
8 Potts model

When writing the integrable R-matrix of the six-vertex model, in (6.18), we
have briefly come across a new type of algebraic structure: the Temperley-
Lieb algebra. This is an example of a lattice algebra [Ma91], or more generally
a partition algebra [HR05]. Other examples include the dilute Temperley-
Lieb algebra, the Brauer algebra, and various types of multi-colour braid-
monoid algebras [GP93].

The R-matrix based on each of these algebras generates the transfer ma-
trix of a corresponding statistical mechanics model. Obviously one can gather
important information about the statistical mechanics model by studying the
underlying algebra and its representation theory.

In what follows we shall focus on the (open, or non-periodic) Temperley-
Lieb (TL) algebra. This algebra has many different representations, each of
which is related to a particular stat-mech model: Potts, Ising, six-vertex,
restricted solid-on solid (RSOS) model,. . . . Historically, each model was in-
troduced independently, but with hindsight the unifying algebraic framework
can be used to understand better the relations among them.

Most of the corresponding representations of the TL algebra are not faith-
ful, i.e., they obey additional relations than those defining the TL algebra.
The Potts model—to be precise: in its formulation as a loop model—furnishes
a faithful representation. Since it is also an extremely interesting and well-
studied model in statistical mechanics, it is natural to study it in some detail.
The selfdual Potts model on a square lattice will turn out to be closely re-
lated to the six-vertex model, so that the results of preceding chapters imply
the exact solution of the Potts model. Also on the triangular lattice can the
selfdual model be exactly solved.

For the mathematically inclined, let us briefly mention an important con-
nection to representation theory. A central result, known as Schur-Weyl
duality, states that:

1. The general linear group GLn(C) and the symmetric group Sk both
act on the tensor product V ⊗k with dimV = n. (We interpret V ⊗k as
the quantum space.)

2. These two actions commute and each action generates the full cen-
traliser of the other.

3. As a (GLn(C),Sk)-bimodule, the tensor space has a multiplicity free
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decomposition

V ⊗k ≃
⊕

λ

LGLn(λ)⊗ LSk
(λ) , (8.1)

where LGLn(λ) are irreducible GLn(C)-modules and LSk
(λ) are irre-

ducible Sk-modules.

Similar results hold when taking subgroups of GLn(C), in which case the
centraliser algebras become bigger. The TL algebra occurs in this hierarchy
of dualities, and its centraliser is the quantum algebra Uq(sl2).

In this chapter we define the Potts model in various representations and
exhibit its equivalence to the six-vertex model. Even though we are mainly
interested in the model defined on a square lattice, it turns out that many
of the transformations that we need hold when the model on more general
graphs. Since it hardly more complicated—and a lot more instructive—to
work in the “correct” generality, we shall choose to do so and specialise only
when needed.

8.1 Spin representation

Let G = (V,E) be an arbitrary connected graph with vertex set V and
edge set E. The Q-state Potts model is initially defined by assigning a spin
variable σi to each vertex i ∈ V . Each spin can take Q different values, by
convention chosen as σi = 1, 2, . . . , Q. We denote by σ the collection of all
spin variables on the graph. Two spins i and j are called nearest neighbours if
they are incident on a common edge e = (ij) ∈ E. In any given configuration
σ, a pair of nearest neighbour spins is assigned an energy −J if they take
identical values, σi = σj . The Hamiltonian (dimensionless energy functional)
of the Potts model is thus

H = −K
∑

(i,j)∈E
δ(σi, σj) . (8.2)

where the Kronecker delta function is defined as

δ(σi, σj) =

{
1 if σi = σj
0 otherwise

(8.3)

and K = J/kBT is a dimensionless coupling constant (interaction energy).
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The case Q = 2 corresponds to the Ising model. Indeed, if Si = ±1 we
have

2δ(Si, Sj) = SiSj + 1 . (8.4)

The second term amounts to an unimportant shift of the interaction energy,
and so the models are equivalent if we set KPotts = 2KIsing.

The thermodynamic information about the Potts model is encoded in the
partition function

Z =
∑

σ

e−H =
∑

σ

∏

(ij)∈E
eKδ(σi,σj) (8.5)

and in various correlation functions. By a correlation function we understand
the probability that a given set of vertices are assigned fixed values of the
spins.

