
11 Coulomb gas construction

It has been known since the 1970’s [LP75, Ka78, KB79, Kn81] that the critical
point of many two-dimensional models of statistical physics can be identified
with a Gaussian free-field theory. A general framework for the computation
of critical exponents was first given in 1977 by José et al. in the so-called spin
wave picture [Jo77]. This was further elaborated in the early 1980’s by den
Nijs [Ni83, Ni84] and Nienhuis [Nh84] into what has become known as the
Coulomb gas (CG) construction. These developments have been reviewed by
Nienhuis [Nh87].

The CG approach is particularly suited to deal with the continuum limit
of lattice models of closed self-avoiding loops, in which each loop carries a
Boltzmann weight n. There are two prototype models which can be repre-
sented in terms of such loops. The Potts model has already been discussed
at length in chapter 8. Another useful example is the O(n) model, which can
be reformulated elegantly as a loop model on the hexagonal lattice [Nh82].

The marriage between the CG and conformal field theory (CFT) hap-
pened in 1986–87, when Di Francesco, Saleur and Zuber [DSZ87a, DSZ87b]
made the loop model ↔ CG correspondence more precise and showed how
the ideas of modular invariance [Ca86, IZ86] can be put to good use in the
study of loop models. At the same time, Duplantier and Saleur developed a
range of applications to self-avoiding walks and polygons (see in particular
[DS87]).

Any model of oriented self-avoiding loops is equivalent to a height model
on the dual lattice. It is the continuum limit of this height which acts as
the conformally invariant free field. The underlying lattice model implies
that this height field is compactified, thus making contact with the modular
invariance results of section 10.7. The naive free field action however needs
to be modified with extra terms, traditionally known as background and
screening electric charges [Nh87]. The resulting CFT, known as a Liouville
field theory, is written down in section 11.2.

The requirement that the Liouville potential be RG marginal determines
the coupling constant of the free field as a function of n, as first pointed
out by Kondev [Ko97]. This is an important ingredient, since otherwise one
would have to rely on an independent exact solution to fix the coupling. We
discuss these developments in section 11.3.
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11.1 From loops to a compactified boson

In chapter 8 we have seen how to transform the Potts model into a model of
oriented loops on the medial lattice. The weight

n =
√

Q = 2 cos γ (11.1)

per loop was transformed into local complex weights at the vertices.
The oriented loop model can easily be turned into a height model. For

this, assign a scalar variable h(x) to each lattice face x (i.e., to each vertex of
the lattice dual to the one on which the loop model has been defined), so that
h increases (resp. decreases) by a each time one traverses a left-going (resp.
right-going) edge. This definition of the height h is consistent, since each
vertex is incident on as many ingoing as outgoing edges. Since this defines
only height differences, one may imagine fixing h completely by arbitrarily
fixing h(0) = 0.

In the continuum limit, we expect the local height field h to converge
to a free bosonic field φ(x), whose entropic fluctuations are described by an
action of the form (10.95), with coupling g = g(n) which is a monotonically
increasing function of n. In particular, for n → ∞ the lattice model is
dominated by the configuration where loops of the minimal possible length
cover the lattice densely; the height field is then flat, φ(x) = constant, and the
correlation length ξ is of the order of the lattice spacing. For finite but large
n, φ will start fluctuating, loop lengths will be exponentially distributed, and
ξ will be of the order of the linear size of the largest loop. When n → n+

c ,
for some critical nc (we shall see that nc = 2), this size will diverge, and for
n ≤ nc the loop model will be conformally invariant with critical exponents
that depend on g(n). The interface described by φ(x) is then in a rough
phase. The remainder of this section is devoted to making this intuitive
picture more precise, and to refine the free bosonic description of the critical
phase.

