi-linear dependence of the Leidenfrost time on droplet
radius we observe is that thermal conduction happens over the
thin cushioning layer, of thickness h that depends only weakly
on R.
Transition from Floating to Sinking. We have now

understood the duration of the Leidenfrost phenomenon.

However, we have not yet discussed whether a drop of a given
density and volume will initially levitate at the interface or will
immediately sink, becoming immersed in the liquid and
undergoing film-boiling. In this section, we seek to understand
this question by studying the largest droplet that is able to float
for a liquid of a given density. To do this, we draw on the
considerable body of work on the “floatability” of small, dense
objects, which has seen intense interest in recent years.20

As already assumed in our thermodynamic model, the
relatively large tension of the vapor−water interface (relative to
that of the liquid−vapor) will ensure that the droplet remains
relatively spherical. We therefore treat the Leidenfrost droplet
as a perfectly nonwetting (contact angle = 180°) sphere and
calculate the maximum density a nonwetting sphere of given
radius can have for equilibrium flotation to remain possible.
This calculation follows closely that presented elsewhere20,33

and so here we simply present our numerical results. In this
scenario, it is the size of the sphere relative to the capillary
length of the interface between the liquid nitrogen and gaseous
nitrogen, lc = (γN/ρNg)

1/2, that is important: spheres
significantly smaller than the capillary length can be supported
at the interface even if their density is larger than that of the
supporting liquid. In particular, the maximum floatable radius at
a given density is

ρ
ρ

≈
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟R l

3

2c
N

d

1/2

(20)

for R ≪ lc.
Figure 7 shows the data from Figure 4 replotted in

dimensionless terms and compared with the results of this

calculation. We see that the experiments do not violate the
theoretical upper bound for nonwetting spheres floating at a
liquid interface: levitating Leidenfrost drops are no better at
floating at the interface than would be a nonwetting sphere of
the same density. Indeed we see that drops significantly below
the maximum floatable density actually sink, becoming
immersed in the liquid nitrogen bath. One possibility for this
discrepancy is that the drops are (by necessity) dropped from a

Figure 7. Maximum radius for which levitation is possible, Rc, as a
function of the density ratio, ρd/ρN, for a perfectly nonwetting sphere
is shown by the solid blue curve. The experimentally determined
maximum radius for drops of FastFloat at different density are shown
by the points and lie below the theoretical maximum. The discrepancy
might be attributed to the fact that impact induces premature
sinking.20
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height onto the bath. It has been shown previously that impact
at a finite speed may cause the premature sinking of solid
spheres34 and cylinders.35,36 Indeed, even if an object is placed
at the interface with zero velocity, the acceleration due to
gravity in reaching its equilibrium floating depth may induce
sinking.35

■ DISCUSSION AND CONCLUSIONS

In this paper, we have presented a series of experiments on the
inverse Leidenfrost effect for a liquid drop on a bath of liquid
nitrogen; these experiments revealed that the levitation time
scales approximately linearly with drop radius, in contrast with
most preceding analyses, which suggested a quadratic scaling.
Furthermore, this time is approximately independent of the
drop density. We were able to explain these two experimental
observations using a theory that coupled heat conduction to the
force balance condition required as a result of levitation; the
essential ingredients of this theory may be understood from the
scaling analysis given above.
While the density of the droplet has little effect on the

duration of the Leidenfrost phenomenon, it does play a major
role in the phenomenology since, for a given radius, the density
of the drop determines whether it floats or sinks. Our
experiments suggest that this transition should be understood
within the context of the vast literature on the floating/sinking
transition of dense interfacial objects, rather than being a
particular feature of the Leidenfrost phenomenon.
Looking to the future, we hope that other groups will be

motivated to extend our theoretical model to study the effect of
spatial variations in the gap thickness h, which we have assumed
is uniform (but varying in time). This has been done in detail
for the regular Leidenfrost problem29,37 and for droplets
levitating on a vibrating bath in the absence of phase change.32

It may also be interesting to investigate the thermal properties
of the polytungstate solutions used hereis our assumption of
a constant volumetric specific heat ρdcp and latent heat ρd

v

responsible for the discrepancy between experiment and theory
observed here? Other intriguing phenomena worth studying
include the self-propulsion of the drops studied here and that of
other drops (e.g., ethanol droplets) that do not sink, even after
the Leidenfrost phenomenon has ceased (presumably due to
surface tension effects and the smooth surface of frozen
ethanol). This long-term continuation of levitation (or, more
accurately, floating), may result in a frozen droplet repeatedly
bouncing off the edge of the container (see Supporting
Information movie). Finally, we note that more violent versions
of the Leidenfrost effect are believed to occur when alkali
metals are placed at the surface of water and may ultimately be
the cause of the explosions that are usually attributed to the
hydrogen that is produced via chemical reactions.38

