
Algèbres, intégrabilité et Modèles Exactement Solubles
Written exam, 12 June 2014 from 1.30 pm to 4.30 pm

We consider the Q-state Potts model on a square lattice of width N columns and height
M rows. The boundary conditions in the M -direction are periodic. In the N -direction
there is no interaction between the spins in column 1 and N , so the boundary condition is
non-periodic. In other words, we have an annulus of width N and periodic circumference
M .

We impose a particular type of boundary condition on the left side of the annulus, by
constraining the spins in column 1 to take only Q1 distinct values, with Q1 ≤ Q. All other
spins, including those on the right side of the annulus (column N) can take Q different
values as usual. Apart from that, the Hamiltonian can be written as usual

H = −K
∑
〈ij〉

δσi,σj , (1)

and we suppose that the model is at the critical point, eKc − 1 =
√
Q.

Question 1: Show how to write the partition function Z as a loop model. Let n denote
the weight of loops not touching the left boundary, and n1 the weight n1 of loops touching
at least once the left boundary. Write the relation between Q,Q1 and n, n1.

The algebraic framework for handling the loop model with weights n and n1 is the one-
boundary Temperley-Lieb algebra B(L, n, n1) defined on L = 2N strands. It is generated
by L− 1 generators ei (with i = 1, 2, . . . , L− 1) and one extra generator b called the ‘blob’.
The ei are those of the usual TL algebra; they obey the usual algebraic relations

(ei)
2 = nei , (2)

eiei±iei = ei , (3)

eiej = ejei for |i− j| > 1 ; (4)

and their diagrammatic representation in terms of loop strands is the usual one. The extra
relations involving b are

b2 = b , (5)

e1be1 = n1e1 , (6)

bei = eib for i > 1 . (7)

The diagrammatic representation of b is . . . , i.e., it adds a special ‘blob’ symbol on
the leftmost strand.
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Question 2: Interpret the extra algebraic relations geometrically. Consider the word
w = e3e1e3be2e3be1 within B(4, n, n1). Reduce w to its shortest possible form using only
the algebraic relations. Then draw w diagramatically and explain.

The set of reduced states describing the possible connectivities between the L loop
strands in the uppermost row of a partially built lattice can be constructed as shown in
the following figure:
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L = 2

L = 3

Wb
3 Wb

2 Wb
1 W0 Wu

1 Wu
2 Wu

3

We have here defined another generator u = 1 − b called the ‘antiblob’, represented

diagramatically as . . . , i.e., it adds a special ‘antiblob’ symbol on the leftmost strand.
As usual, the reduced states consist of arcs and strings (lines), representing respectively
internal connections between points on the top of the system and connections back to the
bottom of the system. From now on we adopt the convention that the leftmost string
always carries either the b or u symbol.

The states for size L+ 1 can be constructed from those at size L as shown in the figure.
In the left (resp. right) half of the diagram, a step down and to the left (resp. right) means
adding a string on the right of the diagram; and a step down and to the right (resp. left)
means bending the rightmost string to the extreme right so as to form an arc (possibly
containing other arcs).

Example: From the state in row L = 2 and column Wb
2 we can either take a step

down and to the left to obtain the state in row L = 3 and column Wb
3, or we can take

a step down and to the right to obtain the state in row L = 3 and column Wb
1.

The collection of states in a given column of the figure defines the standard modules
Wb

j , W0 and Wu
j . For example, for L = 3 the standard module Wb

1 consists of three states.
The index j gives the number of strings in Wα

j , and α = b, u denotes whether the leftmost
string is blobbed or antiblobbed.

Question 3: Show that b and u are a complete set of projectors, and that the spaces onto
which they project are complementary spaces (i.e., Im(b) = Ker(u) and Ker(b) = Im(u)).
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Question 4: Continue the figure by drawing all states corresponding to L = 4 at their
proper position.

Question 5: Characterise the arcs and strings that can have a blob (b) or an antiblob (u)
mark in this construction. Which arcs and strings have no mark at all? First deduce these
features from the rules used to construct the figure above, then interpret them physically.

