Algebra, Integrability and Exactly Solvable Models

Written exam, 7 June 2012, 2.00-5.00 pm.

The AIMES lecture notes and any personal notes are allowed. Results from the lecture notes can be freely referred to. The two exercises are **almost** independent.

1 Dimer coverings in two dimensions

A dimer covering of a graph G = (V, E) with vertex set V and edge set E is defined by assigning an occupation number $\alpha_e = 1$ (meaning that the edge is occupied) or $\alpha_e = 0$ (the edge is empty) to each edge $e \in E$, subject to the constraint that each vertex $v \in V$ is incident on exactly one occupied edge. Occupied edges are called dimers.

In the following G is taken as the two-dimensional square lattice. A possible dimer covering of a small piece of the square lattice is shown below.

We wish to study the model defined by the partition function

$$Z = \sum_{\mathcal{C}} \omega^{\text{\#horizontal dimens}}, \qquad (1)$$

where C is the set of dimer coverings of G, and ω is some weight. The case $\omega = 1$ is referred to as the isotropic model.

On a strip of width L, we define the state of a row as the set of occupation numbers $\alpha = (\alpha_1, \ldots, \alpha_L)$ of the vertical edges. There are 2^L possible states of a row, so Z can be written as the trace of a 2^L -dimensional transfer matrix T. We impose periodic boundary conditions, so the index i is considered modulo L.

Given two row states α and β , the matrix element $T_{\beta\alpha}$ is the sum of the Boltzmann weights associated with the horizontal dimer configurations μ compatible with α and β :

$$T_{\beta\alpha} = \sum_{\mu \mid (\alpha,\beta)} \omega^{\mu_1 + \dots + \mu_L} \,. \tag{2}$$

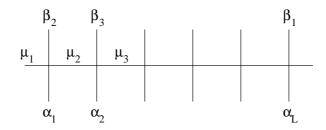


Figure 1: The row-to-row transfer matrix.

It is convenient to introduce a shift at each row in the numbering of columns, as shown in Fig. 1.

1.1

Express the compatibility criterion $\mu|(\alpha,\beta)$ formally in terms of the occupation numbers.

1.2

We call *particle* an empty even vertical edge or an occupied odd vertical edge. We suppose henceforth that L is even.

Show that T conserves the number of particles within a row. Deduce that T is block diagonal, and give the dimensions of each block. State the explicit rules for the dynamics of the particles (i.e., given the configuration of particles in row α , what are the possible configurations in the next row β ?).

1.3

We consider first the case of n = 1 particle. Let $T^{(1)}$ be the corresponding block of the transfer matrix, and let $\Phi(x)$ denote the probability of finding the particle on edge x.

Write the action of $T^{(1)}$ on $\Phi(x)$.

1.4

Define the two-step cyclic permutation J of the sites by its action on the one-particle state Φ :

$$(J\Phi)(x) = \Phi(x+2) \tag{3}$$

Show that $[T^{(1)}, J] = 0.$

We want to take advantage of the translational invariance to diagonalize $T^{(1)}$. Supposing that z satisfies the condition $z^L = 1$, write the twodimensional eigenspace $(\Phi_z, \overline{\Phi}_z)$ of J with eigenvalue z^2 .

1.5

More generally, let z be a complex number of modulus unity. Write $T^{(1)}$ as a 2×2 matrix in the basis $(\Phi_z, \overline{\Phi}_z)$.

Let ψ_z , ψ'_z be the eigenvectors of this matrix. What are the corresponding eigenvalues $\Lambda(z)$, $\Lambda'(z)$?

1.6

We henceforth use the parameterisation

$$z = \exp\left(ik\right) \tag{4}$$

$$\Lambda(z) = \exp\left[h + i(\phi + \theta)\right] \tag{5}$$

$$\Lambda'(z) = \exp\left[-h + i(\phi - \theta)\right] \tag{6}$$

where k, ϕ, θ are real and h is nonnegative. $\Lambda(z)$ is then the eigenvalue with greatest modulus. We refer to k as the *momentum*.

Show that one has

$$\cosh(2h) = 1 + 2\omega^2 \cos^2 k \tag{7}$$

when |z| = 1. Write an explicit expression for h(k).

1.7

We next consider the case of n = 2 particles. Let $T^{(2)}$ be the corresponding block of T. Define the two-particle vector

$$\psi_{12}(x_1, x_2) = \psi_{z_1}(x_1)\psi_{z_2}(x_2) , \qquad x_1 < x_2$$
(8)

Write the action of $T^{(2)}$ on $\psi_{12}(x_1, x_2)$. Deduce that the antisymmetric combination:

$$\psi(x_1, x_2) = \psi_{z_1}(x_1)\psi_{z_2}(x_2) - \psi_{z_2}(x_1)\psi_{z_1}(x_2)$$
(9)

is an eigenvector of $T^{(2)}$ with eigenvalue $\Lambda(z_1)\Lambda(z_2)$.

1.8

Give the eigenvectors and eigenvalues in the general n-particle sector (a detailed proof is *not* required).

1.9

Write the Bethe Ansatz equations for the quasi momenta z_j . Give the explicit solution of those equations.

1.10

Given L, what is the number of particles n that maximises the eigenvalue $\Lambda_{\max}^{(n)}$ of T?

1.11

Suppose now that L is a multiple of 4. Write the free energy per unit area

$$f_L^{(n)} = \frac{1}{L} \log \Lambda_{\max}^{(n)} \tag{10}$$

with *n* determined in question 1.10, in terms of the function h(k) determined in question 1.6. Give the corresponding thermodynamic limit, $f_{\infty} = \lim_{L \to \infty} f_L^{(n)}$, in the form of an integral over *k*.

1.12

Find the dominant finite-L correction to f_{∞} (hint: use the Euler-Maclaurin formula). Deduce the value of the central charge for the isotropic model of dimer coverings.

2 CFT treatment of the continuum limit

2.1

Show that a dimer configuration is equivalent to a height configuration, by defining an appropriate integer-valued height $H(\mathbf{x})$ on the faces of the square lattice G (i.e., on the vertices of the dual lattice G^*).

2.2

Argue that the continuum limit of H produces the theory of a free massless boson ϕ with Euclidean action

$$S = \frac{g}{2} \int d^2 x \,\partial_\mu \phi \,\partial^\mu \phi \,. \tag{11}$$

2.3

Compute the propagator of $\partial \phi(z)$ in the usual complex coordinates $z = x^1 + ix^2$.

$\mathbf{2.4}$

Admit without proof that the corresponding stress tensor in complex coordinates is

$$T(z) = -2\pi g : \partial \phi(z) \partial \phi(z) :$$
(12)

where : ... : denotes normal ordering. Show that $\partial \phi(z)$ is a primary operator and compute its conformal weight (scaling dimension). (Hint: use the Wick theorem to compute the contractions with the normal order.)

$\mathbf{2.5}$

Compute explicitly the operator product expansion (OPE) of T(z) with itself. Deduce the value of the central charge, and compare with question 1.12.