
10 Basic aspects of CFT

An important break-through occurred in 1984 when Belavin, Polyakov and
Zamolodchikov [BPZ84] applied ideas of conformal invariance to classify the
possible types of critical behaviour in two dimensions. These ideas had
emerged earlier in string theory and mathematics, and in fact go back to
earlier (1970) work of Polyakov [Po70] in which global conformal invariance
is used to constrain the form of correlation functions in d-dimensional the-
ories. It is however only by imposing local conformal invariance in d = 2
that this approach becomes really powerful. In particular, it immediately
permitted a full classification of an infinite family of conformally invariant
theories (the so-called “minimal models”) having a finite number of funda-
mental (“primary”) fields, and the exact computation of the corresponding
critical exponents. In the aftermath of these developments, conformal field
theory (CFT) became for some years one of the most hectic research fields
of theoretical physics, and indeed has remained a very active area up to this
date.

This chapter focusses on the basic aspects of CFT, with a special emphasis
on the ingredients which will allow us to tackle the geometrically defined loop
models via the so-called Coulomb Gas (CG) approach. The CG technique will
be exposed in the following chapter. The aim is to make the presentation self-
contained while remaining rather brief; the reader interested in more details
should turn to the comprehensive textbook [DMS87] or the Les Houches
volume [LH89].

10.1 Global conformal invariance

A conformal transformation in d dimensions is an invertible mapping x → x′

which multiplies the metric tensor gµν(x) by a space-dependent scale factor:

g′µν(x
′) = Λ(x)gµν(x). (10.1)

Note that such a mapping preserves angles. Therefore, just as Wilson [Wi69]
suggested using global scale invariance as the starting point for investigating
a system at its critical point, Polyakov [Po70] proposed imposing the local
scale invariance (10.1) as the fundamental requirement for studying a critical
system in which the microscopic interactions are short ranged.

A priori, a geometrical model of self-avoiding objects such as loops does
not seem to be governed by short-range interactions. However, we have
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already seen in (8.30)–(8.31) how to transform it into a vertex model with
local interactions (albeit the complex Boltzmann weights still point to its
non-local origin). We shall see later that the critical exponents of the Potts
model can indeed be derived by CFT and CG techniques.

10.1.1 The conformal group

We first investigate the consequences of (10.1) for an infinitesimal transfor-
mation of the form29

xµ → x′µ = xµ + ϵµ(x) . (10.2)

To first order in ϵ the change in metric is given by

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν gαβ

= (∂αµ − ∂µϵ
α)(∂βν − ∂νϵ

β)gαβ
= gµν − (∂µϵν + ∂νϵµ) . (10.3)

The requirement (10.1) means that

∂µϵν + ∂νϵµ = f(x)gµν , (10.4)

where the factor f(x) can be determined by taking traces on both sides of
(10.4):

f(x) =
2

d
∂ρϵ

ρ . (10.5)

We can assume that the conformal transformation amounts to an in-
finitesimal deformation of the standard Cartesian metric gµν = ηµν , where
ηµν is the d-dimensional identity matrix. By differentiating (10.4), permuting
indices and forming a linear combination one establishes

2∂µ∂νϵρ = ηµρ∂νf + ηνρ∂µf − ηµν∂ρf (10.6)

and contracting this with ηµν we arrive at

2∂2ϵµ = (2− d)∂µf . (10.7)

On the other hand, applying ∂ν to (10.7) and ∂2 to (10.4) gives

(2− d)∂µ∂νf = ηµν∂
2f , (10.8)

29Below we use the summation convention on repeated indices.
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and contracting this with ηµν leads to

(d− 1)∂2f = 0 . (10.9)

We are now ready to draw some important conclusions from (10.8)–(10.9)
and valid in arbitrary dimension d. The case d = 1 is somewhat particular,
since no constraints on f are implied: any smooth transformation is con-
formal. On the other hand, we are not likely to need CFT to solve simple
short-ranged one-dimensional models! The case d = 2 is where CFT has the
most to offer, and we shall discuss it in detail later.

For the moment we thus concentrate on the case d ≥ 3. Eqs. (10.8)–(10.9)
imply that ∂µ∂νf = 0, whence f is at most linear in the coordinates. Using
(10.6) this means that ∂µ∂νϵρ is constant, whence

ϵµ = aµ + bµνx
ν + cµνρx

νxρ with cµνρ = cµρν . (10.10)

Since the above discussion holds for all x, we may treat each power of the
coordinates separately. The constant term

ϵµ = aµ (10.11)

corresponds obviously to translations. For the linear term it is useful to
distinguish between the diagonal and off-diagonal parts. The former

ϵµ = λxν (10.12)

corresponds to dilatations, while the latter

ϵµ = ωµνx
ν , (10.13)

with ωµν = −ωνµ an antisymmetric tensor, corresponds to rotations.
The important new ingredient comes from the quadratic term which cor-

responds to the special conformal transformation (SCT). It can be written
as (after some work)

x′µ =
xµ − bµx2

1− 2b · x + b2x2
, (10.14)

or equivalently as a translation, preceded and followed by an inversion xµ →
x′µ = xµ/x2, viz.

x′µ

x′2 =
xµ

x2
− bµ . (10.15)
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The infinitesimal form of the SCT is found by developing (10.14) to linear
order in bµ:

x′µ = xµ + 2(x · b)xµ − bµx2 . (10.16)

The corresponding scale factor is determined by
∣∣∣∣
∂x′

∂x

∣∣∣∣ =
1

(1− 2b · x + b2x2)d
. (10.17)

In particular the distance separating two points xi and xj scales like

|x′
i − x′

j | =
|xi − xj |

(1− 2b · xi + b2x2
i )

1/2(1− 2b · xj + b2x2
j)

1/2
. (10.18)

One can now write down the generators of infinitesimal conformal trans-
formations and study their commutation relations. In this way one estab-
lishes that the conformal group is isomorphic to the pseudo-orthogonal group
SO(d+ 1, 1) with 1

2(d+ 1)(d+ 2) real parameters.

10.1.2 Correlation function of quasi-primary fields

The connection between a statistical mechanics model and quantum field
theory is made as usual by writing the partition function and correlation
functions of the former as functional integrals in the latter:

Z =

∫
DΦ e−S[Φ] (10.19)

⟨φ1(x1) . . .φk(xk)⟩ = Z−1

∫
DΦφ1(x1) . . .φk(xk)e

−S[Φ] (10.20)

Here S[Φ] is the euclidean action, Φ the collection of fields, and φi ∈ Φ.
In other words, Z−1e−S[Φ]DΦ is the Gibbs measure in the continuum limit.
Paradoxically, in many cases the hypothesis of conformal invariance may per-
mit one to classify and precisely characterise the possible continuum theories
without ever having to write down explicitly the action S[Φ].