In the ferromagnetic case K > 0 the spins tend to align at low temper-
atures (K ≫ 1), defining a phase of ferromagnetic order. Conversely, at
high temperatures (K ≪ 1) the spins are almost independent, leading to
a paramagnetic phase where entropic effects prevail. On physical grounds,
one expects the two phases to be separated by a critical point Kc where the
effective interactions between spins becomes long ranged.

For certain regular planar lattices Kc can be determined exactly by du-
ality considerations. Moreover, Kc will turn out to be the locus of a second
order phase transition if 0 ≤ Q ≤ 4. In that case the Potts model enjoys
conformal invariance in the limit of an infinite lattice, allowing its critical
properties to be determined exactly by a variety of techniques. These prop-
erties turn out to be universal, i.e., independent of the lattice used for defining
the model microscopically.

8.2 Fortuin-Kasteleyn cluster representation

The initial definition (8.2) of the Potts model requires the number of spins
Q to be a positive integer. It is possible to rewrite the partition function and
correlation functions so that Q appears only as a parameter. This makes its
possible to assign to Q arbitrary real (or even complex) values.

Notice first that by (8.3) we have the identity

eKδ(σi,σj) = 1 + vδ(σi, σj) , (8.6)
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where we have defined v = eK − 1. Now, it is obvious that for any edge-
dependent factors he one has

∏

e∈E
(1 + he) =

∑

E′⊆E

∏

e∈E′

he . (8.7)

where the subset E ′ is defined as the set of edges for which we have taken
the term he in the development of the product

∏
e∈E . In particular, taking

he = vδ(σi, σj) we obtain for the partition function (8.5)

Z =
∑

E′⊆E

v|E
′|
∑

σ

∏

(ij)∈E′

δ(σi, σj) =
∑

E′⊆E

v|E
′|Qk(E′) , (8.8)

where k(E ′) is the number of connected components in the graph G′ =
(V,E ′), i.e., the graph obtained from G by removing the edges in E \ E ′.
Those connected components are called clusters, and (8.8) is the Fortuin-
Kasteleyn cluster representation of the Potts model partition function. The
sum over spins σ in (8.5) has now been replaced by a sum over edge subsets,
and Q appears as a parameter in (8.8) and no longer as a summation limit.

8.3 Duality of the partition function

Consider now the case where G = (V,E) is a connected planar graph. Any
planar graph possesses a dual graph G∗ = (V ∗, E∗) which is constructed by
placing a dual vertex i∗ ∈ V ∗ in each face of G, and connecting a pair of
dual vertices by a dual edge e∗ ∈ E∗ if and only if the corresponding faces
are adjacent in G. In other words, there is a bijection between edges and
dual edges, since each edge e ∈ E intersects precisely one dual edge e∗ ∈ E∗.
Note that by the Euler relation

|V |+ |V ∗| = |E|+ 2 . (8.9)

By construction, the dual graph is also connected and planar. Note also that
duality is an involution, i.e., (G∗)∗ = G.

The Euler relation can easily be proved by induction. If E = ∅, since G
was supposed connected we must have |V | = |V ∗| = 1, so (8.9) indeed holds.
Each time a further edge is added to E, there are two possibilities. Either
it connects an existing vertex to a new vertex, in which case |V | increases
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by one and |V ∗| is unchanged. Or it connects two existing vertices, meaning
that a cycle is closed in G. In this case |V | is unchanged and V ∗ increases
by one. In both cases (8.9) remains valid.

Recalling the cluster representation (8.8)

ZG(Q, v) =
∑

E1⊆E

v|E1|Qk(E1)

ZG∗(Q, v∗) =
∑

E2⊆E∗

(v∗)|E2|Qk(E2) (8.10)

we now claim that it is possible to chose v∗ so that

ZG(Q, v) = kZG∗(Q, v∗) (8.11)

where k is an unimportant multiplicative constant.
To prove this claim, we show that the proportionality (8.11) holds term

by term in the summations (8.10). To this end, we first define a bijection
between the terms by E2 = (E \E1)

∗, i.e., an edge is present in E1 if its dual
edge is absent from E2, and vice versa. This implies

|E1|+ |E2| = |E| . (8.12)

We have moreover the topological identity for the induced (not necessarily
connected) graphs G1 = (V,E1) and G2 = (V ∗, E2)

k(E1) = |V | − |E1|+ c(E1) = |V | − |E1|+ k(E2)− 1 , (8.13)

where we k(E1) and c(E1) are respectively the number of connected compo-
nents and the number of independent cycles23 in the graph G1.

