
5 Coordinate Bethe Ansatz

Given a 2D model of equilibrium statistical physics, one would like to com-
pute the partition function and certain correlation functions. This is rarely
possible on a finite lattice—with dimer coverings being a notable exception—
but in many cases exact results can be obtained in the thermodynamical limit.
The question arises under which conditions such computations are possible.

Via the transfer matrix formulation, a 2D model can be recast as the time
evolution of a 1D quantum spin chain. A first step in the analysis of a given
problem is to identify the particles being described by the spin chain as well
as their exact dynamics. The free energy and the correlation functions are
related in the usual way to the ground state and the excitations of the spin
chain Hamiltonian. The goal is then to diagonalise exactly this Hamiltonian,
i.e., to identify its eigenvectors and eigenvalues.

If there were only one particle in a spin chain with periodic boundary
conditions, its eigenvectors would be plane waves eikx of a certain momentum
k. When more than one particle is present, a product of plane waves would
be an appropriate wave function only if the particles moved independently.
This is of course not the case in any non-trivial model. But a natural idea,
pioneered by Bethe [Be31] in his 1931 paper on the Heisenberg model (also
known as the XXX spin chain), is to try an Ansatz of coupled plane waves.

In this chapter we shall illustrate this approach on a more general model,
known as the six-vertex model in its 2D incarnation, or equivalently as the
XXZ spin chain. This model has important relations to the Potts model and
to the Temperley-Lieb lattice algebra, as will be discussed in later chapters.

The six-vertex model was solved by Lieb [Li67]. It is a special case of the
eight-vertex model which was later solved by Baxter [Ba72].

The Bethe Ansatz technique comes in several variants. In this chapter we
focus on the so-called coordinate Bethe Ansatz, following roughly chapter 8 of
Baxter’s book [Ba82a]. The procedure is here to construct the eigenvectors
explicitly for n-particle states, by identifying the relations—known as the
Bethe Ansatz equations (BAE)—under which the so-called unwanted terms
cancel out. Studying in detail the cases n = 1 and n = 2 usually gives
crucial insight into the general form of these relations, and one proceeds to
the general case by reasonable guesswork (which for the simplest models can
be justified by detailed arguments).

In later chapters we shall rederive those results in an algebraic framework,
culminating in the so-called algebraic Bethe Ansatz. It will gradually emerge
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ω1 ω2 ω3 ω4 ω5 ω6

Figure 15: The allowed arrow arrangements (top) around a vertex that define
the six-vertex model, with the corresponding particle trajectories (bottom).

that the exact solvability of a model hinges on the possibility to factorise
any multi-particle scattering as a product of two-particle scatterings. This
solvability condition is encoded in the celebrated Yang-Baxter equation.

5.1 Six-vertex model

The six-vertex model is defined by placing arrows on the edges of a square
lattice, in such a way that every vertex is adjacent on two incoming and two
outgoing arrows. The six possible configurations around a vertex are shown
in the first line of Fig. 15 along with their respective Boltzmann weights
ω1, . . . ,ω6. The corresponding energies are denoted ϵi, and we have ωi =
exp(− ϵi

kBT
). If there are ni vertices of type i on the given lattice, the goal

is to compute the asymptotic behaviour in the limit of a large lattice of the
partition function

Z =
∑

arrows

6∏

i=1

(ωi)
ni . (5.1)

In the transfer matrix formulation, we impose for the moment periodic
boundary conditions along the horizontal lattice direction. The row-to-row
transfer matrix then conserves the net arrow flux in the time direction. To
fully exploit this conservation law we move to an equivalent particle picture.
Recall that in the R-matrix factorisation of the transfer matrix, time flows in
the North-Eastern direction. We therefore define that an edge is occupied by
a particle if and only if it sustains a right-pointing or an up-pointing arrow.
This is shown in the second line of Fig. 15.

The resulting world-lines of particles are conserved, and moreover they
have a very simple dynamics. Following them from the bottom of the system
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Figure 16: A possible configuration of world-lines on a 4× 4 lattice.

to the top, they can only move up or to the right. This is illustrated in
Fig. 16.