A field φ(x), here supposed spinless for simplicity, is called quasi-primary
provided it transforms covariantly under the conformal transformation (10.1):

φ(x) → φ′(x′) =

∣∣∣∣
∂x′

∂x

∣∣∣∣
−∆/d

φ(x). (10.21)
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The number ∆ = ∆φ is a property of the field and is called its scaling
dimension. Using this, conformal invariance completely fixes [Po70] the form
of the two- and three-point correlation functions, as we shall now see.

The assumption of quasi-primarity implies the following covariance con-
dition for a general two-point function

⟨φ1(x1)φ2(x2)⟩ =
∣∣∣∣
∂x′

∂x

∣∣∣∣
∆1/d

x=x1

∣∣∣∣
∂x′

∂x

∣∣∣∣
∆2/d

x=x2

⟨φ1(x
′
1)φ2(x

′
2)⟩ . (10.22)

Rotation and translation invariance imply that

⟨φ1(x1)φ2(x2)⟩ = f(|x1 − x2|) , (10.23)

and covariance under a scale transformation x → λx fixes f(x) = λ∆1+∆2f(λx).
Therefore

⟨φ1(x1)φ2(x2)⟩ =
C12

|x1 − x2|∆1+∆2
(10.24)

for some constant C12. Inserting now this into (10.22) and using the SCT
with scale factor (10.17) we obtain

C12

|x1 − x2|∆1+∆2
=

C12

γ∆1
1 γ∆2

2

(γ1γ2)(∆1+∆2)/2

|x1 − x2|∆1+∆2
, (10.25)

with
γi = 1− 2b · xi + b2x2

i . (10.26)

Equating powers of γi in (10.25) gives 2∆1 = 2∆2 = ∆1+∆2 with the unique
solution ∆1 = ∆2. This means that the two-point function vanishes unless
the two fields have the same scaling dimension. Moreover it is conventional
to normalise the fields so that C12 = 1. In conclusion

⟨φ1(x1)φ2(x2)⟩ =
δ∆1,∆2

x2∆1
12

, (10.27)

where we have set xij = |xi − xj |.
We next discuss the case of a three-point function. Covariance under

rotations, translations and dilations imply that it must be of the form30

⟨φ1(x1)φ2(x2)φ3(x3)⟩ =
C123

xa
12x

b
23x

c
13

(10.28)

30A priory the right-hand side of (10.28) may be replaced with a sum over several terms
satisfying (10.29), but see below.
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with
a+ b+ c = ∆1 +∆2 +∆3 . (10.29)

Covariance under SCT implies that

C123

xa
12x

b
23x

c
13

=
C123

γ∆1
1 γ∆2

2 γ∆3
3

(γ1γ2)a/2(γ2γ3)b/2(γ1γ3)c/2

xa
12x

b
23x

c
13

, (10.30)

so that
a + c = 2∆1 , a+ b = 2∆2 , b+ c = 2∆3 .

This system has the unique solution

⟨φ1(x1)φ2(x2)φ3(x3)⟩ =
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

. (10.31)

The constants C123 are non-trivial parameters, which will reappear below as
structure constants in the operator product expansion.

The complete determination (up to C123) of two- and three-point functions
is a consequence of the fact that (10.18) does not allow us to construct
conformal invariants of two or three points. For N ≥ 4 points one can
however construct N(N−3)/2 independent invariants, known as anharmonic
ratios or cross-ratios. For instance, the four-point function takes the form

⟨φ1(x1)φ2(x2)φ3(x3)φ4(x4)⟩ = f

(
x12x34

x13x24
,
x12x34

x23x14

) 4∏

i<j

x
∆/3−∆i−∆j

ij (10.32)

with ∆ =
∑4

i=1∆i. We stress that the function f is not fixed solely by global
conformal invariance.

10.1.3 Stress tensor and global Ward identity

The stress tensor T µν is the conserved Noether current associated with the
conformal symmetry. It can be defined31 as the response of the partition
function to a local change in the metric:

T µν(x) = − 1

(2π)d−1

δ logZ

δgµν(x)
(10.33)

31Note the analogy with the theory of integrable systems, where the conserved charges
are obtained as derivatives of the transfer matrix with respect to the anisotropy (spectral
parameter).
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The power of 2π is conventional and will lead to convenient simplifications
later.

Because of (10.19) this can be written equivalently as the variation of the
local action S[φ] under the transformation (10.2):

δS =
1

(2π)d−1

∫
ddxT µν(x) ∂µϵν(x) . (10.34)

This point of view will be useful later when we consider the response of the
action to transformations that are only conformal in some parts of space.
But for truly (global) conformal transformations we have obviously δS = 0.
This immediately entails some important symmetry properties of T µν .

For the translational invariance (10.11), ϵν(x) = aν , one has of course
∂µϵν(x) = 0, whence δS = 0 as expected. But performing instead an in-
tegration by parts in (10.34), and using that aν is arbitrary, we obtain the
conservation law

∂µT
µν(x) = 0 . (10.35)

Thus T µν(x) is indeed equivalent to the usual Noether current.
Regarding the rotational invariance (10.13), for the integral (10.34) to

vanish, the stress tensor must be symmetric:

T µν(x) = T νµ(x) . (10.36)

And finally the dilatation invariance (10.12) has ∂µϵν(x) = δνµ, so the stress
tensor is traceless:

T µ
µ (x) = 0 . (10.37)

The stress tensor also satisfies a very important constraint known as the
Ward identity. This identity is most powerful in the case of local conformal
invariance in d = 2 (see below), but the starting point is a global identity
valid in any dimension that we derive now.

Consider the correlation function of a product of local fields φi(xi) that
we denote for simplicity as

X = φ1(x1)φ2(x2) · · ·φn(xn) . (10.38)

The correlation function ⟨X⟩ is a physical observable and does not change un-
der an infinitesimal coordinate transformation (10.2). We have thus δ⟨X⟩ =
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0. A non-trivial identity however results from decomposing the various
changes that add up to zero. There is an explicit variation of the fields,

φi(xi) → φ′
i(xi) = φi(xi) + δφi(xi) (10.39)

and the action pick up a variation δS given by (10.34). But since the correla-
tion function is defined by the functional integral (10.20) there will be three
types of changes to ⟨X⟩ induced by 1) the explicit field variation δφi(xi), 2)
the variation δS in the correlation functional integral, and 3) the variation
δS in the normalisation Z−1. Summing these up leads to

0 =
n∑

i=1

⟨φ1(x1) · · · δφi(xi) · · ·φn(xn)⟩

− 1

(2π)d−1

∫
ddx⟨T µν(x)X⟩∂µϵν(x)