The proof of (8.13) is again by induction. If E1 = ∅, we have k(E1) = |V |,
c(E1) = 0 and k(E2) = 1. Each time an edge is added to E1 there are two
possibilities. Either c(E1) stays constant, in which case k(E1) is reduced by
one and k(E2) is unchanged. Or c(E1) increases by one, in which case k(E1)
is unchanged and k(E2) increases by one. In both cases (8.13) remains valid.

23The number of independent cycles—also known as the circuit rank, or the cyclomatic
number—is the smallest number of edges to be removed from a graph in order that no
graph cycle remains.
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Combining (8.12)–(8.13) gives

v|E1|Qk(E1) = k (v∗)|E2|Qk(E2) , (8.14)

where we have defined

k = Q1−|V ∗|v|E| = Q|V |−|E|−1v|E| (8.15)

and v∗ = Q/v. Comparing (8.14) with (8.10) completes the demonstration
of (8.11) and furnishes the desired duality relation

vv∗ = Q . (8.16)

The duality relation (8.16) is particularly useful when the graph is self-
dual, G∗ = G. This is the case of the regular square lattice. Assuming the
uniqueness of the phase transition, the critical point is given by the selfdual
coupling:

vc = ±
√
Q (square lattice) (8.17)

In the Ising case Q = 2, the solution vc = +
√
Q gives Kc = log(

√
2 + 1) in

agreement with (4.12).

8.4 Special cases

One of the strengths of the Q-state Potts model is that it contains a large
number of interesting special cases. Many of those make manifest the ge-
ometrical content of the partition function (8.8). The equivalence between
Q = 2 and the Ising model has already been discussed. We shall concentrate
here on a couple of more subtle equivalences, that explicitly exploit the fact
that Q can now be used as a continuous variable.

8.4.1 Bond percolation

For Q = 1 the Potts model is seemingly trivial, with partition function
Z = (1 + v)|E|. Instead of setting Q = 1 brutally, one can however consider
taking the limit Q → 1. This leads to the important special case of bond
percolation.

Let p ∈ [0, 1] and set v = p/(1 − p). We then consider the rescaled
partition function

Z̃(Q) ≡ (1− p)|E|Z =
∑

E′⊆E

p|E
′|(1− p)|E|−|E′|Qk(E′) . (8.18)
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We have of course Z̃(1) = 1. But formally, what is written here is that each
edge is present in E ′ (i.e., percolating) with probability p and absent (i.e.,
non percolating) with probability 1 − p. Appropriate correlation functions

and derivatives of Z̃(Q) in the limit Q → 1 furnish valuable information
about the geometry of the percolation clusters. For instance

lim
Q→1

Q
dZ̃(Q)

dQ
= 〈k(E ′)〉 (8.19)

gives the average number of clusters.

8.4.2 Trees and forests

Using (8.13), and defining w = Q
v
, one can rewrite (8.8) as

Z =
∑

E1⊆E

(
Q

w

)|V |+c(E1)−k(E1)

Q|V |−|E1|+c(E1)

= v|V |
∑

E1⊆E

wk(E1)−c(E1)Qc(E1) . (8.20)

Take now the limit Q→ 0 and v → 0 in such a way that the ratio w = Q/v

is fixed and finite, and consider the rescaled partition function Z̃ = Zv−|V |.
The limit Q→ 0 will suppress any term with c(E1) > 0, and we are left with

Z̃ =
′∑

E1⊆E

wk(E1) , (8.21)

where the prime indicates that the summation is over edge sets such that
the graphs G1 = (V,E1) have no cycles, c(E1) = 0. Such graphs are known
as forests, or more precisely (since the vertex set V is that of G), spanning
forests of G. Each connected component carries a weight w.