The six-vertex model is solvable when the weights are chosen to be invari-
ant under a global reversal of arrows. The weights are traditionally denoted

ω1 = ω2 = a , ω3 = ω4 = b , ω5 = ω6 = c . (5.2)

Note however that since the arrow arrangement 5 (resp. 6) acts as a sink
(resp. source) of horizontal arrows, we must have the same number of each
in every line. In particular, n5 = n6. For any k ̸= 0 we can therefore take
instead ω5 = kc and ω6 = k−1c without changing Z. This “gauge symmetry”
will turn out useful in later chapters.

5.2 Transfer matrix

The row-to-row transfer matrix T conserves the number n of world-lines when
going from one row to the next. The positions xi of the lines specifies a state
|x1, x2, . . . , xn⟩, where we have assumed x1 < x2 < · · · < xn. The transfer
matrix element

⟨y1, y2, . . . , yn|T |x1, x2, . . . , xn⟩

equals the product of Boltzmann weights along the row, provided that the
state of the upper row ⟨y1, y2, . . . , yn| is compatible with the state of the lower
row |x1, x2, . . . , xn⟩. If the two states are not compatible, the matrix element
is defined to be zero.

The two states are compatible if and only if the positions in the upper
row yi interlace those in the lower row xi. The precise meaning of interlacing
is the following:
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x1 x2

y1 y2

x1 x2

y1 y2

Figure 17: The two ways in which ⟨y1, y2, . . . , yn| can interlace |x1, x2, . . . , xn⟩,
here shown for n = 2.

• If no line goes through the periodic lattice direction we have xi ≤ yi ≤
xi+1 for i = 1, 2, . . . , n− 1, and xn ≤ yn ≤ N .

• If a line goes through the periodic direction, we have 1 ≤ y1 ≤ x1, and
xi ≤ yi+1 ≤ xi+1 for i = 1, 2, . . . , n− 1.

By self-avoidance, at most one line can go through the periodic direction.
The two possible interlacings are shown for n = 2 in Fig. 17.

We now wish to construct n-particle states

|Ψn⟩ =
∑

1≤x1<···<xn≤N

g(x1, . . . , xn)|x1, . . . , xn⟩ , (5.3)

which are eigenvectors of T :

T |Ψn⟩ = Λ|Ψn⟩ . (5.4)

To this end we try an Ansatz of the form

g(x1, . . . , xn) =
∑

p∈Sn

Apz
x1
p(1)z

x2
p(2) · · · z

xn
p(n) , (5.5)

where the sum runs over all permutations p ∈ Sn of the particle labels
{1, 2, . . . , n}. The complex numbers zj are related to the so-called quasi-
momenta kj through the relation zj = exp(ikj). For the moment this Ansatz
can be considered loosely as “coupled plane waves”; we shall come back to
its physical interpretation in due course.

5.2.1 Sector with n = 0 particles

When n = 0, the unique state is completely empty. The horizontal row of
edges if either empty (i.e., completely filled with ω1 vertices) or filled by
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Figure 18: The four possible transitions between row states in the n = 1
particle sector.

a horizontal line (i.e., completely filled with ω4 vertices). Thus T is one-
dimensional and takes the value

Λ = aN + bN . (5.6)

5.2.2 Sector with n = 1 particle

When n = 1, dimT = N . The eigenvectors (5.3) read |Ψ⟩ =
∑

x g(x)|x⟩,
and the Ansatz (5.5) is g(x) = zx. The particle at position x can undergo
four different processes as shown in Fig. 18. The eigenvalue equation (5.4)
projected on a basis state of the eigenvector (5.3) then becomes13

Λzx = aN−1bzx +
N∑

y=x+1

aN−(y−x+1)by−x−1c2zy

+ abN−1zx +
x−1∑

y=1

ax−y−1bN−(x−y+1)c2zy . (5.7)

Recalling now the geometric series

N2∑

n=N1

ωn =
ωN1 − ωN2+1

1− ω

the first sum in (5.7) reads

aN
(a
b

)x+1 ( c
a

)2
(
bz
a

)x+1 −
(
bz
a

)N+1

1− bz
a

, (5.8)

13To be precise, (5.7) contains the transition probabilities that x becomes y, hence it is
the transcription of ⟨Ψn|T |x⟩ = Λ⟨Ψn|x⟩.
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while the second sum is

bN
(a
b

)x+1 ( c
a

)2 ( bz
a

)1 −
(
bz
a

)x

1− bz
a

. (5.9)