−
[

1

(2π)d−1

∫
ddx⟨T µν(x)⟩∂µϵν(x)

]
⟨X⟩ . (10.40)

For a theory at its critical point only the identity operator has a non-zero
one-point function. In particular ⟨T µν(x)⟩ = 0. The global Ward identity
therefore takes the form

n∑

i=1

⟨φ1(x1) · · · δφi(xi) · · ·φn(xn)⟩ =
1

(2π)d−1

∫
ddx⟨T µν(x)X⟩∂µϵν(x)

(10.41)

10.2 Two dimensions and local conformal invariance

Conformal invariance is especially powerful in two dimensions for reasons
that we shall expose presently. For the moment, we work in the geometry of
the Riemann sphere, i.e., the plane with a point at infinity, and we shall write
the coordinates as x = (x1, x2). Under a general coordinate transformation
xµ → x′µ = wµ(x1, x2) application of (10.1) implies the Cauchy-Riemann
equations

∂w2

∂x1
= ±∂w

1

∂x2
,

∂w1

∂x1
= ∓∂w

2

∂x2
, (10.42)
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i.e., w(x) is either a holomorphic or an antiholomorphic function. Important
simplifications will therefore result upon introducing the complex coordinates

z ≡ x1 + ix2 , z̄ ≡ x1 − ix2 . (10.43)

A conformal mapping then reads simply z → z′ = w(z).
It is convenient to consider (x1, x2) ∈ C2, so that z and z̄ can be con-

sidered independent complex variables, not linked by complex conjugation.
For that reason we can often concentrate on the transformations of z alone,
bearing in mind that z̄ satisfies the same properties. Ultimately the relation-
ship between the two—i.e., z̄ indeed is the complex conjugate of z̄—will be
enforced through the constraint of modular invariance (see section 10.7).

The identification of two-dimensional conformal transformations with an-
alytic maps w(z) could have been anticipated from the well-known fact that
the latter are angle-preserving. It should be noted that an analytic map is
defined (via its Laurent series) by an infinite number of parameters. This
does not contradict the result of section 10.1 that the set of global conformal
transformations is defined by only 1

2(d+1)(d+2) = 6 real parameters, since
analytic maps are not necessarily invertible and defined in the whole complex
plane.

Global conformal transformations in d = 2 take the form of the projective
transformations

w(z) =
a11z + a12
a21z + a22

(10.44)

with aij ∈ C and a normalisation constraint that we can take as det aij = 1.

It is straightforward to verify that the composition of two projective
transformations is again projective, with parameters {aij} that correspond
to multiplying those of the individual transformations as 2 × 2 matrices.
In other words, d = 2 global conformal transformations form the group
SL(2,C) ≃ SO(3, 1).

We can sketch an argument why the projective transformations (10.44)
are the only globally defined invertible holomorphic mappings f(z). First,
for f to be single-valued it cannot have branch points. Second, for f to be
invertible it cannot have essential singularities. Therefore f(z) = P (z)/Q(z)
must be a ratio of polynomials without common zeros. For the inverse image
of zero to exist, P (z) can only have a single zero. This cannot be a multiple
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zero, since otherwise f would not be invertible. Therefore P (z) = a11z+a12.
The same argument with zero replaced by infinity implies that Q(z) = a21z+
a22.

In complex coordinates, the transformation law (10.21) becomes

φ′(w, w̄) =

(
dw

dz

)−h(dw̄

dz̄

)−h̄

φ(z, z̄) (10.45)

where the real parameters (h, h̄) are called the conformal weights. The combi-
nations ∆ = h+ h̄ and s = h− h̄ are called respectively the scaling dimension
and the spin of φ. A field φ satisfying (10.45) for any projective transforma-
tion (resp. any analytic map) w(z) is called quasi-primary (resp. primary).
An example of a quasi-primary field which is not primary is furnished by the
stress tensor (see below).

The expressions (10.27)–(10.31) for the two- and three-point correlation
functions still hold true with the obvious modification that the dependence
in zij ≡ zi − zj (resp. in z̄ij) goes with the conformal weights h (resp. h̄).

10.3 Stress tensor and local Ward identity

The change to complex coordinates implies that the conservation laws of T µν

need some rewriting. Directly from (10.43) the corresponding derivatives
read

∂z =
1

2
(∂1 − i∂2) ,

∂z̄ =
1

2
(∂1 + i∂2) (10.46)

with inverses

∂1 = ∂z + ∂z̄ ,

∂2 = i(∂z − ∂z̄) . (10.47)

The elements of the complex metric can be read off from the obvious rewriting
of the line element in Euclidean d = 2 space:

ds2 = gµν dx
µ dxν = (dx1)2 + (dx2)2 = dz dz̄ . (10.48)
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This leads to gzz = gz̄z̄ = 0 and gzz̄ = gz̄z =
1
2 . In particular the components

of the stress tensor read now in complex coordinates:

Tzz ≡ T (z, z̄) =
1

4
(T11 − T22 + 2iT12) ,

Tz̄z̄ ≡ T̄ (z, z̄) =
1

4
(T11 − T22 − 2iT12) (10.49)

Tzz̄ = Tz̄z =
1

4
(T11 + T22) =

1

4
T µ
µ .

We can likewise rewrite the conservation law (10.35) in complex coordinates:

∂z̄T (z, z̄) +
1

4
∂zT

µ
µ = 0 ,

∂zT̄ (z, z̄) +
1

4
∂z̄T

µ
µ = 0 . (10.50)

Recall that scale invariance further implies the tracelessness T µ
µ = 0 from

(10.37); in general the trace would be proportional to the beta function,
which vanishes at a renormalisation group fixed point. At the fixed point we
thus have

∂z̄T (z, z̄) = ∂zT̄ (z, z̄) = 0 . (10.51)

This means that T depends only on z, hence is an holomorphic function, and
that T̄ depends only on z̄, hence is an anti-holomorphic function. This is a
very important element in the solvability of two-dimensional CFT.

To emphasize this crucial result we henceforth denote the two non-vanishing
components of the stress tensor T (z) and T̄ (z̄), viz.

T (z) ≡ Tzz , T̄ (z̄) ≡ Tz̄z̄ . (10.52)

Following Fateev and Zamolodchikov [FZ87] it is even possible to go
(much) further: CFT’s in which the conformal symmetry is enhanced with
other, so-called extended, symmetries (superconformal, parafermionic, W al-
gebra,. . . ) can be constructed by requiring more analytic currents and mak-
ing them coexist with T (z) by imposing certain associativity requirements.

We now come back to the Ward identity (10.41) for a product of local
operators φi(zi, z̄i). In d = 2, if we suppose that these operators are primary
and that the infinitesimal transformation is only locally conformal, we will
get a much stronger local form of the Ward identity.

