
Algèbres, Intégrabilité et Modèles Exactement Solubles
Written exam, 4 April 2019 from 1.30 pm to 4.30 pm

Instructions. The use of all AIMES related material (lecture notes, problem sheets
and personal notes) is allowed. All other resources (books, electronic devices, etc) are
prohibited.

Hecke algebra and spider webs

We begin with an R-matrix of the form

Ri(u) = sin(γ − u)I + sin(u)ei (1)

that acts at sites i and i+ 1 on some tensor product of representations that we do not
specify yet. Here u = ui − ui+1 denotes the usual difference of spectral parameters, γ
is the crossing parameter, I is the identity operator, and ei is a non-trivial operator
that we do not specify yet.

Question 1: Recall the spectral parameter dependent Yang-Baxter relation that
Ri(u) and Ri+1(v) must satisfy in order for the corresponding model to be integrable.

Question 2: Show that the Yang-Baxter relation is satisfied provided that we impose
the following relations

e2i = nei , (2a)

eiei+1ei − ei = ei+1eiei+1 − ei+1 , (2b)

eiej = ejei if |i− j| > 1 . (2c)

Give the expression for n in terms of the crossing parameter.

We now set n = q+q−1 and define the operators gi = qei−I. The algebra generated
by the gi (with i = 1, 2, . . . ,M − 1) and I is called the Hecke algebra HM(q).

Question 3: Give the relations satisfied by the Hecke algebra. Show that this is a
q-deformation of the symmetric group SM .

We wish to study certain quotients of the Hecke algebra. More specifically this is
done by ensuring that the generators ei commute with the quantum group SU(N)q
for some integer N = 1, 2, . . .. We here accept without proof that this commutation
property is obtained by imposing AN(q) = 0, where AN(q) denotes the q-deformed
antisymmetriser on N + 1 spins. The antisymmetriser is defined as follows:

First set q = e−iγ. Then define Xi = 2i limu→i∞ eiuRi(u). Moreover let SN denote
the symmetric group of permutations of N objects. Any element σ ∈ SN can be written
as a product

σ =
∏
i∈Iσ

τi,i+1 , (3)
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where τi,i+1 is the transposition of objects i and i+1 (note that only nearest neighbour
transpositions occur); let |Iσ| denote the number of factors in the product. Corre-
spondingly set Xσ =

∏
i∈Iσ Xi. Finally we define

AN(q) =
∑

σ∈SN+1

(−q)|Iσ |Xσ . (4)

Question 4: Express Xi in terms of q and ei.

Question 5: Compute AN(q) for N = 1. Describe the quotient of the Hecke algebra
obtained by setting A1(q) = 0 and give its dimension for a system on M sites. Is this
an interesting object to study?

We now study the case N = 2 in details.

Question 6: Write the elements of S3 in the form (3). Exhibit two mechanisms by
which this writing is not unique. Show that the antisymmetriser AN(q) is nevertheless
well defined by (4).

Question 7: Compute A2(q) explicitly. Show that the quotient of the Hecke alge-
bra obtained by setting A2(q) = 0 can be identified with the Temperley-Lieb algebra
TLM(n). Give its dimension for a system on M sites.

We next move to the case N = 3. The straightforward computation of the quotient
A3(q) = 0 is more cumbersome in this case, so we admit here without proof that it is
given by the following defining relations:

(ei)
2 = [2]ei , (5a)

(fi)
2 = [3]fi , (5b)

eiei+1ei = ei + [2]fi , (5c)

ei+1eiei+1 = ei+1 + [2]fi , (5d)

fifi+1fi = fi , (5e)

fi+1fifi+1 = fi+1 , (5f)

eiej = ejei if |i− j| > 1 , (5g)

where we have introduced the q-deformed numbers

[k] :=
qk − q−k

q − q−1
. (6)

Question 8: What is the commutation property analogous of (5g) obeyed by the fi
generators?
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Question 9: Verify that (5) is indeed a quotient of the Hecke algebra. Give its
dimension for systems on M = 3 and M = 4 sites. Compare these dimensions with
those of the corresponding q-deformed symmetric groups.

The algebra defined by (5) admits a representation—the so-called fundamental
representation—in which ei, fi and the identity operator 1i acting at position i are
represented by the following diagrams:

ei = [2]×
i j

, fi =
i j k

, 1i =
i

, (7)

where we have abbreviated the neighbouring sites as j = i+ 1 and k = i+ 2. Any site
not shown in a given diagram is understood to be acted upon by the identity operator.

Question 10: Show that this indeed provides a representation of (5), provided we
admit a set of three diagrammatic rules.1 Specifically, one can:

1. replace a tadpole (a bubble on a strand) by a certain number;

2. replace a loop by a certain number;

3. resolve internal cycles of degree four (squares) in a certain way.

State these diagrammatic rules precisely.

Question 11: For the algebra on M sites, the diagrams generated by the representa-
tion (8) of the algebra (5) are known as spider webs. Show that these spider webs are in
fact bipartite cubic graphs inside a rectangle with M points on the top and M points
on the bottom side, in which all internal cycles are polygons with an even number of
sides ≥ 6.

The exists another type of spider webs—the so-called alternating representation—in
which ei, fi and 1i are instead represented by the following diagrams:

ei =
i j

, fi =
i j k

, 1i =
i

. (8)

This representation is no longer obtained by setting A3(q) = 0, and in particular the
relations (5) cannot be taken for granted. Instead, one imposes the same diagrammatic
rules found in Question 10.

Question 12: Derive the relations that replace (5) for these alternating spider webs.

Question 13: Give the dimension of this algebra for M = 3 and M = 4 sites.

Question 14: Despite of its different construction, is the algebra of alternating spider
webs nevertheless a quotient of the Hecke algebra?

1In the Temperley-Lieb case (N = 2) there was just one rule: replace any loop by the number [2].

3