Collecting everything, we first have the “wanted terms” multiplying aNzx.
They come from the first term in (5.7) and the first term in (5.8), and their
coefficient is

b

a
+

c2z

a(a− bz)
=

ab+ (c2 − b2)z

a(a− bz)
≡ L(z) . (5.10)

Another class of wanted terms, multiplying bNzx, comes from the third term
in (5.7) and the second term in (5.9). The coefficient of these terms is

a

b
− c2

b(a− bz)
=

a2 − c2 − abz

b(a− bz)
≡ M(z) . (5.11)

The remaining terms, namely the second term in (5.8) and the first term in
(5.9), are “unwanted boundary terms” that read

ax−1bN−xc2z

a− bz
(1− zN ) . (5.12)

The unwanted terms cancel out provided we impose the following condi-
tion on the allowed quasi-momenta:

zN = 1 . (5.13)

Note that this has precisely N solutions, and we have thus determined N
eigenvectors for the N -dimensional matrix T . Its eigenvalue is given by the
wanted terms and reads simply

Λ = aNL(z) + bNM(z) . (5.14)

5.2.3 Sector with n = 2 particles

When n = 2, dim T =
(
N
2

)
= N(N−1)

2 . The two possibilities that y1, y2 can
interlace x1, x2 are shown in Fig. 17. Let us define a function E(x, y) that
contains the weight of a world-line entering at x and exiting at y ≥ x

E(x, y) =

{
b
c if y = x
cby−x−1 if y > x

(5.15)
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and another functionD(y, x) giving the weight of the empty segment between
two world-lines

D(y, x) =

{
a
c if x = y
cax−y−1 if x > y

. (5.16)

The eigenvalue equation (5.4) projected on one basis state |x1, x2⟩ of the
eigenvector (5.3) then reads

Λg(x1, x2) =
x2∑

y1=x1

N∑

y2=x2

ax1−1E(x1, y1)D(y1, x2)E(x2, y2)ca
N−y2g(y1, y2)

+
x1∑

y1=1

x2∑

y2=x1

by1−1D(y1, x1)E(x1, y2)D(y2, x2)cb
N−x2g(y1, y2) ,

where the two terms correspond to the situations shown in Fig. 17. Note
that the special cases when one of the x coincides with one of the y are
already provided for in the definitions of E(x, y) and D(y, x). However, the
double sums must be constrained to exclude terms with y1 = y2. This is best
done by first computing the sums without the constraint, then subtracting
off the disallowed contribution y1 = x2 = y2 to the first double sum, and
y1 = x1 = y2 to the second.

Despite of (5.5) we first insert the simper Ansatz

g(x1, x2) = A12z
x1
1 zx2

2 .

It is convenient to introduce the short-hand notations

Lj ≡ L(zj) , Mj ≡ M(zj) , ρj ≡ ρ(zj) =
c2zj

a(a− bzj)

and to define the function

Rj(x1, x2) = Lja
x2−x1zx1

j +Mjb
x2−x1zx2

j .

As before the terms coming from the constrained double summations are of
several types:
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Wanted terms

These wanted terms are those proportional to zx1
1 zx2

2 :

A12

(
aNL1L2 + bNM1M2

)
zx1
1 zx2

2

and they determine the eigenvalue

Λ = aNL1L2 + bNM1M2 . (5.17)

Unwanted internal terms

There are of the form (z1z2)x2 or (z1z2)x1. One can verify that both such
terms are proportional to

M1L2 − 1 = − c2s12
(a− bz1)(a− bz2)

, (5.18)

where

s12 = 1− 2∆z2 + z1z2 , (5.19)

∆ =
a2 + b2 − c2

2ab
. (5.20)

The quantities s12 (scattering phase) and ∆ (anisotropy parameter) play a
very important role in the solution of the six-vertex model, and in the physical
interpretation of the scattering theory described by the Bethe Ansatz. We
shall come back to this later.