For w → 0, the surviving terms are spanning trees, i.e., forests with
a single connected component. Note that the critical curve on the square
lattice (8.17) goes through the point (Q, v) = (0, 0) with a vertical tangent
(i.e., w → 0) and thus describes spanning trees.

8.5 Loop representation

We now transform the Potts model defined on a planar graph G into a model
of self-avoiding loops on a related graph M(G), known in graph theory as
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Figure 19: (a) A planar graph G (black circles and solid lines) and its dual
graph G∗ (white circles and dashed lines). (b) The medial graph M(G) =

M(G∗). (c) The plane quadrangulation Ĝ = M(G)∗.

the medial graph. Each term E ′ in the cluster representation (8.8) is in
bijection with a term in the loop representation. The correspondence is,
roughly speaking, that the loops turn around the connected components in
G′ = (V,E ′) as well as their elementary internal cycles. More precisely, the
loops separate the clusters from their duals.

To make this transformation precise, we first need to define the medial
graph M(G) = (Ṽ , Ẽ) carefully. Let G = (V,E) be a connected planar
graph with dual G∗ = (V ∗, E∗). The pair (G,G∗) can be drawn in the plane
such that each edge e ∈ E intersects its corresponding dual edge e∗ ∈ E∗

exactly once, see Figure 19a. To each of these intersections corresponds a
vertex ĩ ∈ Ṽ of M(G).

Consider now the union G ∪ G∗. This is in fact a quadrangulation of
the plane. Each quadrangle consists of a pair of half-edges and one vertex
from G, and a pair of half-edges and one vertex from G∗. These two pairs
of half-edges meet in a pair of vertices from Ṽ . An edge of M(G) is drawn

diagonally inside each quadrangle, joining the pair of vertices from Ṽ . This
defines the edge set Ẽ and completes the definition of the medial graph. An
example is shown in Figure 19b.

It is manifest in these definitions that G and G∗ are used in a completely
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Figure 20: Square and triangular lattices (solid lines) with their correspond-
ing medial lattices (dashed lines).

symmetric way. Thus, a graph and its dual has the same medial graph,
M(G) = M(G∗). Moreover, it is easy to see that every vertex of M(G) has
degree four.24

The medial of the square lattice is another (tilted) square lattice. The
medial of the triangular lattice (or of its dual hexagonal lattice) is known
as the kagome lattice.25 These two medial lattices, shown in Figure 20, are
particularly important for subsequent applications.

To each term E ′ in appearing in the sum (8.8) we now define a system of

self-avoiding loops that completely cover the edges of M(G). Let ĩ ∈ Ṽ be

a vertex of M(G) and write its adjacent (half)edges from E, E∗ and Ẽ in

cyclic order as ẽ1eẽ2e
∗ẽ3eẽ4e

∗. Now if e ∈ E ′, link up the half-edges of Ẽ in
two pairs as (ẽ4ẽ1)(ẽ2ẽ3). Conversely, if e ∈ E \E ′, we link (ẽ1ẽ2)(ẽ3ẽ4). Note
that we do not allow the non-planar (crossing) linking (ẽ1ẽ3)(ẽ2ẽ4). The set

of linkings at all vertices Ṽ defines the desired system of loops.
In concrete terms, this definition means that the loops bounce off all edges

E ′ and cut through the corresponding dual edges. The complete correspon-
dence is illustrated in Figure 21.

To complete the transformation, note that the number of loops l(E ′) is
the sum of the number of connected components k(E ′) and the number of

24This implies that the dual of M(G) is a quadrangulation Ĝ, which is however different
from the quadrangulation G ∪ G∗. See Figure 19c. The Potts model admits yet another
representation, namely as a height model—or RSOS model—on Ĝ.