151



Let C be a circle centered at the origin of radius sufficiently large so as to
surround all the points (zi, z̄i) with i = 1, 2, . . . , n. Denote by nµ its outgoing
normal vector. We shall suppose that the infinitesimal transformation, z′ =
z+ ϵ(z) and z̄′ = z̄+ ϵ̄(z̄), is conformal only inside C, whereas on the outside
it is merely a differentiable function that tends to zero sufficiently fast at
infinity.

Consider first the right-hand side of (10.41). We can perform an integra-
tion by parts and invoke the conservation law (10.35) to get rid of the bulk
part of this integral. Only remains the boundary terms. The boundary term
at infinity vanishes due to the hypothesis that ϵ(z) and ϵ̄(z̄) tend to zero
sufficiently fast at infinity. The boundary term at C can be written as

1

2π

∫

C

dΣnµϵµ⟨T µνX⟩ = 1

2πi

∮

C

dz ϵ(z)⟨T (z)X⟩ − 1

2πi

∮

C

dz̄ ϵ̄(z̄)⟨T̄ (z̄)X⟩ ,

(10.53)
where Σ denotes the surface (actually line) element of the circle C and we
recall that ϵ(z) = ϵ1 + iϵ2 and ϵ̄(z̄) = ϵ1 − iϵ2.

Consider next the left-hand side of (10.41). The transformation law
(10.45) for the primary field φi(zi, z̄i) can be written as

φ′
i(z

′
i, z̄

′
i) (dz

′)hi (dz̄′)h̄i = φi(z, z̄) (dz)
hi (dz̄)h̄i , (10.54)

where (hi, h̄i) are the corresponding conformal weights. Developping the
infinitesimal transformation to first order this reads

δφi ≡ φ(zi, z̄i)− φ′(z′i, z̄
′
i) =

[
(hi∂iϵ+ ϵ∂i) + (h̄i∂̄iϵ̄+ ϵ̄∂̄i)

]
φi(zi, z̄i) . (10.55)

Assembling these ingredients, and using the independence of the analytic
and antianalytic parts of the expressions, we arrive at

1

2πi

∮

C

dz ϵ(z)

[
n∑

i=1

(
hi

(z − zi)2
+

∂i
z − zi

)
⟨X⟩ − ⟨T (z)X⟩

]

= 0 (10.56)

We have here used the Cauchy theorem. There is a corresponding expression
with bars. Since ϵ(z) is arbitrary the integrand must in fact vanish:

⟨T (z)X⟩ =
n∑

i=1

(
hi

(z − zi)2
+

∂i
z − zi

)
⟨X⟩ . (10.57)

This is the desired conformal Ward identity. On the right-hand side we see
manifestly the singularities in each of the coordinates zi of the primary fields
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φi(zi, z̄i) entering the product X . These are the expected short-distance
singularities whenever T (z) approaches any of the primary fields:

T (z)φj(zj , z̄j) =
hj

(z − zj)2
φj(zj, z̄j) +

1

z − zj
∂zjφ(zj, z̄j) +O(1) . (10.58)

The conformal Ward identity written in this local form is our first example
of an operator product expansion (OPE), i.e., a formal power series in the
coordinate difference that expresses the effect of bringing close together two
operators.

Several remarks are in order:

1. It is tacitly understood that OPE’s only have a sense when placed
between the brackets ⟨· · · ⟩ of a correlation function.

2. We generically expect singularities to arise when approaching two local
operators in a quantum field theory; in particular the average of a field
over some small volume will have a variance that diverges when that
volume is taken to zero.

3. An OPE should be considered an exact identity (valid in a finite do-
main of the field coordinates) rather than an approximation, provided
the formal expansion is written out to arbitrarily high order. In our ex-
ample, (10.57) only determines the first two terms in the OPE (10.58).

4. Contracting any field φ with T (z) and comparing with (10.58) is ac-
tually a useful practical means of determining its primarity and its
conformal dimension hφ.

It is not difficult to see from (10.33) that on dimensional grounds T itself
is a quasi-primary field of conformal dimension h = 2, since the partition
function Z is dimensionless. However, the average ⟨T (z1)T (z2)⟩ ∼ (z1−z2)−4

has no reason to vanish, and so the OPE of T with itself takes the form

T (z1)T (z2) =
c/2

(z1 − z2)4
+

2T (z2)

(z1 − z2)2
+
∂T (z2)

z1 − z2
+O(1) . (10.59)

In particular, T is not primary. The constant c appearing in (10.59) is called
the central charge. Considering two non-interacting CFT’s as a whole, one
has from (10.33) that their stress tensors, and hence their central charges,
add up, and so c can be considered as a measure of the number of quantum
degrees of liberty in the CFT.
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It is straightforward (but somewhat lengthy) exercise to establish that
c = 1

2 for a free fermion and c = 1 for a free boson. Details can be found in
section 5.3 of [DMS87].

As T is not primary, it cannot transform like (10.45) under a finite con-
formal transformation z → w(z). We can always write the modified trans-
formation law as

T ′(w) =

(
dw

dz

)−2 [
T (z)− c

12
{w; z}

]
. (10.60)

To determine what {w; z} represents, we use the constraint due to two suc-
cessive applications of (10.60) and the fact that {w; z} = 0 for projective con-
formal transformations, since T is quasi-primary. The result is that {w; z}
is the Schwarzian derivative

{w; z} =
d3w/dz3

dw/dz
− 3

2

(
d2w/dz2

dw/dz

)2

. (10.61)

10.4 Finite-size scaling on a cylinder

The central charge c is ubiquitous in situations where the CFT is placed in
a finite geometry, i.e., interacts with some boundary condition. An impor-
tant example is furnished by conformally mapping the plane to a cylinder of
circumference L by means of the transformation

w(z) =
L

2π
log z . (10.62)

This transformation can be visualised by viewing the cylinder in perspective,
with one rim contracting to the origin and the other expanding to form
the point at infinity. Taking the expectation value of (10.60), and using
the fact that ⟨T (z)⟩ = 0 in the plane on symmetry grounds, one finds that
⟨T (w)⟩ = −π2c/6L2 on the cylinder. Applying (10.33) then implies that the
free energy per unit area f0(L) satisfies [BCN86, Af86]

f0(L) = f0(∞)− πc

6L2
+ o(L−2) . (10.63)

This is a very useful result for obtaining c for a concrete statistical model,
since f(L) can usually be determined from the corresponding transfer matrix,
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either numerically for small L by using exact diagonalisation techniques,
or analytically in the Bethe Ansatz context by using the Euler-Maclaurin
formula.