Unwanted boundary terms

These come from the y2 = N or the y1 = 1 summation limits and their sum
is

A12a
x1bN−x2

(
R2(x1, x2)ρ1 − R1(x1, x2)ρ2z

N
2

)
. (5.21)

Elimination of the unwanted terms

The justification of the complete Ansatz (5.5) is precisely that it permits us
to eliminate the unwanted terms. We therefore set

g(x1, x2) = A12z
x1
1 zx2

2 + A21z
x1
2 zx2

1 .
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The unwanted internal terms cancel under the condition

s12A12 + s21A21 = 0 . (5.22)

The sum of the unwanted boundary terms is

ax1bN−x2
{
ρ2R1(x1, x2)(A21 − zN2 A12) + ρ1R2(x1, x2)(A12 − zN1 A21)

}

and this will vanish under the conditions

zN1 =
A12

A21
= −s21

s12
,

zN2 =
A21

A12
= −s12

s21
. (5.23)

5.3 Bethe Ansatz equations

The structure of the solution for the case of general n is very much visible
in the above detailed treatment for n = 2. By generalising the argument (or
proceding by educated guesswork) it emerges that the eigenvalue is

Λ = aNL1L2 · · ·Ln + bNM1M2 · · ·Mn . (5.24)

The condition for the vanishing of the unwanted internal terms becomes

spj ,pj+1Ap1,...,pj ,pj+1,...,pn + spj+1,pjAp1,...,pj+1,pj ,...,pn = 0 (5.25)

for each j = 1, 2, . . . , n − 1 and all permutations p ∈ Sn. Finally, the
condition for the vanishing of the unwanted boundary terms reads

zNp1 =
Ap1,p2,...,pn−1,pn

Ap2,p3,...,pn,p1

(5.26)

for all p ∈ Sn.

There is a nice alternative way of deriving (5.26) using the consideration
of translational invariance. Indeed the eigenstate must be unchanged upon
taking any of the particles through the periodic boundary condition and back
to its original position. In particular

g(x1, x2, . . . , xn−1, xn) = g(x2, x3, . . . , xn, x1 +N) . (5.27)
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Note that this respects our conventions that the arguments of g must be
written in increasing order. Using this, the form of the Ansatz (5.5) implies
(5.26).

To see this, consider for simplicity the case of n = 3 particles. We have
then

g(x1, x2, x3) = A123z
x1
1 zx2

2 zx3
3 + A132z

x1
1 zx2

3 zx3
2 + . . . ,

g(x2, x3, x1 +N) = A231z
x2
2 zx3

3 zx1+N
1 + A321z

x2
3 zx3

2 zx1+N
1 + . . . .

Since this must be valid for all xj we can identify terms

A231z
N
1 = A123 ,

A321z
N
1 = A132 . (5.28)

This proves (5.26) for the case n = 3.

Obviously (5.25)–(5.26) provides many more equations that the n un-
known quasi-momenta z1, z2, . . . , zn. Generalising (5.19) we define

sij(zi, zj) = 1− 2∆zj + zizj . (5.29)

One then easily verifies that (5.25) is solved by

Ap1,p2,...,pn = ϵp
∏

1≤i<j≤n

spj ,pi , (5.30)

where ϵp is the signature of the permutation p ∈ Sn. Inserting this into
(5.26) gives

zNp1 = (−1)n−1
n∏

l=2

spl,p1
sp1,pl

for all p ∈ Sn. But since the right-hand side is symmetric in p2, p3, . . . , pn
there are actually only n distinct equations:

zNj = (−1)n−1
n∏

l=1
l ̸=j

sl,j
sj,l

for j = 1, 2, . . . , n . (5.31)

These are the Bethe Ansatz equations (BAE) for the six-vertex model.
The progress obtained by now is considerable. Rather than diagonalising

a transfer matrix of dimension 2N we have to solve only a set of n coupled
(but non-linear) equations for each n = 1, 2, . . . , N .
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5.3.1 Scattering phases and the Yang-Baxter equation

It is useful to define the modified scattering phases

Ŝij(zi, zj) = −sij
sji

= −1− 2∆zj + zizj
1 − 2∆zi + zizj

. (5.32)

The Bethe Ansatz equations can the be written in the suggestive form

zNj =
n∏

l=1
l ̸=j

Ŝlj(zl, zj) for j = 1, 2, . . . , n . (5.33)

This can be interpreted physically as follows. When the particle j is taken
around the periodic direction and back to its original position, it picks up a
scattering phase Ŝlj each time it crosses another particle l. These phases are
also known as the S-matrix elements of the scattering theory.

