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1/ f noise and long-term memory of coherent structures in a turbulent shear flow
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A shear flow of liquid metal (Galinstan) is driven in an annular channel by counter-rotating traveling
magnetic fields imposed at the end caps. When the traveling velocities are large, the flow is turbulent and its
azimuthal component displays random reversals. Power spectra of the velocity field exhibit a 1/ f α power law on
several decades and are related to power-law probability distributions P(τ ) ∼ τ−β of the waiting times between
successive reversals. This 1/ f type spectrum is observed only when the Reynolds number is large enough. In
addition, the exponents α and β are controlled by the symmetry of the system; a continuous transition between
two different types of Flicker noise is observed as the equatorial symmetry of the flow is broken, in agreement
with theoretical predictions.
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A puzzling problem in physics is the ubiquity of “1/ f ”
noise or “Flicker” noise, i.e., the existence of a wide range
of frequencies over which the low-frequency power spectrum
S( f ) of a physical quantity follows a power law S( f ) ∼
f −α , with α close to 1 (or more generally 0 < α < 2). Such
behavior is observed in a broad variety of physical systems,
ranging from voltage and current fluctuations in vacuum tubes
or transistors [1,2] to astrophysical magnetic fields [3], and
including biological systems [4], climate [5], and turbulent
flows [6–9], to quote a few.

Surprisingly, this ubiquity of 1/ f noise does not seem
to rely on a single explanation: although many interesting
models have been proposed during the past 80 years, there
is currently no universal mechanism for the generation of 1/ f
fluctuations. Different levels of theoretical description of 1/ f
noise involve the existence of a continuous distribution of
relaxation times in the system [10,11], fractional Brownian
motion [12], and low-dimensional dynamical systems close
to transition to chaos [13–15]. These systems often display
an intermittent regime with bursts occurring after random
waiting times τ . For this type of point processes, it has
been shown that a f −α spectrum is related to a power-law
distribution P(τ ) ∝ τ−β with some relation between α and β

that depends on the symmetry of the signal [16].
Although most of the early experimental observations of

1/ f α noise do not display such discrete events in their time
recordings, switching events have been observed in small
electronic systems [17] and more recently in blinking quan-
tum dots [18–20]. These waiting times, distributed as a power
law, reflect the scale-free nature of the statistics, and they
are associated with durations spent by the system in two
different states. More recently, statistical analysis of quasi-
bidimensional turbulence of an electromagnetically forced
flow exhibited a similar dynamics, in which a large-scale
circulation randomly reverses [21]. In this experiment, both
the 1/ f power spectrum and power-law interevent time prob-
ability distribution functions were observed. These results
indicate that coherent structures generated in turbulent flows

play a crucial role in the occurrence of 1/ f noise. On the other
hand, it is known that such large-scale coherent structures
can exhibit very different dynamics depending on the level
of turbulent fluctuations or the symmetry properties of the
system. Whether these properties could affect 1/ f noise is
an open question. In the experiment reported here, both the
level of turbulence and the symmetry between two states can
be independently controlled, allowing for such investigation:
we show how the occurrence of 1/ f fluctuations is directly
related to the power-law probability density function (PDF) of
waiting times, but depends critically on the level of turbulence
generated in the flow. In addition, the symmetry of the forcing
plays a crucial role: different relations are satisfied by α and β

depending on whether the two opposite states are symmetrical
or not. In particular, a continuous transition between the dif-
ferent regimes predicted in [16] can be obtained as a function
of the skewness of the velocity PDFs, ultimately controlled by
the symmetry of the external driving.

Figure 1 shows a schematic picture of the experiment : an
annular channel made of polyvinyl chloride (PVC), with inner
radius ri = 65 mm, outer radius ro = 98 mm, and vertical
height H = 47 mm, is filled with liquid Galinstan (GaInSn),
a eutectic alloy that is liquid at ambient temperature, with
kinematic viscosity ν = 0.37 × 10−6 m2 s−1, density ρ =
6.44 × 103 kg m−3, and electrical conductivity σ = 3.46 ×
106 S m−1.