One may note the clear analogy between (10.63) and the Casimir effect
between two uncharged metallic plates. According to quantum electrody-
namics, the vanishing of the wave function on the plates induces a force
between them. This force may be attracting or repelling depending on the
specific arrangement of the plates.

It is also of interest to study such finite-size effects on the level of the
two-point correlation function of a primary field φ. Again using the mapping
(10.62), the covariance property (10.45) and the form (10.27) of the correlator
in the plane can be used to deduce its form on the cylinder. Assuming for
simplicity h = h̄ = ∆/2, and writing the coordinates on the cylinder as
w = t + ix, with t ∈ R and x ∈ [0, L), one arrives at

⟨φ(t1, x1)φ(t2, x2)⟩ =
(
2π

L

)2∆ [
2 cosh

(
2πt12
L

)
− 2 cos

(
2πx12

L

)]−∆

,

(10.64)
where t12 = t1 − t2 and x12 = x1 − x2. In the limit of a large separation
of the fields, t12 → ∞, this decays like e−t12/ξ with correlation length ξ =
L/2π∆. But this decay can also be written (Λφ/Λ0)−t12 , where Λ0 is the
largest eigenvalue of the transfer matrix, and Λφ is the largest eigenvalue
compatible with the constraint that an operator φ has been inserted at each
extremity t = ±∞ of the cylinder. Denoting the corresponding free energies
per unit area f(L) = −L−1 logΛ, we conclude that [Ca84a]

fφ(L)− f0(L) =
2π∆

L2
+ o(L−2) . (10.65)

This is as useful as (10.63) in (numerical or analytical) transfer matrix stud-
ies, since the constraint imposed by φ can usually be related explicitly to
properties of the transfer matrix spectrum.

10.5 Virasoro algebra and its representation theory

Up to this point, we have worked in a setup where the fields were seen as
functionals of the complex coordinates z, z̄. To obtain an operator formal-
ism, one must impose a quantisation scheme, i.e., single out a time and a
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space direction. In this formalism a crucial role will be played by the mode
operators of the stress tensor, defined by

Ln =
1

2πi

∮

C

zn+1T (z) dz, L̄n =
1

2πi

∮

C

z̄n+1T̄ (z̄) dz̄ . (10.66)

The transfer matrix then propagates the system from one time slice to the
following and is written as the exponential of the Hamiltonian H, i.e., the
energy operator on a fixed-time surface. In the continuum limit, one may
freely choose the time direction. In CFT this is most conveniently done by
giving full honours to the scale invariance of the theory, viz., by using for H
the dilation operator

D =
1

2πi

∮

C

z T (z) dz +
1

2πi

∮

C

z̄ T̄ (z̄) dz̄ = L0 + L̄0 , (10.67)

where C is a counterclockwise contour enclosing the origin. The following
choice of additive and multiplicative normalisations defines H precisely:

H = (2π/L)(L0 + L̄0 − c/12) . (10.68)

This is called the radial quantisation scheme: the constant-time surfaces are
concentric circles around the origin. Under the map (10.62) the time becomes
simply the coordinate along the cylinder axis. The usual time ordering of
operators then becomes a prescription of radial ordering.

Using the radial ordering, the OPE (10.59) can be turned into a commu-
tation relation [Ln, Lm].

Consider first the action of LnLm on an operator Φ(z). By (10.66) we
have

LnLmΦ(z) =
1

(2πi)2

∮

Cz,ξ1

dξ2

∮

Cz

dξ1 (ξ2 − z)n+1(ξ1 − z)m+1T (ξ2)T (ξ1)Φ(z) ,

where the first integration contour Cz encircles only z, whereas the second
Cz,ξ1 encircles both z and ξ1. We can deform the latter contour as follows:

z ξ1 ξ2 = z ξ1 ξ2
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so that

z ξ1 ξ2 − z ξ2 ξ1 = z ξ1 ξ2

This implies that

[Ln, Lm]Φ(z) =
1

(2πi)2

∮

Cz

dξ1(ξ1− z)m+1

∮

Cξ1

dξ2(ξ2− z)n+1T (ξ2)T (ξ1)Φ(z) .

But in the innermost integral—the one over Cξ1—the points ξ1 and ξ2 can
be taken arbitrarily close, so that it is appropriate to replace T (ξ2)T (ξ1) by
the OPE (10.59). The innermost integral therefore reads

1

2πi

∮

Cξ1

dξ2(ξ2 − z)n+1

[
c/2

(ξ2 − ξ1)4
+

2T (ξ1)

(ξ2 − ξ1)2
+
∂T (ξ1)

ξ2 − ξ1
+O(1)

]

=
c

2

n + 1

3

n

2

n− 1

1
(ξ1 − z)n−2 + 2(n+ 1)(ξ1 − z)nT (ξ1) + (ξ1 − z)n+1∂T (ξ1) ,

where we have used the Cauchy theorem on each of the three singular terms.
Performing now the outermost integral—the one over Cz—gives us back the
mode operators (10.66):

[Ln, Lm] =
c

12
n(n2−1)δn+m,0+2(n+1)Lm+n+

1

2πi

∮

Cz

dξ1(ξ1−z)n+m+2∂T (ξ1) .

In this expression, the remaining integral can be found by partial integration:

− 1

2πi

∮

Cz

dξ1(n+m+ 2)(ξ1 − z)n+m+1T (ξ1) = −(n +m+ 2)Lm+n .

Inserting this gives us the final form of the commutation relations:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 . (10.69)

A similar expression holds for [L̄n, L̄m], whereas [Ln, L̄m] = 0. The algebra
defined by (10.69) is called the Virasoro algebra. Importantly, the decoupling
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into two isomorphic Virasoro algebras, one for Ln and another for L̄n, means
that in the geometry chosen we can focus exclusively on Ln. It should be
stressed that in the geometry of a torus, the two algebras couple non-trivially,
in a way that is revealed by imposing modular invariance (see section 10.7
below).

We now describe the structure of the Hilbert space in radial quantisa-
tion. The vacuum state |0⟩ must be invariant under projective transforma-
tions, whence L±1|0⟩ = 0, and we fix the ground state energy by L0|0⟩ = 0.
Non-trivial eigenstates of H are created by action with a primary field,
|h, h̄⟩ = φ(0, 0)|0⟩. Translating (10.58) into operator language implies then
in particular L0|h, h̄⟩ = h|h, h̄⟩. We must also impose the highest-weight
condition Ln|h, h̄⟩ = L̄n|h, h̄⟩ = 0 for n > 0. Excited states with respect to
the primary φ then read

φ{n,n̄} ≡ L−n1L−n2 · · ·L−nk
L̄−n̄1L̄−n̄2 · · · L̄−n̄k̄

|h, h̄⟩ (10.70)

with 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk and similarly for {n̄}. These states are called
the descendents of φ at level {N, N̄}, where N =

∑k
i=1 ni. A primary state

and its descendents form a highest weight representation (or Verma module)
of the Virasoro algebra.