We now derive some important physical properties of the S-matrix. Let
us again focus on the case of n = 3 particles. Eliminating zN1 from (5.28)
we obtain A123

A231
= A132

A321
. Doing the same for zN2 and zN3 , and making some

rearrangements, we arrive at

A213

A123
=

A321

A312
,

A312

A132
=

A231

A213
,

A321

A231
=

A132

A123
. (5.34)

This tells us that the interchange of two particles (e.g., 1 and 2 in the first
relation) is independent of the position of the third particle (which on the
left-hand side of the relations is to the right of the two particles being inter-
changes, and vice versa).

It thus emerges that the S-matrix possesses a locality property, accord-
ing to which the scattering amplitude of n quasi-particles factorises into a
product of

(
n
2

)
two-particle S-matrices. To make this more precise, consider

the following relations which follow from (5.30):

A321 =

{
Ŝ12A312 = Ŝ12Ŝ13A132 = Ŝ12Ŝ13Ŝ23A123

Ŝ23A231 = Ŝ23Ŝ13A213 = Ŝ23Ŝ13Ŝ12A123

Eliminating A123 yields the so-called Yang-Baxter relation

Ŝ12Ŝ13Ŝ23 = Ŝ23Ŝ13Ŝ12 , (5.35)
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which can be represented diagramatically in terms of the world-lines of the
particles:

1 2 3

Ŝ23

Ŝ13

Ŝ12
=

1 2 3

Ŝ12

Ŝ13

Ŝ23

(5.36)

The graphical reading of this diagram is that any world-line can be moved
across the intersection of two other world-lines.

Obviously the above argument is at most suggestive, since after all the
factors in (5.35) are just scalars, and as such the identity is trivial. We shall
however see later that the same relation holds for matrix-valued quantities
(operators), such as R-matrices and monodromy (≃ transfer) matrices.

The Yang-Baxter equation (5.35) is at the heart of the algebraic approach
to the Bethe Ansatz and we shall return to it extensively in later chapters.

5.4 Phase diagram

The six-vertex model has a non-trivial phase diagram, and it is hardly sur-
prising that its thermodynamic limit depends on the parameter ∆. In fact
the Bethe Ansatz equations (5.31) show that the limit depends only on ∆.
Although the phase diagram can be derived in details, let us first discuss a
few qualitative arguments.

If either a or b is large compared to the other weights, the system will
freeze into a unique state in which all vertical arrows and all horizontal
arrows point in the same direction. It turns out that this freezing occurs
whenever ∆ > 1. The largest eigenvalue is that of the n = 0 particle sector,
whence trivially Λmax = aN + bN . The free energy per vertex is therefore
f = min(ϵ1, ϵ3).

If c is very large compared to the other weights, the predominant config-
uration is the one where all vertices on the even (resp. odd) sublattice are
of the type ω5 (resp. ω6). The system is however not frozen, meaning that
it exhibits fluctuations around the predominant configuration.14 One would

14We shall discuss the nature of these fluctuations more carefully when dealing with the
Coulomb gas. Suffice it to say here that the least possible change of a configuration is to
reverse a path of consistently oriented arrows. Any such path has infinite length in the
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expect non-critical behaviour as long as c remains reasonably large. This is
indeed the case: when ∆ < −1 the system is in a non-critical phase.

The most interesting phase occurs for −1 < ∆ < 1. In that range the six-
vertex model is critical, and it turns out that the critical exponents depend
continuously on ∆. This is an interesting counter-example to naive ideas of
universality.

We shall concentrate most of the subsequent discussion on the critical
case −1 < ∆ < 1, where the free energy can be expressed in terms of Fourier
integrals. (The non-critical case ∆ < −1 can also be worked out in details
and calls instead for the use of Fourier series.)

5.5 Thermodynamic limit for ∆ < 1

It is not known how to solve the Bethe Ansatz equations (5.31) for finite n
and N . This situation is quite common in the study of integrable systems.
By contrast, we have seen that the partition function of dimer coverings can
be exactly computed on a finite lattice—a highly unusual situation.

Nevertheless, it turns out that the six-vertex model is exactly solvable in
the thermodynamic limit. By this we mean precisely that the free energy
f = − 1

βN logΛmax, or equivalently the ground state energy in the spin chain,
can be determined analytically for N → ∞. The same is true for the low-
lying excitations, but for the moment we concentrate on the ground state.

