
Algebra, Integrability and
Exactly Solvable Models

Written exam, 7 June 2012, 2.00-5.00 pm.
The AIMES lecture notes and any personal notes are allowed.

Results from the lecture notes can be freely referred to.

The two exercises are almost independent.

1 Dimer coverings in two dimensions

A dimer covering of a graph G = (V,E) with vertex set V and edge set E is
defined by assigning an occupation number αe = 1 (meaning that the edge is
occupied) or αe = 0 (the edge is empty) to each edge e ∈ E, subject to the
constraint that each vertex v ∈ V is incident on exactly one occupied edge.
Occupied edges are called dimers.

In the following G is taken as the two-dimensional square lattice. A
possible dimer covering of a small piece of the square lattice is shown below.

We wish to study the model defined by the partition function

Z =
∑
C

ω#horizontal dimers , (1)

where C is the set of dimer coverings of G, and ω is some weight. The case
ω = 1 is referred to as the isotropic model.

On a strip of width L, we define the state of a row as the set of occupation
numbers α = (α1, . . . , αL) of the vertical edges. There are 2L possible states
of a row, so Z can be written as the trace of a 2L-dimensional transfer matrix
T . We impose periodic boundary conditions, so the index i is considered
modulo L.

Given two row states α and β, the matrix element Tβα is the sum of
the Boltzmann weights associated with the horizontal dimer configurations
µ compatible with α and β:

Tβα =
∑

µ|(α,β)

ωµ1+...+µL . (2)
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Figure 1: The row-to-row transfer matrix.

It is convenient to introduce a shift at each row in the numbering of columns,
as shown in Fig. 1.

1.1

Express the compatibility criterion µ|(α, β) formally in terms of the occupa-
tion numbers.

1.2

We call particle an empty even vertical edge or an occupied odd vertical edge.
We suppose henceforth that L is even.

Show that T conserves the number of particles within a row. Deduce
that T is block diagonal, and give the dimensions of each block. State the
explicit rules for the dynamics of the particles (i.e., given the configuration
of particles in row α, what are the possible configurations in the next row
β?).

1.3

We consider first the case of n = 1 particle. Let T (1) be the corresponding
block of the transfer matrix, and let Φ(x) denote the probability of finding
the particle on edge x.

Write the action of T (1) on Φ(x).
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1.4

Define the two-step cyclic permutation J of the sites by its action on the
one-particle state Φ:

(JΦ)(x) = Φ(x+ 2) (3)

Show that [T (1), J ] = 0.

We want to take advantage of the translational invariance to diagonal-
ize T (1). Supposing that z satisfies the condition zL = 1, write the two-
dimensional eigenspace (Φz,Φz) of J with eigenvalue z2.

1.5

More generally, let z be a complex number of modulus unity. Write T (1) as
a 2× 2 matrix in the basis (Φz,Φz).

Let ψz , ψ
′
z be the eigenvectors of this matrix. What are the corresponding

eigenvalues Λ(z),Λ′(z)?

1.6

We henceforth use the parameterisation

z = exp (ik) (4)

Λ(z) = exp [h + i(φ+ θ)] (5)

Λ′(z) = exp [−h + i(φ− θ)] (6)

where k, φ, θ are real and h is nonnegative. Λ(z) is then the eigenvalue with
greatest modulus. We refer to k as the momentum.

Show that one has

cosh(2h) = 1 + 2ω2 cos2 k (7)

when |z| = 1. Write an explicit expression for h(k).

1.7

We next consider the case of n = 2 particles. Let T (2) be the corresponding
block of T . Define the two-particle vector

ψ12(x1, x2) = ψz1(x1)ψz2(x2) , x1 < x2 (8)
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Write the action of T (2) on ψ12(x1, x2). Deduce that the antisymmetric com-
bination:

ψ(x1, x2) = ψz1(x1)ψz2(x2)− ψz2(x1)ψz1(x2) (9)

is an eigenvector of T (2) with eigenvalue Λ(z1)Λ(z2).

1.8

Give the eigenvectors and eigenvalues in the general n-particle sector (a de-
tailed proof is not required).

1.9

Write the Bethe Ansatz equations for the quasi momenta zj . Give the explicit
solution of those equations.

1.10

Given L, what is the number of particles n that maximises the eigenvalue
Λ

(n)
max of T ?

1.11

Suppose now that L is a multiple of 4. Write the free energy per unit area

f
(n)
L =

1

L
log Λ(n)

max (10)

with n determined in question 1.10, in terms of the function h(k) deter-
mined in question 1.6. Give the corresponding thermodynamic limit, f∞ =
limL→∞ f

(n)
L , in the form of an integral over k.

1.12

Find the dominant finite-L correction to f∞ (hint: use the Euler-Maclaurin
formula). Deduce the value of the central charge for the isotropic model of
dimer coverings.
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2 CFT treatment of the continuum limit

2.1

Show that a dimer configuration is equivalent to a height configuration, by
defining an appropriate integer-valued height H(x) on the faces of the square
lattice G (i.e., on the vertices of the dual lattice G∗).

2.2

Argue that the continuum limit of H produces the theory of a free massless
boson φ with Euclidean action

S =
g

2

∫
d2x ∂µφ ∂

µφ . (11)

2.3

Compute the propagator of ∂φ(z) in the usual complex coordinates z =
x1 + ix2.

2.4

Admit without proof that the corresponding stress tensor in complex coor-
dinates is

T (z) = −2πg : ∂φ(z) ∂φ(z) : (12)

where : . . . : denotes normal ordering. Show that ∂φ(z) is a primary operator
and compute its conformal weight (scaling dimension). (Hint: use the Wick
theorem to compute the contractions with the normal order.)

2.5

Compute explicitly the operator product expansion (OPE) of T (z) with itself.
Deduce the value of the central charge, and compare with question 1.12.
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