■ APPENDIX A: PARAMETER VALUES

In performing our calculations we have used a range of
parameter values from the literature. We summarize these in
Table 1 for ease of reference and to aid navigation of the many
relevant papers.
For the thermodynamic properties of the polytungstate

solutions, we emphasize that the solutions used are prepared at
relatively low concentration despite the dramatic increase in
density: the concentration of neat FastFloat is approximately
0.6 mol/L, i.e., a molar fraction of 10−2. We therefore expect
that the molal heat capacity of the solution remains dominated

by that of the solvent, water. By neglecting the volume change
due to dilution, we adopt the simplifying assumption of a
constant volumetric heat capacity: ρdcp ≈ cst. (For more
common salts, such as NaCl and KCl, ρdcp varies by less than
5% for concentrations up to 1 mol/L.39) For similar reasons,
we assume that ρd

f is independent of the concentration.

■ APPENDIX B: DETAILS OF PRESSURE CLOSURE
In this Appendix, we discuss the remaining condition needed to
turn the pressure profile (eq 4) into an equation for the
evolution of the gap thickness, h(t). There are two cases to
consider: the cases of a levitating and of an immersed droplet.

Floating/Levitating. For a Leidenfrost droplet to levitate at
the interface, the vertical component of the pressure force
(integrated over the surface of the droplet) must balance the
weight of the droplet, i.e.,

∫ρ π θ θ θ θ=
θ

gV R p t2 ( , )cos sin dd
2

0

m

(21)

Substituting for p(θ, t) from eq 4 into the above expression and
eliminating ΔT/h in favor of dΔT/dt using eq 1, we find that
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In this case, we recover the general form presented in eq 5.
Immersed. In the immersed case, there is an unknown

reaction force from the base of the tank that balances the
weight of the droplet. Instead of the global vertical force
balance, therefore, we require that the change in pressure from
the bottom of the droplet to the datum of pressure, taken at θ =
θm, should balance the hydrostatic pressure change within the
liquid over the same region, ρNgR(1 − cos θm). We therefore
have that

ρ θ
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ρ θ
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which can be rewritten in the form of eq 5 with constant

Table 1. Physical Parameter Values Used in the Model

quantity symbol value ref

Leidenfrost temperature TL 126 K 16
viscosity @ 200 K μ 12.89 μPa·s 40
thermal cond. @ 200 K k 18.72 mW/m/K 40
density of gaseous N2 @ 200 K ρg 1.706 kg/m3 41

Latent heat of N2 vaporization
v 2 × 105 J/kg 42

density of liquid N2 ρN 807 kg/m3 43
liquid droplet heat capacity ρdcp 4.2 MJ/K/m3 44

latent heat of H2O fusion f 334 kJ/kg 45

solid droplet heat capacity ρd
(s)cp

(s) 1.9 MJ/K/m3 45
N2 liquid−vapor tension γN 8.85 mN/m 46
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ρ θ
μ θ

=
−

c
g

R
(1 cos )

24 log[1/cos( /2)]
N m

m (25)

The Choice of θm. In both floating and immersed cases, we
take θm = π/2. This value is chosen for simplicity and to
represent a reasonable value based on experimental observa-
tions: in the immersed case, a thin film is only observed around
the lower hemisphere since bubbling becomes violent in the
upper hemisphere. Nevertheless, we emphasize that the relative
insensitivity of the dimensionless constant C to the parameter
θm means that the precise value of θm used should not be too
important.

■ APPENDIX C: NONLINEAR DYNAMICS OF ODEs
In this Appendix, we briefly discuss the general behaviour of the
ordinary differential eqs 7−10. The key observation is that the
dimensionless parameter C is typically large (our experiments
generally have 105 ≲ C ≲ 108). In this limit, the evolution
rapidly converges onto the slow manifold h∗ ≈ (ΔT∗/C)

1/4 so
that the evolution is then quasi-static. This can be illustrated by
plotting the trajectories (from the numerical solution of eqs 7
and 10 for stage I of the phenomenon with a range of initial
conditions in (ΔT∗, h∗) space), as shown in Figure 8.
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