5.5.1 Location of the quasi-momenta

The BAE (5.31) possess many solutions for the quasi-momenta zj . It is not
a priori clear which one corresponds to the ground state. In what follows we
shall admit the following fact:

• The solution of the BAE (5.31) that maximises the eigenvalue Λ is such
that z1, z2, . . . , zn are distinct, lie on the unit circle, are distributed
symmetrically about unity, and are packed as closely as possible.

This can actually be proved quite rigorously, using some lengthy analysis
[YY66]. An easier method, that usually works quite well for more general

frozen phase, whereas the ∆ < −1 has an exponential number of short paths (of length
four).
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integrable models, is to study numerically the solutions for low values of N—
confronting the results with exact diagonalisations of the transfer matrix—
until the pattern has become clear.

5.5.2 Transformation to a set of real equations

We introduce the momenta kj ∈ R and the function Θ(p, q) so that

zj = exp(ikj) , (5.37)
si,j
sj,i

= exp(−iΘ(kj , ki)) . (5.38)

By (5.32) we have then

e−iΘ(p,q) =
1− 2∆eip + ei(p+q)

1− 2∆eiq + ei(p+q)
. (5.39)

To see that Θ(p, q) is a real function, it suffices to notice that

tan

(
1

2
Θ(p, q)

)
= −i

1− e−iΘ(p,q)

1 + e−iΘ(p,q)
=

∆ sin
(
p−q
2

)

cos
(
p+q
2

)
−∆ cos

(
p−q
2

) ,

where the right-hand side is manifestly real.
Including the term l = j obviously leaves the right-hand side of (5.31)

unchanged, so we can rewrite it as

exp(iNkj) = (−1)n−1
n∏

l=1

exp(−iΘ(kj , kl)) ,

where now both sides of the equation are unimodular. Taking logarithms we
have

Nkj = 2πIj −
n∑

l=1

Θ(kj, kl) , (5.40)

where Ij ranges between ±
(
n−1
2

)
, hence is an integer (resp. half an odd

integer) if n is odd (resp. even). Note that both sides of this equation are
real.

The hypothesis that k1, k2, . . . , kn be distinct, symetrically distributed
about the origin, and packed as closely as possible implies that the ground
state is obtained by choosing

Ij = j − 1

2
(n+ 1) , for j = 1, 2, . . . , n . (5.41)
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5.5.3 Continuum limit

The thermodynamic limit is obtained by sending n,N → ∞, while keeping
the ratio n/N fixed and finite. This ratio describes the (fixed) ratio of up-
pointing arrows in each row of the lattice. The distribution function ρ(k) of
Bethe roots is defined so that Nρ(k) dk is the number of kj lying between
k and k + dk. By assumption ρ(k) has support on a symmetric interval
[−Q,Q], where Q will be determined later. Thus

∫ Q

−Q

ρ(k) dk =
n

N
. (5.42)

For a given value kj of k, the quantity Ij +
1
2(n + 1) = N

∫ k
−Q ρ(k

′) dk′ is
the number of momenta kl with l < j. Passing from sums to integrals in
(5.40)—and denoting kj simply as k—then produces

Nk = −π(n + 1) + 2πN

∫ k

−Q

ρ(k′) dk′ −N

∫ Q

−Q

Θ(k, k′)ρ(k′) dk′ .

Taking derivatives with respect to k, and dividing by N , then leads to a
linear integral equation for ρ(k)

2πρ(k) = 1 +

∫ Q

−Q

∂Θ(k, k′)

∂k
ρ(k′) dk′ . (5.43)

The free energy is then given by (5.24) as

f = − 1

β
max

{

log a+
1

N

n∑

j=1

logL(zj) , log b+
1

N

n∑

j=1

logM(zj)

}

.

In the thermodynamic limit this becomes

f = − 1

β
max

{
log a+

∫ Q

−Q

[logL(eik)]ρ(k) dk ,

log b+

∫ Q

−Q

[logM(eik)]ρ(k) dk

}
. (5.44)

5.6 Free energy for −1 < ∆ < 1

A natural strategy for solving the linear integral equation (5.43) would be
to use Fourier transformation. This is however only possible if we can find a
transformation to a difference kernel. Fortunately this is possible.
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5.6.1 Difference kernel transformation

For −1 < ∆ < 1 we parameterise

∆ = − cosµ , with 0 < µ < π (5.45)

and we trade k for a new variable α defined by

eik =
eiµ − eα

eiµ+α − 1
. (5.46)

Note that α ∈ R. Indeed, supposing this, it is easily seen that |eik|2 = 1 from
the right-hand side of (5.46), as is consistent with the hypothesis that k ∈ R.