25Literally “eye basket”. This refers to a type of traditional Japanese wicker basket
weave.
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(a) (b)

Figure 21: (a) A subset E ′ ⊆ E (thick black solid lines) and its complemen-
tary subset (E ′)∗ ⊆ E∗ (thick black dashed lines). (b) The corresponding
system of self-avoiding loops on the medial graph (blue curves).

independent cycles c(E ′):

l(E ′) = k(E ′) + c(E ′) . (8.22)

Inserting this and the topological identity (8.13), which reads in the present
notation

k(E ′) = |V | − |E ′|+ c(E ′) , (8.23)

into (8.8) we arrive at

Z = Q|V |/2
∑

E′⊆E

x|E
′|Ql(E′)/2 , (8.24)

where we have defined x = vQ−1/2.
This is the loop representation of the Potts partition function. It impor-

tance stems from the fact that the loops, their local connectivities (called
linkings in the above argument), and the non-local quantity l(E ′) all admit
an algebraic interpretation within the Temperley-Lieb algebra.

The duality transformation in the loop representation consists in shifting
the linking at each vertex cyclically by one step. In terms of the x variables
the duality relation (8.16) reads simply

xx∗ = 1 . (8.25)
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In the case of the square lattice, the self-dual points are xc = ±1, and the
usual critical point is xc+ = 1. The loop model (8.24) then becomes extremely
simple: there is just a weight n =

√
Q for each loop.

8.6 Vertex model representation

In the definition of the Q-state Potts model, Q was originally a positive inte-
gers. However, in the corresponding loop model (8.24) it appears as formal
parameters and may thus take arbitrary complex values. The price to pay
for this generalisation is the appearance of a non-locally defined quantity,
the number of loops l. The locality of the model may be recovered by trans-
forming it to a vertex model with complex Boltzmann weights as we now
show.

The following argument supposes that G = (V,E) is a (connected) planar
graph. Most applications however suppose a regular lattice, a situation to
which we shall return shortly.

Consider any model of self-avoiding loops defined on G (or some related
graph, such as the medial graph M(G) for the Potts model). The Boltzmann
weights are supposed to consist of a local piece—depending on if and how
the loops pass through a given vertex—and a non-local piece of the form nl,
where n is the loop weight and l is the number of loops. In the case of the
Potts model we have n =

√
Q.

In a first step, each loop is independently decorated by a global orientation
s = ±1, which by planarity and self-avoidance can be described as either
counterclockwise (s = 1) or clockwise (s = −1). If each oriented loop is
given a weight w(s), we have the requirement

n = w(1) + w(−1) . (8.26)

An obvious possibility, sometimes referred to as the real loop ensemble, is
w(1) = w(−1) = n/2. This can be interpreted as an O(n/2) model of
complex spins.

We are however more interested in the complex loop ensemble with w(s) =
eisγ. Note that in the expected critical regime,

n = 2 cos γ ∈ [−2, 2] , (8.27)

the parameter γ ∈ [0, π] is real. Locality is retrieved by remarking that the
weights w(±1) are equivalent to assigning a local weight w(α/2π) each time
the loop turns an angle α (counted positive for left turns).
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Note that a planar graph cannot necessarily be drawn in the plane in
such a way that all edges are straight line segments. Therefore, the local
weights w(α/2π) must in general be assigned both to vertices and to edges.
However, it is certainly possible to redraw the graph so that each edge is a
succession of several straight line segments. Introducing auxiliary vertices of
degree two at the places where two segments join up, the weight for turning
can be assigned to those auxiliary vertices. In that sense, any planar graph
admits a local redistribution of the loop weight, with local weights w(α/2π)
assigned only to vertices.

The loop model is now transformed into a local vertex model by assigning
to each edge traversed by a loop the orientation of that loop. An edge not
traversed by any loop is assigned no orientation. The total vertex weight is
determined from the configuration of its incident oriented edges: it equals
the above local loop weights summed over the possible linkings of oriented
loops which are compatible with the given edge orientations. In addition,
one must multiply this by any loop-independent local weights, such as x in
(8.24).

8.7 Six-vertex model

To see how this is done, we finally specialise to the Potts model defined
on the square lattice G. The loop model is defined on the corresponding
medial lattice M(G) which is another (tilted) square lattice. Each edge of
the lattice is visited by a loop, and two loop segments (possibly parts of the
same loop) meet at each vertex. In the oriented loop representation, each
vertex is therefore incident on two outgoing and two ingoing edges.