At a distance h = 10 mm above and below the channel
there are two rotating disks, each containing 16 neodymium
magnets disposed with a regular spacing along a circle of
radius R = 83 mm. These magnets are cylinders of diameter
dm = 20 mm and height hm = 10 mm, generating a magnetic
field B0

m = 0.45 T at their surface. They are arranged such
that two adjacent magnets, separated by a distance dm =
2πR/16 = 32.5 mm, are oriented with opposite polarity. The
rotating disks therefore generate on each side of the channel
a spatially periodic magnetic field traveling in the azimuthal
direction with an angular frequency 	i = 2π fi/16 and a wave
number k = π/dm, where fi is the rotation frequency of the
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FIG. 1. Schematic view of the experiment. A flow of liquid metal
(Galinstan) is driven in an annular channel by the Lorentz force due
to a traveling magnetic field created by magnets placed on rotating
disks.

disk i. The flow is electromagnetically driven by the Lorentz
force due to these traveling magnetic fields (TMFs). The fre-
quencies of the disks f1 and f2 can be changed independently,
which leads to the definition of four dimensionless control
parameters: F = ( f1 − f2)/( f1 + f2) controls the asymmetry
of the forcing provided by the top and bottom disks, and
Re = [( f1 + f2)/2]H2/ν is the Reynolds number based on
the mean frequency. In addition, one can define the mag-
netic Prandtl number Pm = νμ0σ (∼10−6 for Galinstan) and
the dimensionless magnetic field of the magnets, which is
represented by the Hartmann number Ha2 = B2

0σH/(kρν),
where B0 is the magnetic field measured in the midplane,
and k is the wave number. For the experiments reported here,
Ha = 90. The velocity field is measured through ultrasound
Doppler velocimetry (UDV) using three probes located in
three different horizontal planes z = 0 (midplane) and z =
±11 mm.

When the two traveling magnetic fields imposed at the top
and bottom end caps rotate in the same direction, a strong
azimuthal Lorentz force drives the flow in the same direction
as the disks, and the device therefore acts as an induction
pump [22,23].

We focus here on the configuration in which the two
disks are counterrotating. A strong shear flow develops in
the channel, due to the opposing Lorentz forces generated at
the top and bottom boundaries by the corresponding traveling
magnetic fields. Figure 2 shows the bifurcation of the most
probable velocities measured by UDV in the midplane of
the channel as a function of the asymmetry parameter F .
Red squares (blue circles) indicate positive (negative) mean
velocity, meaning that the fluid in the midplane moves in the
same direction as the upper (lower) disk. Close to F = 0,
bistability between these two states is observed. The upper-
left inset shows a typical time series of the velocity field
in this regime (here for F = 0): the instantaneous velocity
is strongly fluctuating and exhibits chaotic reversals of its
polarity, the fluid following alternatively one disk or the other.
As a consequence, the corresponding PDF shows a bimodal
structure (lower-right inset) characterized by two maxima in
the PDF. The two vertical dotted lines delimit the region

FIG. 2. Most probable velocities measured in the midplane as
a function of F for Re = 7.1 × 103. The two vertical dashed lines
indicate the region of bistability between positive and negative flow
velocity. Upper-left inset: time series of the velocity in the bistable
regime. Lower-right inset: bimodality of the PDF related to the
bistability of the flow.

for which such a bistability between positive and negative
velocity is observed (characterized by bimodal PDFs). Note
that due to some imperfections in the experimental setup,
the bifurcation diagram is slightly asymmetrical with respect
to F = 0. Similarly to the large-scale dynamics observed in
von Karman swirling flows [8], UDV measurements at z =
±11 mm indicate that these reversals correspond to chaotic
jumps from the midplane of the central shear layer.