Differentiating logarithmically—i.e., using d
dαe

ik = ieik dk
dα to isolate dk

dα—
we find

dk

dα
=

sin µ

coshα− cosµ
. (5.47)

This proves in particular that k(α) ∈ R is a monotonically increasing function
(since 0 < µ < π), and by (5.46) it maps the interval (−∞,∞) onto (µ −
π, π − µ). It follows directly from (5.46) that k(−α) = −k(α), i.e., the
function is odd.

Let us define p = k(α) and q = k(β), so that

eip =
eiµ − eα

eiµ+α − 1
, eiq =

eiµ − eβ

eiµ+β − 1
.

Inserting this into (5.39) the scattering phase becomes

e−iΘ(p,q) =
eα−β − e2iµ

eβ−α − e2iµ
. (5.48)

Crucially, this depends only on the difference α−β (and on the constant µ).
We shall need the root density function R(α) transformed to the α vari-

able (and renormalised by 1
2π for later convenience)

R(α) dα = 2πρ(k) dk . (5.49)

Plugging this into (5.43) leads to

R(α) =
dk

dα
+

1

2π

∫ Q1

−Q1

∂Θ(α, β)

∂β
R(β) dβ ,
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where we note that there is a new integration range (−Q1, Q1) corresponding
to the α variable. Computing the derivatives from (5.47) and (5.48) finally
leads to

R(α) =
sin µ

coshα− cosµ
− 1

2π

∫ Q1

−Q1

sin(2µ)

cosh(α− β)− cos(2µ)
R(β) dβ , (5.50)

and the normalisation condition (5.42) for the root density function now
reads

1

2π

∫ Q1

−Q1

R(α) dα =
n

N
. (5.51)

5.6.2 Parameterisation

We have already parameterised ∆ = − cosµ in (5.45). The Bethe Ansatz
equations (5.31)—and hence the universality class of the six-vertex model—
depend only on the initial vertex weights a, b, c through ∆ = a2+b2−c2

2ab . We
must therefore choose a parameterisation of the two independent ratios a :
b : c that respects this latter constraint (we “uniformise the spectral curve”).
This can be done in this case using trigonometric functions:

a : b : c = sin

(
µ− w

2

)
: sin

(
µ+ w

2

)
: sinµ , −µ < w < µ (5.52)

defining another parameter w.
The eigenvalues of the transfer matrix are determined by (5.24) through

the functions L(z) and M(z) given by (5.10)–(5.11). Recalling that z = eik is
parameterised by (5.46), the parametric form of these functions now becomes

L(eik) =
ei(w+µ) − eα−iµ

eα − eiw
,

M(eik) =
ei(w−µ) − eα+iµ

eα − eiw
. (5.53)

5.6.3 Solution by Fourier integrals

The integral equation (5.50) that determines the root density function now
has a difference kernel. One can therefore solve it by Fourier transformation,
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provided that Q1 = ∞. Let us suppose that this is so, and justify the
assumption below. The Fourier transformed root density function then reads

R̃(x) =
1

2π

∫ ∞

−∞
R(α)eixα dα . (5.54)

Let us define the function

φµ(α) =
sin µ

coshα− cosµ
, (5.55)

which is often referred to as the source term of the Bethe Ansatz equations.
The difference kernel equation (5.50) then decouples upon Fourier transfor-
mation, since the Fourier transform of a convolution is the product of Fourier
transforms. Explicitly, multiplying both sides of (5.50) by 1

2π e
ixα and inte-

grating over α leads to

R̃(x) = φ̃µ(x)− φ̃2µ(x) · R̃(x) . (5.56)

Exercise: Show that the Fourier transform of the source term is

φ̃µ(x) =
sinh ((π − µ)x)

sinh(πx)
. (5.57)