As a first step towards greater precision, we now argue that φ(x) is in
fact a compactified boson, cf. section 10.7. To see this, it is convenient to
consider the oriented loop configurations that give rise to a maximally flat
microscopic height h; following Henley and Kondev [KH95] we shall refer to
them as ideal states. For the Potts model (11.4), an ideal state is a dense
packing of length-four loops, all having the same orientation. There are four
such states, corresponding to two choices of orientation and two choices of
the sublattice of lattice faces surrounded by the loops.
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Figure 25: An ideal state (panel 1) in the oriented loop model is gradually
changed into another (panel 4). The large loop created in panels 2 and 3 is
annihilated via the periodic boundary conditions to obtain panel 4, which
is a different ideal state. In the process the mean height changes from φ to
φ+ a (with a = 1 in the figure).

An ideal state can be gradually changed into another by means of ∼ N
local changes of the transition system and/or the edge orientations. This
is shown in Fig. 25. As a result, the mean height will change, φ → φ ± a.
Repeating this, one sees that one may return to the initial ideal state whilst
having φ → φ ± 2a. For consistency, we must therefore require φ(x) ∈
R/(2aZ), i.e., the field is compactified with radius R = 1/π, cf. (10.97).

In section 10.7 we have seen in detail that the normalisation constant a
drops out from the final physical results. We shall therefore follow standard
conventions and set a = π in what follows.

11.2 Liouville field theory

The essence of the above discussion is that the critical properties of the loop
model under consideration can be described by a continuum-limit partition
function that takes the form of a functional integral

Z =

∫
Dφ(x) exp (−S[φ(x)]) . (11.2)

Here S[φ(x)] is the Euclidean action of the compactified scalar field φ(x) ∈
R/(2πZ). The hypothesis that the critical phase is described by bounded
elastic fluctuations around the ideal states means that S must contain a
term

SE =
g

4π

∫
d2x (∇φ)2 (11.3)
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with coupling constant g > 0. Higher derivative terms that one may think of
adding to (11.3) can be ruled out by the φ → −φ symmetry, or by arguing
a posteriori that they are RG irrelevant in the full field theory that we are
about to construct.

Note that the partition function (11.2) does not purport to coincide with
that of the critical Potts model

Z = Q|V |/2
∑

E′⊆E

nl(E′) (11.4)

on the scale of the lattice constant. (A similar remark holds true for the
correlation functions that one may similarly write down.) We do however
claim that their long-distance properties are the same. In that sense, the CG
approach is an exact, albeit by no means rigorous, method for computing
critical exponents and related quantities. A more precise equivalence between
discrete and continuum-limit partition functions can however be achieved on
a torus [DSZ87b] or on an annulus (see chapter 13).

The action (11.3) coincides with (10.95) for the compactified boson. To
obtain the full physics of the loop model one however needs to add two more
terms to the action, as we now shall see.

We consider the underlying lattice model as being defined on a cylinder,
x = (x, t). This has the advantage of making direct contact with the radial
quantisation formalism of section 10.5. The boundary conditions are thus
periodic in the space direction, x = x+L, and free in the time (t) direction.
Ultimately, the results obtained on the cylinder can always be transformed
into other geometries by means of a conformal mapping.

We have seen in section 8.8 that with this geometry, in order to obtain
the correct weighting of non-contractible loops, the corresponding six-vertex
model must be twisted across a seam that runs along the cylinder. Consider
now adding a term

SB =
ie0
4π

∫
d2xφ(x)R(x) (11.5)

to the effective action S, whereR is the scalar curvature32 of the space x. The
parameter e0 is known in CG language as the background electric charge. On
the cylinder, one has simply SB = ie0 (φ(x,∞)− φ(x,−∞)), meaning that in

32We consider the scalar curvature in a generalised sense, so that delta function contribu-
tions may be located at the boundaries. Implicitly, we are just applying the Gauss-Bonnet
theorem.
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the partition function (11.2) an oriented loop with winding number q = 0,±1
(all other winding numbers are forbidden by the self-avoidance of the loops)
can equivalently be assigned an extra weight of exp(iπqe0). This leaves the
weight n of non-winding loops unchanged, while winding loops get a modified
weight

n1 = 2 cos γ1 , with γ1 = πe0 , (11.6)

as in (8.37). The choice γ1 = γ will thus lead to n1 = n. Note however that
the possibility of having n1 ̸= n is useful in some applications of the CG
technique.