We first study the evolution of the statistical properties
of the velocity field in the bistable regime for F ∼ 0. In
Fig. 3, we report the frequency power spectra extracted from
time series V (t ) measured by UDV in the midplane for
different values of the Reynolds number. First note that all
power spectra show an f − 5

3 direct cascade of energy from
the injection scale f0 ∼ U

H , where U is the mean velocity of
the flow (measured close to each disk) and d is the gap of
the channel. We focus here on the behavior of the spectra
at a frequency below the injection scale f0. We first observe

FIG. 3. Frequency power spectra S( f ) of the velocity V (t ) for
different Reynolds numbers (Re = 4.7 × 103, 1.6 × 104, and 3.6 ×
104 from bottom to top). For clarity, the spectra have been multiplied
by 1, 10, and 1000. Note the − 5

3 slope at high frequency, and the
occurrence of 1/ f α noise at low frequency. Inset: exponent α as a
function of Re.
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FIG. 4. Power-law distribution of the waiting time P(τ ) between
two successive reversals of the flow for Re = 7.1 × 104. Inset: β as
a function of Re.

that they depend strongly on the Reynolds number: at the
lowest Re, the spectrum is flat for f � f0, but as Re is
increased beyond a critical value Rec ∼ 104, the system shows
a buildup of energy toward low frequency, such that 1/ f α

noise is observed for large Reynolds numbers. The inset of
Fig. 3 shows the dependence of α on Re, and suggests that
it converges rapidly to values slightly larger than α = 1 in
the limit of large Re. We emphasize that the spectra below
the injection scale f0 are not related to any turbulent cascade
process since the frequencies are too low to correspond to any
spatial scale within the fluid container. In particular, the 1/ f
spectra observed here in the bulk flow are not similar to the
1/ f spectra observed in turbulent boundary layers that trace
back to 1/k spectra through the Taylor hypothesis [24].

Since these results have been obtained for F ∼ 0, all the
power spectra shown in Fig. 3 are related to time series
exhibiting chaotic reversals between two symmetrical states.
These random reversals can be characterized by the distribu-
tion P(τ ) of the waiting time (WT) τ between two successive
transitions, as shown in Fig. 4 for Re = 7.1 × 104. We observe
that the waiting times are distributed according to a power
law P(τ ) ∼ τ−β , in contrast to the exponential distribution
generally observed in the case of a memoryless system. The
presence of such a power-law PDF therefore suggests a more
complex non-Poissonian physics underlying the occurrence of
polarity changes. Note that similarly to α, the exponent of
the power law depends on Re and slowly tends to β = 2 as
Re is increased to large values. The exponents of the power
spectra and of the WT distribution also depend strongly on
the asymmetry of the magnetic forcing, controlled by the
value of F . In Fig. 5, we report the PDF of the velocity field
in the midplane for various values of F and a fixed value
of the Reynolds number Re = 6 × 104. When F has large
negative or positive values, the system is in a nonreversing
regime with negative (positive) mean velocity, and the fluid
follows the bottom (the top) disk with a Gaussian distribution
of velocity fluctuations. For values of F close to 0, the
distribution is either bimodal and roughly symmetrical with

FIG. 5. Probability density function of the velocity field for dif-
ferent values of the asymmetry F of the forcing. Note the transition
from a Gaussian distribution at large |F | to bimodal behavior for
F ∼ 0.

respect to zero (for instance, F = 0.09), or asymmetrical with
a non-Gaussian tail (for instance, F = 0.14).

Interestingly, this asymmetry in the forcing clearly con-
trols the value of the exponent of the power spectrum at
low frequency, as shown by Fig. 6. For strongly asymmetric
forcing (F = −0.21 and −0.14), the spectrum is flat, with
f 0 behavior on several decades for f < f0. As the flows
starts to randomly explore the other polarity, α increases,
even when the corresponding PDF is not bimodal (see F =
0). The exponent α reaches its maximum value α = 1.1 for
symmetrical PDFs of the velocity, and then decreases again
with F as the flows come back to a nonreversing state.