It is convenient for the subsequent discussion to make the couplings of the
Potts model anisotropic. In its original spin formulation (8.5) we therefore let
K1 (resp.K2) denote respectively the dimensionless coupling in the horizontal
(resp. vertical) direction of the square lattice, and we let

x1 =
eK1 − 1√

Q
, x2 =

eK2 − 1√
Q

(8.28)

be the corresponding parameters appearing in the loop representation (8.24).
Note that in all the results obtained this far it is straightforward to generalise
to completely inhomogeneous edge dependent couplings, and the only reason
that we have chosen not to present the results in this generality is that it
tends to make notations slightly cumbersome.
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ω1 ω2 ω3 ω4 ω5 ω6

Figure 22: The allowed arrow arrangements (top) around a vertex that define
the six-vertex model, with the corresponding particle trajectories (bottom).

The six possible configurations of arrows around a vertex of the medial
lattice M(G) are shown in Fig. 22 (obtained simply by rotating Fig. 15
through π

4
). The corresponding vertex weights are denoted ωp (resp. ω′

p) on
the even (resp. odd) sublattice of M(G). By definition, a vertex of the even
(resp. odd) sublattice of M(G) is the mid point of an edge with coupling K1

(resp. K2) of the original spin lattice G. With respect to Figure 22 we define
the even sublattice to be such that an edge e ∈ E occupies the upper-left and
lower-right quadrants, and the corresponding dual edge e∗ ∈ E∗ occupies the
lower-left and upper-right quadrants. For the odd sublattice, exchange e and
e∗.

Using (8.24) we then have

Z = Q|V |/2
∑

arrows

6∏

p=1

(ωp)
Np(ω′

p)
N ′

p , (8.29)

where the sum is over arrow configurations satisfying the constraint “two in,
two out” at each vertex, and Np (resp. N ′

p) is the number of vertices on the
even (resp. odd) sublattice with arrow configuration p. Thus, the square-
lattice Potts model has been represented as a staggered six-vertex model.26

The weights read explicitly

ω1, . . . , ω6 = 1, 1, x1, x1, e
iγ/2 + x1e

−iγ/2, e−iγ/2 + x1e
iγ/2 (8.30)

ω′
1, . . . , ω

′
6 = x2, x2, 1, 1, e

−iγ/2 + x2e
iγ/2, eiγ/2 + x2e

−iγ/2 (8.31)

To see this, note that configurations i = 1, 2, 3, 4 are compatible with just
one linking of the oriented loops:

ω1

=

1 (8.32)

26The term staggered means that the weights alternate between sublattices.
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whereas i = 5, 6 are compatible with two different linkings (and the weight
is obtained by summing over these two):

ω5

=

eiγ/2

+

x1e
−iγ/2

(8.33)

Note that the even and odd sublattices are related by a π/2 rotation of the
vertices in Figure 22. This rotation interchanges configurations (ω1, ω2) ↔
(ω′

3, ω
′
4) and ω5 ↔ ω′

6. On the level of the weights it corresponds to x1 ↔ x2.
The staggered six-vertex model is not exactly solvable in general. How-

ever, if we impose
x2 = (x1)

−1 (8.34)

we have ω′
i = (x1)

−1ωi for any i = 1, 2, . . . , 6. The factors (x1)
−1 from each

ω′
i can be taken outside the summation in (8.29) and we have effectively
ω′
i = ωi. The six-vertex model then becomes homogeneous, hence solvable.

Note that the solvability condition is nothing else than (8.25): the selfdual
square-lattice Potts model is equivalent to a homogeneous six-vertex model.
The results for the latter therefore apply. The anisotropy parameter is

∆ =
a2 + b2 − c2

2ab
= − cos γ , (8.35)

where we have replaced c2 by ω5ω6 by invoking the usual gauge symmetry.27

This matches perfectly the parameterisation (6.13). Note that the spectral
parameter u is precisely what allows us to take different horizontal and ver-
tical couplings.

We stress once more that the square-lattice Potts model is solvable at its
selfdual point, but not at arbitrary temperatures. This is in contrast with
the Ising model, which is solvable at any temperature. In that sense the Ising
model is a rather untypical integrable model.