Verify the above argument for more than one non-contractible loop, bear-
ing in mind that the orientation of each loop has to be summed over inde-
pendently!

The object eieφ (or more precisely, its normal ordered product : eieφ :)
is known in CFT as a vertex operator of (electric) charge e. The boundary
term (11.5) thus corresponds to the insertion of two oppositely charged vertex
operators at either end of the cylinder (and more generally at the root vertices
of section 8.8).

At this stage two problems remain: the field theory does not yet take
account of the weight n of contractible loops, and the coupling constant g
has not yet been determined. These two problems are closely linked, and
allow [Ko97] us to fix exactly g = g(n). The idea is to add a further Liouville
term

SL =

∫
d2xw[φ(x)] (11.7)

to the action, which then reads in full

S[φ(x)] = SE + SB + SL . (11.8)

In (11.7), e−w[φ(x)] is the scaling limit of the microscopic vertex weights wi

that we now identify.
Due to the compactification, SL[φ] is a periodic functional of the field,

and as such it can be developed as a Fourier sum over vertex operators

w[φ] =
∑

e∈Lw

w̃e e
ieφ , (11.9)
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where Lw is some sublattice of L0 ≡ Z. Note that Lw may be a proper sub-
lattice of L0 if w[φ] has a higher periodicity than that trivially conferred by
the compactification of φ. By inspecting Fig. 25 we see that this is indeed the
case here: the (geometric) averages of the miscroscopic weights coincide on
panels 1 and 4, indicating that the correct choice is Lw = 2L0. This intuitive
derivation of Lw demonstrates the utility of the ideal state construction.

Some important properties of the compactified boson with action SE have
already been derived in section 10.7. In particular, its central charge is c = 1
and the dimension ∆e,m of an operator with electromagnetic charge (e,m) is
given by (10.103). Having now identified the electric charge e with that of the
vertex operator eieφ, one could alternatively rederive (10.103) by computing
the two-point function

〈
eieφ(x)e−ieφ(y)

〉
by standard Gaussian integration.

The physical interpretation of the magnetic charge m is already obvious
from (10.97): it corresponds to dislocations in the height field φ due to the
presence of defect lines. In section 11.4 we shall see how such defects are
used in the computation of critical exponents.

It remains to assess how the properties of the compactified boson are mod-
ified by the inclusion of the term SB. Physical reasoning consists in arguing
that the vertex operators e±ie0φ will create a “floating” electric charge of
magnitude 2e0 that “screens” that of the other fields in any given correlation
function. We infer that (10.103) must be changed into

∆e,m =
1

2

[
e(e− 2e0)

g
+ gm2

]
. (11.10)

Note that to obtain (11.10) we have changed our normalisation so that both
e and m are integers. This is consistent with the normalisation (11.3) of the
coupling constant, rather than (10.95), which is the standard choice in the
CG literature.

11.3 Marginality requirement

Following Kondev [Ko97] we now claim that the Liouville potential SL must
be exactly marginal. This follows from the fact that all loops carry the
same weight n, independently of their size, and so the term SL in the action
that enforces the loop weight must not renormalise under a scale transfor-
mation. The most relevant vertex operator appearing in (11.9) has charge
ew = 2π/a = 2, and so ∆ew,0 = 2. Using (11.10), this fixes the coupling
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constant as g = 1 − e0. In other words, the loop weight has been related to
the CG coupling as

n =
√

Q = −2 cos(πg) , (11.11)

with 0 < g ≤ 1 for the critical Potts model.
The term SB shifts the ground state energy with respect to the c = 1

theory described by SE alone. The corrected central charge is then c =
1+12∆e0,0, where the factor of 12 comes from comparing (10.63) and (10.65).
This gives

c = 1− 6(1− g)2

g
. (11.12)

It should be noted that the choice ew = 2 is not the only one possible.
Namely, the coefficient w̃ew of the corresponding vertex operator in (11.9)
may be made to vanish, for instance by driving the Potts model to tricriti-
cality via the introduction of a carefully tuned coupling to non-magnetic va-
cancies. The next-most relevant choice is then ẽw = −2, and going through
the same steps as above we see that one can simply maintain (11.11), but
take the coupling in the interval 1 ≤ g ≤ 2 for the tricritical Potts model.