In fact, it has been shown [16,25] that in the presence of
a heavy-tailed distribution similar to the one shown in Fig. 4,
the exponent α of the power spectrum and the exponent β of
the WT distribution are related: in the case of a symmetric
process (meaning that the two states have a similar transition

FIG. 6. Frequency power spectra S( f ) of the velocity V (t ) for
different values of the asymmetry parameter (F = 0.21, 0.14, 0.09,
0, −0.14, and −0.21 from bottom to top). For clarity, the spectra
have been multiplied by 10 for each increment of F . The inset shows
the exponent α as a function of F .
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FIG. 7. α as a function of β for various values of F and Re.
The dashed line indicates the regime β − α = 1, while the solid line
corresponds to β + α = 3. The skewness θ of the PDFs determines
in which regime the system lies (θ < 0.1 for blue circles, θ > 0.1 for
red squares).

probability), one expects the relation α + β = 3, whereas
β − α = 1 is predicted in a nonsymmetric process (e.g., for
random bursts). It has been shown in [26] that one prediction
or the other can be observed in different experiments : for
instance, pressure fluctuations in three-dimensional (3D) tur-
bulence [27] follow β − α = 1 scaling, whereas α + β = 3 is
observed for random reversals of a large-scale flow generated
by Kolmogorov forcing [26].

We show here that both regimes can be observed in the
same experiment and for the same measured quantity, depend-
ing only on the asymmetry parameter F and the Reynolds
number: Figure 7 reports most of our experimental runs (ob-
tained for various values of F and Re) in the parameter space
{α, β}, in which the dashed line indicates the regime β − α =
1 and the solid line indicates α + β = 3. For each point, we
have computed the skewness of the PDFs of the velocity
θ = 〈{[V (t ) − μ]/σ }3〉, where σ and μ are, respectively, the
standard deviation and the mean. When the probability density
function of the flow exhibits a roughly bimodal distribution
(θ < 0.1, blue circles), most of the points tend to collapse
on the line α + β = 3, while asymmetrical reversals (θ > 0.1,
red squares) lie along β − α = 1, valid for bursting processes
only. While these results show that the asymmetry of the
forcing controls the type of 1/ f noise (i.e., the value of the
sum or the difference of the exponents) that is observed,
what controls the values of the exponents exactly remains
unclear.

It is also important to note that Fig. 7 reports results
obtained only for sufficiently large Reynolds numbers (in
practice Re � 5 × 104) and F not too large (keeping only
non-Gaussian distributions).

The problem we studied experimentally is related to the
general question of the low-frequency behavior of the turbu-
lent velocity spectrum. As seen in Fig. 3, the power increases
at low frequency as the Reynolds number is increased. This
could be somewhat surprising since the phenomenology of
3D turbulence predicts an increase of the inertial range to-
ward the small spatial scales. The increase of power at low
frequency results from the instability of the shear layer that
develops on the turbulent background. We therefore showed
that the low-frequency behavior of turbulent flows is strongly
related to the dynamics of coherent structures, here the shear
layer, and confirmed observations made in several other flow
configurations [26]. As shown in another context, large-scale
instabilities of turbulent flows can be modeled by keeping
only large-scale modes that obey the truncated Euler equation
(TEE) [28]. Numerical simulations of the TEE have displayed
1/ f spectra [29]. Numerical simulations of this type of model
are presently studied in the case of a turbulent shear layer. We
emphasize that this process for generating 1/ f noise involves
a large number of degrees of freedom with many triads in
nonlinear interaction and therefore differs strongly from low-
dimensional dissipative dynamical systems. Our experimental
results also show that although the power-law exponents α

and β change only slightly with Re, they depend strongly on
the asymmetry parameter. This second observation is inter-
esting because the continuous transition from α + β = 3 to
β − α = 1 generated as the equatorial symmetry of the flow
is broken shows that both regimes can be observed within
the same system. In other words, some features of 1/ f noise
can be directly related to the asymmetry of the system. It
would be interesting to see if this relation can be used to
understand some systems from the characteristics of their 1/ f
fluctuations. For instance, the study of the exponents α and
β from 1/ f fluctuations of the solar wind or the luminosity
of some stars may help to explore their symmetry properties,
less accessible from observations. From a fundamental view-
point, it could be argued that we have replaced the problem
of finding a mechanism for 1/ f noise by the problem of
providing an explanation for the power-law PDF of waiting
times. However, this could be a useful step since a generic
mechanism has been proposed for the latter [30]. Finally,
we can understand the particular role played by the value
α = 1 that is common to the symmetric and asymmetric cases
(see Fig. 7). With symmetric forcing, we expect α = 1 to be
selected by small asymmetric perturbations.
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