Inserting this yields

R̃(x) =
sinh((π − µ)x)

sinh(πx)
− sinh((π − 2µ)x)

sinh(πx)
R̃(x) (5.58)

and we can then finally isolate

R̃(x) =
1

2 cosh(µx)
. (5.59)

The normalisation condition (5.51) is such that R̃(0) = n
N , and evaluating

(5.59) we arrive at
n

N
=

1

2
. (5.60)

This simple result justifies the assumption Q1 = ∞ a posteriori. Indeed, the
largest sector of the transfer matrix precisely corresponds to the case where
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there are as many up-pointing as down-pointing arrows. By a simple entropic
reasoning, this is also the ground state sector.15

From (5.53) one obtains

|L(eik)|2 =
cos(w + 2µ)− coshα

cosw − coshα
,

|M(eik)|2 =
cos(w − 2µ)− coshα

cosw − coshα
.

This implies that |L| > |M | for w < 0, and |L| < |M | for w > 0.
Suppose in the sequel that w < 0; a similar calculation for w > 0 can be

shown to lead to exactly the same end result. The free energy is then given
by the first term in (5.44):

f = − 1

β

(
log a +

1

2π

∫ ∞

−∞
[log |L(eik)|]R(α) dα .

)
(5.61)

Using (5.59) and the fact that parity is conserved by Fourier transformation,
we see that R(α) is an even function. Under the integral we can therefore
replace the other factor log |L(eik)| by its even part, which is also its real
part. From (5.53) we get

ReL(eik) = − cosµ+
sinµ sinw

cosw − coshα
, (5.62)

and the Fourier transform of log |L(eik)| becomes

1

2π

∫ ∞

−∞
eixα log |L(eik)| dα =

sinh((µ+ w)x) sinh((π − µ)x)

x sinh(πx)
. (5.63)

Exercise: Detail this computation!

To compute (5.61) we can use that the Fourier transform of a product is
the convolution of Fourier transforms. The end result follows by combining
(5.59) and (5.63):

f = − 1

β

(
log a+

∫ ∞

−∞

sinh((µ+ w)x) sinh((π − µ)x)

2x cosh(µx) sinh(πx)
dx

)
. (5.64)

As already stated, exactly the same result is found for w > 0. We have
therefore found, for any w ∈ (−µ, µ), the free energy of the six-vertex model
in the critical region ∆ ∈ (−1, 1).

15A variant argument is obtained by examining (5.24).
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5.6.4 Ice model

The equal-weighted case a = b = c = 1 is of special interest, both combi-
natorially and historically (it was solved by Lieb [Li67] before the general
case). Physically it can be interpreted as a two-dimensional model of ice:
The arrows on the edges represent to which side the electron cloud is pushed
by the hydrogen bonding, and the six-vertex constraint corresponds to local
charge neutrality.

In this case w = 0 and µ = 2π
3 from (5.52). The integral (5.64) can then

be performed explicitly by contour integration; this is true more generally
whenever µ is a rational fraction of π.

We have

−βf =

∫ ∞

−∞

sinh
(
πx
3

)
tanh

(
2πx
3

)

2x sinh(πx)
dx . (5.65)

The integrand is regular for x → 0, even, and decays like 1
2xe

−2πx/3 for
Re x ≫ 1. We can therefore close the contour in the upper-half plane and
use the Cauchy integration theorem.

The residues are all on the imaginary axis. They read for p ∈ N:

−3i

4(3p+ 3
4)π

at x = (3p+
3

4
)i ,

3i

4(3p+ 1)π
at x = (3p+ 1)i ,

3i

4(3p+ 2)π
at x = (3p+ 2)i ,

−3i

4(3p+ 9
4)π

at x = (3p+
9

4
)i .

Thus

−βf = 2πi
∑

Im(x)>0

Res f(x)

= −3

2

∞∑

p=0

(
− 1

3p+ 3
4

+
1

3p+ 1
+

1

3p+ 2
− 1

3p+ 9
4

)

=
5

2

∞∑

p=0

(1 + 2p)

(1 + 3p)(2 + 3p)(1 + 4p)(3 + 4p)

=
3

2
log

(
4

3

)
. (5.66)
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The effective number of configurations per vertex

Z1/MN = exp(−βf) =
(
4

3

) 3
2

≃ 1.539 600 · · · (5.67)

is known as Lieb’s constant [Li67].
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