The electric charge ew whose vertex operator is required to be exactly
marginal is known as the screening charge in standard CG terminology.

The central charge (11.12) can now be formally identified with that of the
Kac table (10.87), with m′ = m+ 1. The result is a formal relation between
the minimal model index m and the CG coupling g, valid for integer m. We
have

m =

{ g
1−g for the critical Potts model
1

g−1 for the tricritical Potts model
(11.13)

11.4 Critical exponents

We shall now see how to use the Coulomb gas technology to compute a
variety of critical exponents in loop models.

The watermelon exponents were derived by Nienhuis [Nh87] and by Du-
plantier and Saleur (see [DS87] and references therein). The issues of their
relation to the standard exponents of polymer physics [Ge79], and to the Kac
table (10.81), were discussed in [DS87].

Although the watermelon exponents are essentially magnetic-type expo-
nents in the CG, they do not produce the standard magnetic exponent of the
Potts model. The latter was derived by den Nijs [Ni83], but we present here
a somewhat different argument.
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x1 x2

Figure 26: Watermelon configuration with ℓ = 6 legs.

11.4.1 Watermelon exponents

An important object in loop models is the operator Oℓ(x1) that inserts ℓ
oriented lines at a given point x1. Microscopically, this can be achieved by
violating the arrow conservation constraint at x1. In the Potts model, or
rather the equivalent six-vertex model, a vertex with four outgoing and zero
ingoing arrows furnishes a microscopic realisation of the case ℓ = 2. Higher
ℓ can be obtained by inserting several defects in a small region around x1.33

If one had strict arrow conservation at all other vertices, the insertion of
Oℓ(x1) would not lead to a consistent configuration. However, also inserting
O−ℓ(x2), the operator that absorbs ℓ oriented lines in a small region around
y, will lead to consistent configurations (see Fig. 26) in which ℓ defect lines
propagate from x1 to x2. Let Zℓ(x1,x2) be the corresponding constrained
partition function. One then expects

⟨Oℓ(x1)O−ℓ(x2)⟩ ≡
Zℓ(x1,x2)

Z
∼ 1

|x1 − x2|2∆ℓ
for |x1 − x2| ≫ 1 . (11.14)

The corresponding critical exponents ∆ℓ are known as watermelon (or
fuseau, or ℓ-leg) exponents. To compute them we first notice that the sum
of the height differences around a closed contour encircling x1 but not x2

will be aℓ. Equivalently, one could place the two defects at the extremities
of a cylinder [i.e., taking x1 = (x,−∞) and x2 = (x,∞)], and the height
difference would be picked up by any non-contractible loop separating x1

and x2. This latter formulation makes contact with the defect lines (10.97)
introduced when studying the compactified boson, the equivalent magnetic
charge being mℓ =

ℓa
2π = ℓ

2 .
A little care is needed to interpret the configurations of Zℓ(x1,x2) in

the model of un-oriented loops. The fact that all ℓ lines are oriented away

33The Potts model only allows for defects with even ℓ. In the closely relate O(n) model,
any parity of ℓ is permitted.
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from x1 prevents them from annihilating at any other vertex than x2. One
should therefore like to think about them as ℓ marked lines linking x1 and x2,
where each line carries the Boltzmann weight 1. This is consistent with not
summing over the orientations of the defect lines in the oriented loop model.
However, each oriented line can also pick up spurious phase factors w(α/2π),
due to the local redistribution of loop weights, whenever it turns around
the end points x1 and x2. These factors are however exactly cancelled if we
insert in addition a vertex operator eie0φ (resp. e−ie0φ) at x1 (resp. x2) [Nh84].
Note that these vertex operators do not modify the weighting of closed loops:
these must encircle either none of both of x1, x2, since otherwise they would
intersect the ℓ watermelon legs. We conclude that ∆ℓ = ∆e0,mℓ