However the integrable R-matrix of the six-vertex model satisfies the
Yang-Baxter relations for any choice of the spectral parameters. There is
one other choice that also corresponds to a Potts model. If one lets the
horizontal spectral parameters alternate like u, u + π

2
, u, u + π

2
, . . . and the

27In the special case x1 = x2 = 1 of (8.34) we even have ω5 = ω6.

119



vertical like v, v+ π
2
, v, v+ π

2
, . . . one obtains the antiferromagnetic transition

curve of the Potts model:

x1 =
sin(u)

sin(γ − u)
, x2 = −cos(γ − u)

cos(u)
. (8.36)

This has been analysed in [Ba82b, JS06, IJS08].

8.8 Twisted vertex model

Sometimes it is convenient to consider particular correlation functions in
which the weight of some of the loops are changed. As an elementary ex-
ample, consider the Potts loop model defined on a connected planar graph
G = (V,E) and let i1, i2 ∈ V be a pair of root vertices. The partition func-
tion Z(n) is given by (8.24) with loop weight n =

√
Q and additional local

weights at the vertices.
Define now a modified partition function Z1(n, n1) as follows: loops on

M(G) surrounding neither or both of the roots have an unchanged weight n,
whereas those surrounding only one of the roots have a modified weight n1.
This defines the two-point correlation function Z1(n, n1)/Z(n). An interest-
ing special case is provided by n1 = 0, which expresses the probability that
the two roots belong to the same cluster.

It is possible to produce Z1(n, n1) in the vertex model representation,
leading to a so-called twisted vertex model. To this end, let P12 be a an
oriented self-avoiding path on G, going from i1 to i2. Let us parametrise

n1 = 2 cos γ1 ∈ [−2, 2] (8.37)

with real γ1 ∈ [0, π]. In the arrow formulation, we then associate a special
weight w̃ to any edge ẽ of M(G) that crosses the path P12. The weight w̃
depends on the orientation of the arrow on ẽ: it equals eiγ1 (resp. e−iγ1) if
the arrow points from left to right (resp. from right to left) upon viewing ẽ
along the direction given by P12.

The path P12 is often called a seam, and the edges traversing it are referred
to as seam edges.

In the oriented loop representation, it is easy to see that a loop surround-
ing neither or both of the roots will traverse P12 an even number of times,
and the phase factors w̃ will cancel out globally. However, a loop surround-
ing just one of the roots with have one excess factor e±iγ1 depending on its
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global orientation (clockwise or counterclockwise), leading to (8.37) once the
orientations have been summed over.

Note that the above construction of Z1(n, n1) depends on the seam P12

only through its end points i1 and i2. In that sense, the exact shape of the
seam is irrelevant and can be deformed at will.

Finally, the weights w̃ can be absorbed in the vertex weights, by incor-
porating them in the weight of the vertex at the right (with respect to the
orientation defined by P12) end point of ẽ.

These considerations are important when discussing boundary effects.
Suppose we wish to define the square-lattice Potts model on a cylinder with
periodic boundary conditions. This is still a planar graph, but if we decide
to draw it as such, i.e., in cobweb shape

(8.38)

the edges will be curved and additional complex phase factors will be picked
up by the loops. These extra phases will cancel out for oriented loops that
do not encircle the origin, and the usual weight n = 2 cos γ will result from
summing over orientations. However, loops that do encircle the origin will
finally a wrong weight n̄ = 2.

Alternatively, one may draw the cylinder as a standard square lattice with
periodic boundary conditions across. In this version, oriented loops that are
not homotopic to a point will not turn a total angle α = ±2π, but rather
ᾱ = 0. They thus get the weight n̄ = 2 as above: the two points of view are
equivalent.

The introduction of a seam running from the origin to the point at infinity
will change the weighting: n̄ = n1. In particular, setting n1 = n we obtain
the true Potts model. Such subtleties are important when discussing critical
exponents, since these will in fact depend on n1.

Note finally that the case of doubly periodic (toroidal) boundary condi-
tions is quite delicate, since most of the equivalences presented in this chapter
depend crucially on the planarity of the graph.
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