Correlation functions of descendent fields can be obtained by acting with
appropriate differential operators on the correlation functions of the corre-
sponding primary fields. To see this, consider first for n ≥ 1 the descendent(
L−nφ

)
(w) of the primary field φ(w), and let X =

∏
j φj(wj) be an arbitrary

product of other primaries as in the conformal Ward identity (10.57). Using
(10.66) and (10.58) we have then

〈(
L−nφ

)
(w)X

〉
=

1

2πi

∮

Cz

dz (z − w)1−n ⟨T (z)φ(w)X⟩ (10.71)

= − 1

2πi

∮

C{wj}

dz (z − w)1−n ×

∑

j

{
∂wj

z − wj
+

hj

(z − wj)2

}
⟨φ(w)X⟩ ,

where the minus sign comes from turning the integration contour inside out,
so that it surrounds all the points {wj}. In other words, a descendent in a
correlation function may be replaced by the corresponding primary

〈(
L−nφ

)
(w)X

〉
= L−n ⟨φ(w)X⟩ (10.72)
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provided that we act instead on the correlator with the linear differential
operator

L−n ≡
∑

j

{
(n− 1)hj

(wj − w)n
−

∂wj

(wj − w)n−1

}
(10.73)

It is readily seen that a general descendent (10.70) is similarly dealt with by
replacing each factor L−ni by the corresponding factor of L−ni in (10.72).

We can now write the general form of the OPE of two primary fields φ1

and φ2. It reads

φ1(z, z̄)φ2(0, 0) =
∑

p

C12p

∑

{n,n̄}∪{∅,∅}

C{n,n̄}
12p zhp−h1−h2+N z̄h̄p−h̄1−h̄2+N̄φ{n,n̄}

p (0, 0) ,

(10.74)

where the summation is over a certain set of primaries φp ≡ φ{∅,∅}
p as well

as their descendents. The coefficients C{n,n̄}
12p (we have set C{∅,∅}

12p = 1) can be
determined by acting with all combinations of positive-index mode operators
on both sides of (10.74) and solving the resulting set of linear equations.

In view of (10.69) it actually suffices to act with L1 and L2. Determining

the C{n,n̄}
12p is then a nice exercise of contour integration. (The answer can be

found in Appendix B of [BPZ84].)

In contradistinction, the coefficients C12p are fundamental quantities.
Contracting both sides of (10.74) with φp and using the orthogonality of
two-point functions (10.27) we see that the coefficients C12p coincide with
those appearing in the three-point functions (10.31).

The C12p can be computed by the so-called conformal bootstrap method,
i.e., by assuming crossing symmetry of the four-point functions. In concrete
terms, this amounts to writing a well-chosen four-point function, mapping
three of its points to 0, 1, ∞ by means of a projective transformation (10.44),
and comparing all possible limits of the remaining point z. When computing
those limits, one successively uses (10.74).

10.6 Minimal models

Denote by V(c, h) the highest weight representation (Verma module) gener-
ated by the mode operators {Ln} acting on a highest weight state |h⟩ in a
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CFT of central charge c. The Hilbert space of the CFT can then be written
⊕

h,h̄

nh,h̄V(c, h)⊗ V(c, h̄) , (10.75)

where the multiplicities nh,h̄ indicate the number of distinct primaries of
conformal weights (h, h̄) that are present in the theory. A minimal model is
a CFT for which the sum in (10.75) is finite.

The Hermitian conjugate of a mode operator is defined by L†
n = L−n; this

induces an inner product on the Verma module. The character χ(c,h) of the
module V(c, h) can then be defined as

χ(c,h)(τ) = Tr qL0−c/24 , (10.76)

where τ ∈ C is the so-called modular parameter (see section 10.7 below) and
q = e2πiτ . Since the number of descendents of |h⟩ at level N is just the
number p(N) of integer partitions of N , cf. (10.70), we have simply

χ(c,h)(τ) =
qh−c/24

P (q)
, (10.77)

where
1

P (q)
≡

∞∏

n=1

1

1− qn
=

∞∑

n=0

p(n)qn (10.78)

is the generating function of partition numbers; this is also often expressed
in terms of the Dedekind function

η(τ) = q1/24P (q) . (10.79)

However, the generic Verma module is not necessarily irreducible, so further
work is needed.

For certain values of h, it may happen that a specific linear combination
|χ⟩ of the descendents of |h⟩ at level N is itself primary, i.e., Ln|χ⟩ = 0 for
n > 0. In other words, |χ⟩ is primary and descendent at the same time, and
it generates its own Verma module Vχ(c, h) ⊂ V(c, h).

The states in Vχ(c, h) are orthogonal to those in V(c, h),

⟨χ|L−n1L−n2 · · ·L−nk
|h⟩ = ⟨h|Lnk

· · ·Ln2Ln1 |χ⟩∗ = 0 , (10.80)

and so in particular they have zero norm. A Verma module V(c, h) containing
one or more such null fields |χ⟩ is called reducible, and can be turned into
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an irreducible Verma module M(c, h) by quotienting out the the null fields,
i.e., by setting |χ⟩ = 0. The Hilbert space is then given by (10.75) with V
replaced by M; since it contains fewer states the corresponding characters
(10.76) are not given by the simple result (10.77).

The concept of null states is instrumental in constructing unitary repre-
sentations of the Virasoro algebra (10.69), i.e., representations in which no
state of negative norm occurs. An important first step is the calculation of
determinant of the Gram matrix of inner products between descendents at
level N . This is known as the the Kac determinant detM (N). Its roots can
be expressed through the following parameterisation:

c(m) = 1− 6

m(m+ 1)

h(m) = hr,s(m) ≡ [(m+ 1)r −ms]2 − 1

4m(m+ 1)
(10.81)

where r, s ≥ 1 are integers with rs ≤ N . The condition for unitarity of
models with c < 1, first found by Friedan, Qiu and Shenker [FQS84] reads:
m, r, s ∈ Z with m ≥ 2, and (r, s) must satisfy 1 ≤ r < m and 1 ≤ s ≤ m.

To get an idea of the origin of (10.81) it is instructive to compute the
Kac determinant at the first few levels. For instance, at level N = 1 the only
state is L−1|h⟩, while at level N = 2 there are two states: L2

−1|h⟩ and L−2|h⟩.
The Kac determinants read

detM (1) = 2h ,

detM (2) = 32(h− h1,1)(h− h1,2)(h− h2,1) . (10.82)

The general result is

detM (N) = αN

rs≤N∏

r,s≥1

[h− hr,s(c)]
p(N−rs) , (10.83)

where p(n) was defined in (10.78) and αN > 0 is independent of h and c.