, and using
(11.10) this gives

∆ℓ =
1

8
gℓ2 − (1− g)2

2g
. (11.15)

Interestingly, these exponents can be attributed to the Kac table under
the identification (11.13). One has

∆ℓ =

{
2h0,ℓ/2 for the dense O(n) model
2hℓ/2,0 for the dilute O(n) model

(11.16)

The Kac indices (r, s) appearing in hr,s are integer valued, since ℓ ∈ 2N.
When the loop model coincides with a minimal model—i.e., when g is such
that m ∈ N in (11.13)—some of these exponents are located outside the
fundamental domain of the Kac table. This reflects the fact that the corre-
sponding watermelon operators are of intrinsic non-local nature.

11.4.2 Application to percolation clusters

The watermelon exponents can be used to elucidate the fractal properties of
the Fortuin-Kasteleyn (FK) clusters defined in section 8.2. Here we limit the
discussion to the special case of percolation clusters.

We have seen in section 8.4.1 that bond percolation is the Q → 1 limit
of FK clusters. We have therefore g = 2

3 from (11.11). The watermelon
exponents (11.15) are therefore

∆ℓ =
ℓ2 − 1

12
. (11.17)
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Marking a point x on the hull of a percolation cluster corresponds to the
insertion of the operator O2(x). The fractal dimension of the hull is therefore

dh = 2−∆2 =
7

4
. (11.18)

A pivotal edge is defined as an edge belonging to a percolation cluster which is
such that the removal of the edge makes the cluster break into two connected
components. In the literature on percolation pivotal edges are also known as
red bonds. Cutting the loop strands on either side of any edge belonging to
the cluster looks like an ℓ = 4 leg insertion. Note however that only is the
edge is pivotal will the four legs propagate to “infinity” without contracting
among themselves. Therefore the fractal dimension of red bonds is

drb = 2−∆4 =
3

4
. (11.19)

11.4.3 Magnetic exponent

The watermelon exponents can be said to be of the “magnetic” type, since
they induce a magnetic type defect charge mℓ in the CG. The standard
magnetic exponent, describing the decay of the spin-spin correlation function
in the Potts model, is however not of the watermelon type. It can nevertheless
be inferred from (11.10) as follows:

The probability that two spins situated at x1 and x2 are in the same Potts
state is proportional, in the random cluster picture, to the probability that
they belong to the same cluster. In the cylinder geometry this means that
no winding loop separates x1 from x2. This can be attained in the CG by
giving a weight n1 = 0 to such loops. We have seen that inserting a pair of
vertex operators with charge ±e at x1 and x2 leads exactly to this situation
with n1 = 2 cos(πe), and so we need e = 1

2 . The scaling dimension of this
excitation, with respect to the ground state which has e = e0, is then

∆m = ∆ 1
2 ,0

−∆e0,0 =
1− 4(1− g)2

8g
. (11.20)

In particular for the Ising model, with g = 3
4 , this yields the magnetic

exponent ∆m = 1
8 , or in standard notation

β =
1

8
. (Ising model) (11.21)
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For bond percolation, with g = 2
3 , we find ∆m = 5

48 . The fractal dimension
of a percolation cluster is thus

dc = 2−∆m =
91

48
. (11.22)

The location in the Kac table (10.81) of the magnetic exponent (11.20)
can be found using (11.13):

∆m = 2h1/2,0 . (11.23)

Note that this differs from the lowest possible watermelon excitation ∆2 =
2h0,1. Indeed, the two-leg excitation corresponds to a cluster that propa-
gates along the length direction of the cylinder without wrapping around the
transverse periodic direction. The dominant configurations participating in
the magnetic correlation function have no propagating legs, since the cluster
containing x1 and x2 will typically wrap around the cylinder.

179