Question 6: Compute the dimensions dαj of the standard modules Wα
j for any L, j, α.

Hint: find a recurrence relation between dαj (L+ 1), dαj−1(L) and dαj+1(L).

We define also a variant algebra by

Bb(2N, n, n1) = bB(2N, n, n1)b . (8)

It has the property that any string or arc on the leftmost site is blobbed.

Question 7: Suppose n1 6= 0. We set 1′ = b, e′i = bei+1b, and b′ = 1
n1
be1b. Show that

there is an isomorphism of algebras

Bb(2N, n, n1) ' B(2N − 1, n, n′1) . (9)

by verifying that the primed generators 1′, e′i and b′ satisfy the algebraic relations corre-
sponding to the right-hand side of the isomorphism. Determine the parameter n′1.

A symmetric bilinear form (scalar product) 〈v1, v2〉 is defined on B(L, n, n1) as follows.
Whenever v1, v2 belong to different standard modules, we set 〈v1, v2〉 = 0. Otherwise, we
reflect the reduced state corresponding to v1 in a horizontal mirror, and glue it on top of
v2. If the resulting diagram is such that any string in v1 gets glued to another string in v1,
or any string in v2 gets glued to another string in v2, we again set 〈v1, v2〉 = 0. If this is
not the case, the value of 〈v1, v2〉 is found by giving the proper weights (e.g., n or n1) to
each loop in the glued diagram. Note that the generators are supposed to be self-adjoint:
e†i = ei and b† = b.

Let Gαj be the Gram matrix of scalar products in Wα
j , i.e., the matrix elements are

(Gαj )v1,v2 = 〈v1|v2〉. We shall be interested in its determinant ∆α
j = detGαj .

Question 8: Compute ∆b
2 for size L = 4. Show that it factorises.

As in the study of the TL algebra we parameterise n = q+q−1. We introduce q-deformed
numbers by

[x] =
qx − q−x

q − q−1
. (10)

In particular n = [2]. We also parameterise n1 by a real number r so that

n1 =
[r + 1]

[r]
. (11)
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We define elements P b
k ∈ B(k, n, n1) recursively as follows:

P b
1 = b , (12)

P b
k+1 = P b

k − γbkP b
kekP

b
k for k ≥ 1 . (13)

Question 9: Show that for a proper choice of the coefficients γbk, the object P b
k satisfies

the properties

∀i < k : eiP
b
k = P b

kei = 0 , (14)

bP b
k = P b

kb = P b
k . (15)

We shall call P b
k the Jones-Wenzl projector on Wb

k.
Hints: γbk has a simple expression in terms of q-deformed numbers. One may assume

without proof that ‘big projectors swallow smaller ones’, namely P b
kP

b
` = P b

` for k ≤ `.

Question 10: We also define antiblob projectors P u
k by replacing b by u in the definitions

(12)–(13). Determine the coefficients γuk so that P u
k satisfy the Jones-Wenzl properties,

namely (14)–(15) with b replaced by u.

The Markov trace Tr is defined as in the lecture notes by gluing the top and bottom of
(full, not reduced) states. Non contractible unmarked (resp. blobbed) loops are given the
weight n (resp. n1), i.e., the same weights as contractible loops.

Question 11: Show that for any M ∈ B(L, n, n1) the Markov trace decomposes as

Tr M = trW0M +
∑
α=b,u

L∑
j=1

Tr{Pα
j } trWα

j
M , (16)

where tr denotes the usual trace. Determine the quantum dimensions Dα
j = Tr{Pα

j }.

Question 12: Express ∆b
2 (found in question 8) as a product of Dα

j . (For information:
the same can be done for any ∆α

j and leads to elegant formulae.)

Question 13: The representation theory is singular when some ∆α
j , hence some Dα

j

is zero. For which values of r can that happen? Discuss the corresponding boundary
conditions (values of Q1) for the case of the Ising model.
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