According to (10.72) the presence of a descendent field in a correlation
function can be replaced by the action of a differential operator (10.73). Now
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let
χ(w) =

∑

Y,|Y |=N

αY L−Y φ(w) (10.84)

be an arbitrary null state. Here, αY are some coefficients, and we have
introduced the abbreviations

Y = {r1, r2, . . . , rk} ,
|Y | = r1 + r2 + . . .+ rk , (10.85)

L−Y = L−r1L−r2 · · ·L−rk

with 1 ≤ r1 ≤ r2 ≤ · · · ≤ rk. A correlation function involving χ must vanish
(since we have in fact set χ = 0), and so

⟨χ(w)X⟩ =
∑

Y,|Y |=N

αYL−Y (w) ⟨φ(w)X⟩ = 0 . (10.86)

Solving this Nth order linear differential equation is a very useful practical
means of computing the four-point correlation functions of a given CFT,
provided that the level of degeneracy N is not too large. Indeed, since the
coordinate dependence is through a single anharmonic ratio η, one has simply
an ordinary linear differential equation.

Moreover, requiring consistency with (10.74) places restrictions on the
primaries that can occur on the right-hand side of the OPE. One can then
study the conditions under which this so-called fusion algebra closes over a
finite number of primaries. The end result is that the minimal models are
given by

c = 1− 6(m−m′)2

mm′

hr,s =
(mr −m′s)2 − (m−m′)2

4mm′ (10.87)

with m,m′, r, s ∈ Z, and the allowed values of (r, s) are restricted by 1 ≤ r <
m′ and 1 ≤ s < m. The corresponding hr,s are referred to as the Kac table
of conformal weights. The corresponding fusion algebra reads (for clarity we
omit scaling factors, structure constants, and descendents):

φ(r1,s1)φ(r2,s2) =
∑

r,s

φ(r,s) , (10.88)
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where r runs from 1+ |r1 − r2| to min(r1 + r2 − 1, 2m′ − 1− r1 − r2) in steps
of 2, and s runs from 1 + |s1 − s2| to min(s1 + s2 − 1, 2m − 1 − s1 − s2) in
steps of 2.

The Kac table (10.87) is the starting point for elucidating the structure of
the reducible Verma modules Vr,s for minimal models, and for constructing
the proper irreducible modules Mr,s. The fundamental observation is that

hr,s + rs = hr,−s . (10.89)

This equation holds true for any value of c. It means that for r, s ∈ Z

the Verma module Vr,s contains a singular vector at level rs that generates
the submodule Vr,−s. Quotienting out this submodule, we get an irreducible
representation with character

Kr,s(τ) =
q−c/24

P (q)

(
qhr,s − qhr,−s

)
. (10.90)

For r, s ∈ Z this replaces the generic character χc,h(τ) defined in (10.77).
The case of minimal models is however different. Using the symmetry

property hr,s = hm′−r,m−s and the periodicity property hr,s = hr+m′,s+m it is
seen that hr,s+rs = hm′+r,m−s and that hr,s+(m′−r)(m−s) = hr,2m−s. This
means that Vr,s contains two submodules, Vm′+r,m−s and Vr,2m−s, at levels rs
and (m′ − r)(m− s) respectively, and these must correspond to null vectors.
To construct the irreducible module Mr,s one might at first think that it
suffices to quotient out these two submodules. However, iterating the above
observations, the two submodules are seen to share two sub-submodules, and
so on. So Mr,s is constructed from Vr,s by an infinite series of inclusions-
exclusions of pairs of submodules. This allows us in particular to compute
the irreducible characters of minimal models as

χ(r,s)(τ) = K(m,m′)
r,s (q)−K(m,m′)

r,−s (q) , (10.91)

where the infinite addition-subtraction scheme has been tucked away in the
functions

K(m,m′)
r,s (q) =

q−1/24

P (q)

∑

n∈Z

q(2mm′n+mr−m′s)2/4mm′
. (10.92)

This should be compared with the generic character (10.77) and with (10.90).
Note also the similarity between (10.89) and (10.91) on the level of the in-
dices.
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It is truly remarkable that the above classification of minimal models has
been achieved without ever writing down the action S appearing in (10.19).
In fact, an effective Landau-Ginzburg Lagrangian description for the unitary
minimal models (m′ = m+1) has been suggested a posteori by Zamolodchikov
[Za86]. It suggests that the minimal models can be interpreted physically as
an infinite series of multicritical versions of the Ising model. Indeed, the
Ising model can be identified with the first non-trivial member in the series,
m = 3, and the following, m = 4, with the tricritical Ising model.

To finish this section, we comment on the relation with self-avoiding walks
and polygons. In section 11 we shall see that these (to be precise, the dilute
O(n → 0) model) can be identified with the minimal model m = 2, m′ = 3.
Note that this is not a unitary theory. The central charge is c = 0, and
the only field in the Kac table—modulo the symmetry property given after
(10.89)—is the identity operator with conformal weight h1,1 = 0. Seemingly
we have learnt nothing more than the trivial statement Z = 1. However, the
operators of interest are of a non-local nature, and it is a pleasant surprise to
find that their dimensions fit perfectly well into the Kac formula, although
they are situated outside the “allowed” range of (r, s) values, and sometimes
require the indices r, s to be half-integer. So the Kac formula, and the sur-
rounding theoretical framework, is still a most useful tool for investigating
these types of models.

10.7 Modular invariance

In section 10.3 we have seen that conformal symmetry makes the stress ten-
sor decouple into its holomorphic and antiholomorphic components, T (z)
and T̄ (z̄), implying in particular that the corresponding mode operators, Ln

and L̄n, form two non-interacting Virasoro algebras (10.69). As a conse-
quence, the key results of section 10.6 could be derived by considering only
the holomorphic sector of the CFT. There are however constraints on the
ways in which the two sectors may ultimately couple, the diagonal coupling
(10.75) being just the simplest example in the context of minimal models.
As first pointed out by Cardy [Ca86], a powerful tool for examining which
couplings are allowed—and for placing constraints on the operator content
and the conformal weights—is obtained by defining the CFT on a torus and
imposing the constraint of modular invariance.
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In this section we expose the principles of modular invariance and apply
them to a CFT known as the compactified boson, which is going to play a
central role in the Coulomb gas approach of section 11. Many other appli-
cations, including a detailed study of the minimal models, can be found in
Ref. [DMS87].

Let ω1,ω2 ∈ C \ {0} such that τ ≡ ω2/ω1 /∈ R. A torus is then defined as
C/(ω1Z+ω2Z), i.e., by identifying points in the complex plane that differ by
an element in the lattice spanned by ω1,ω2. The numbers ω1,ω2 are called
the periods of the lattice, and τ the modular parameter. Without loss of
generality we can assume ω1 ∈ R and ℑτ > 0.

Instead of using the radial quantisation scheme of section 10.5 we now
define the time (resp. space) direction to be the imaginary (resp. real) axis
in C. The partition function on the torus may then be written Z(τ) =
Tr exp [−(ℑω2)H− (ℜω2)P], where H = (2π/ω1)(L0 + L̄0 − c/12) is the
Hamiltonian and P = (2π/iω1)(L0 − L̄0 − c/12) the momentum operator.
This gives

Z(τ) = Tr
(
qL0−c/24q̄L̄0−c/24

)
, (10.93)

where we have defined q = exp(2πiτ). Comparing with (10.75)–(10.76) we
have also

Z(τ) =
∑

h,h̄

nh,h̄ χ(c,h)(τ)χ̄(c,h̄)(τ) . (10.94)

An explicit computation of Z(τ) will therefore give information on the cou-
pling nh,h̄ between the holomorphic and antiholomorphic sectors. In many
cases, but not all, the coupling turns out to be simply diagonal, nh,h̄ = δh,h̄.

The fundamental remark is now that Z(τ) is invariant upon making a
different choice ω′

1,ω
′
2 of the periods, inasmuch as they span the same lattice

as ω1,ω2. Any two set of equivalent periods must therefore be related by
ω′
i =

∑
j aijωj, where {aij} ∈ Mat(2,Z) with det aij = 1. Moreover, an

overall sign change, aij → −aij is immaterial, so the relevant symmetry
group is the so-called modular group SL(2,Z)/Z2 ≃ PSL(2,Z).

The remainder of this section is concerned with the the construction
of modular invariant partition functions for certain bosonic systems on the
torus. As a warmup we consider the free boson, defined by the action

S[φ] =
g

2

∫
d2x (∇φ)2 (10.95)
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and φ(x) ∈ R. Comparing (10.93) with (10.76)–(10.78), and bearing in mind
that c = 1, we would expect the corresponding partition function to be of
the form Z0(τ) ∝ 1/|η(τ)|2. Fixing the proportionality constant is somewhat
tricky [IZ86]. In a first step, φ is decomposed on the normalised eigenfunc-
tions of the Laplacian, and Z0(τ) is expressed as a product over the eigen-
values. This product however diverges, due to the presence of a zero-mode,
and must be regularised. A sensible result is obtained by a shrewd analytic
continuation, the so-called ζ-function regularisation technique [IZ86]:

Z0(τ) =

√
4πg√

ℑτ |η(τ)|2
. (10.96)

The CFT which is of main interest for the CG technique is the so-called
compactified boson in which φ(x) ∈ R/(2πaRZ). In other words, the field
lives on a circle of radius aR (the reason for the appearance of two parame-
ters, a and R, will become clear shortly). In this context, suitable periodic
boundary conditions are specified by a pair of numbers, m,m′ ∈ aZ, so that
for any k, k′ ∈ Z

φ(z + kω1 + k′ω2) = φ(z) + 2πR(km+ k′m′) . (10.97)

It is convenient to decompose φ = φm,m′ + φ0, where

φm,m′ =
2πR

τ̄ − τ

[
z

ω1
(mτ̄ −m′)− z̄

ω̄1
(mτ −m′)

]
(10.98)

is the classical solution satisfying the topological constraint, and φ0 represents
the quantum fluctuations, i.e., is a standard free boson satisfying standard
periodic boundary conditions.

Integrating over φ0 as before, and keeping m,m′ fixed, gives the partition
function

Zm,m′(τ) = Z0(τ) exp

(
−2π2gR2 |mτ −m′|2

ℑτ

)
. (10.99)

It is easy to see that this is not modular invariant. A modular invariant is
however obtained by summing over all possible values of m,m′:

Z(τ) ≡ R√
2
Z0(τ)

∑

m,m′∈aZ

exp

(
−2π2gR2 |mτ −m′|2

ℑτ

)
(10.100)
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The prefactor R/
√
2 is again a subtle effect of the zero-mode integration. It

is actually most easily justified a posteriori by requiring the correct normal-
isation of the identity operator in (10.101) below.

A more useful, and more physically revealing, form of (10.100) is obtained
by using the Poisson resummation formula to replace the sum over m′ ∈ aZ
by a sum over the dual variable e ∈ Z/a. The result is

Z(τ) =
1

|η(τ)|2
∑

e∈Z/a, m∈aZ

qhe,m q̄h̄e,m , (10.101)

with

he,m =
1

2

(
e

R
√
4πg

+
mR

2

√
4πg

)2

, h̄e,m =
1

2

(
e

R
√
4πg

− mR

2

√
4πg

)2

.

(10.102)
Comparing now with (10.93) and (10.76)–(10.78) we see that (10.102) is
nothing else than the conformal weights of the CFT at hand.

The requirement of modular invariance has therefore completely speci-
fied the operator content of the compactified boson system. An operator is
characterised by two numbers, e ∈ Z/a and m ∈ aZ, living on mutually dual
lattices. A physical interpretation will be furnished by the CG formalism of
section 11: e is the “electric” charge of a vertex operator (spin wave), and
m is the “magnetic” charge of a topological defect (screw dislocation in the
field φ). Let us write for later reference the corresponding scaling dimension
and spin:

∆e,m =
e2

4πgR2
+m2πgR2, se,m = em (10.103)

Observe in particular that the spin is integer, as expected for a bosonic
system.

The reader will notice that the three constants R, a and g are related by
the fact that they always appear in the dimensionless combination R2a2g.
Field-theoretic literature often makes the choice a = 1 and g = 1/4π in order
to simplify formulae such as (10.102). In the CG approach—the subject of
section 11—one starts from a geometrical construction (mapping to a height
model) in which a convention for a must be chosen. The compactification
radius aR then follows from a “geometrical” computation (identification of
the ideal state lattice), and the correct coupling constant g is only fixed in the

167



end by a field-theoretic argument (marginality requirement of the Liouville
potential). Needless to say, the results, such as (10.103) for the dimensions of
physical operators, need (and will) be independent of the initial choice made
for a.

To conclude, note that the roles of e and m in (10.102) are interchanged
under the transformation Ra

√
2πg → (Ra

√
2πg)−1, which leaves (10.101) in-

variant. This is another manifestation of the electro-magnetic duality. Ulti-
mately, the distinction between e and m comes down to the choice of transfer
direction. In the geometry of the torus this choice is immaterial, of course.
In sections 11.3–12.3 we shall compare the geometries of the cylinder and the
annulus; these are related by interchanging the space and time directions,
and accordingly the electric and magnetic charges switch role when going
from one to the other.
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