
9 Temperley-Lieb algebra

The Temperley-Lieb algebra TLN(n) is a unital associative algebra over C.
Its N − 1 generators are denoted Em for m = 1, 2, . . . , N − 1. They satisfy
the relations

(Em)2 = n Em ,

EmEm±1Em = Em ,

EmEm′ = Em′Em for |m − m′| > 1 . (9.1)

It will turn out useful to define the q-deformed numbers

[k]q =
qk − q−k

q − q−1
(9.2)

and parameterise
n = q + q−1 = [2]q . (9.3)

Notice that in the previous chapter we had n = 2 cos γ, so that q = eiγ . For
k ∈ N the q-number is actually a polynomial in n:

[k + 1]q = Uk(n/2) , (9.4)

where Uk(x) is the kth order Chebyshev polynomial of the second kind

Uk(cos θ) =
sin
(
(k + 1)θ

)

sin(θ)
. (9.5)

The algebra TLN(n) can be represented in many ways. We shall be
particularly interested in its loop-model representation, since this permits us
to make contact with the previous chapter. In this representation, TLN (n)
is viewed as an algebra of diagrams acting on N numbered vertical strands
(for convenience depicted inside a dashed box) as

Em = · · · · · ·

1 2 m m + 1 N − 1 N

Multiplication in TLN(n) is defined by stacking diagrams vertically. More
precisely, the product of two generators g2g1 is defined by placing the diagram

121

for g2 above the diagram for g1, identifying the bottom points of g2 with the
top points of g1. The resulting diagram is considered up to smooth isotopies
that keep fixed the surrounding box, and any closed loop is replaced by the
factor n.

In this way we have for instance (omitting strands on which the action is
trivial)

(Em)2 = = n = n Em

and

EmEm+1Em = = = Em .

It is thus readily seen that all the defining relations (9.1) are satisfied. More-
over, for generic values of n no further relations hold: the loop-model repre-
sentation is faithful.

9.1 Integrable Ř-matrix

Starting from first principles, we now construct an integrable model based
on the TL algebra. Let us suppose that the Ř-matrix has the form

Řm,m+1(u) = f(u)I + g(u)Em , (9.6)

where f(u) and g(u) are some functions of the spectral parameter u to be
determined. Inserting this into the Yang-Baxter equation (6.8) yields

(
f(u)I + g(u)E2

) (
f(u + v)I + g(u + v)E1

) (
f(v)I + g(v)E2

)
=(

f(v)I + g(v)E1

) (
f(u + v)I + g(u + v)E2

) (
f(u)I + g(u)E1

)
. (9.7)

Using the algebraic relations (9.1) we can expand both sides of (9.7). The
left-hand side produces

f(u)f(u + v)f(v)I + f(u)g(u + v)f(v)E1 +

g(u)g(u + v)f(v)E2E1 + f(u)g(u + v)g(v)E1E2 +[
g(u)g(v)

(
g(u + v) + nf(u + v)

)
+ f(u + v)

(
f(u)g(v) + f(v)g(u)

)]
E2 ,

122

and the right-hand side becomes

f(v)f(u + v)f(u)I + f(v)g(u + v)f(u)E2 +

f(v)g(u + v)g(u)E2E1 + g(v)g(u + v)f(u)E1E2 +[
g(u)g(v)

(
g(u + v) + nf(u + v)

)
+ f(u + v)

(
f(u)g(v) + f(v)g(u)

)]
E1 .

These expressions must be identical in TL3(n), and so we can identify the
coefficients for each of the five possible words in the algebra. The relations
resulting from the words I, E1E2 and E2E1 are trivial. The relations coming
from E1 and E2 are identical—related via an exchange of the left- and right-
hand sides—and read

g(u)g(v)
(
g(u + v) + nf(u + v)

)
+ f(u + v)

(
f(u)g(v) + f(v)g(u)

)
=

f(u)f(v)g(u + v) . (9.8)

The functional relation (9.8) is a typical outcome of this way of solving
the Yang-Baxter equations. It is in general not easy to solve this type of
relation, and even if one finds solutions it is often difficult to make sure that
one has found all the solutions. Worse, in more complicated cases than the
one considered here the Ansatz for the Ř-matrix will involve more terms and
the functions f(u), g(u),. . .must satisfy several coupled functional equations.

It is useful to rewrite (9.8) in terms of the parameters z = eiu, w = eiv

and q = eiγ . That is, instead of the additive spectral parameters u, v we have
now multiplicative spectral parameters z, w. Thus

g(z)g(w)
(
g(zw) + (q + q−1)f(zw)

)
+ f(zw)

(
f(z)g(w) + f(w)g(z)

)
=

f(z)f(w)g(zw) . (9.9)

It is tempting to set f(z) = 1, since the overall normalisation of the Ř-matrix
is unimportant, but in general this is not a good idea. A time proven strategy
is to suppose that f(z) and g(z) are polynomials of some small degree in the
variables z, z−1, q and q−1. (In some cases one needs to try fractional powers
of q as well.) In this case we are lucky: there is a solution of degree one

f(z) =
q

z
− z

q
, (9.10)

g(z) = z − z−1 . (9.11)

Verifying that this is a solution is of course easy. Finding it from scratch
already calls for the use of symbolic algebra software such as Mathematica.

123

Going back to additive spectral parameters, we thus have a trigonometric
solution of (9.7):

f(u) = sin(γ − u) , g(u) = sin(u) . (9.12)

Note that this agrees with (6.18).
In general, solutions to the Yang-Baxter equation turn out to be polyno-

mial, trigonometric or elliptic (in order of increasing difficulty).

9.2 Transfer matrix decomposition

In the remainder of this chapter we shall be interested in the Q-state Potts
model defined on an L×M annulus of width L spins and of circumference M
spins. The boundary conditions are free in the space (L, horizontal) direction
and periodic in the time (M , vertical) direction.

We work in the loop representation in order to make contact with the
Temperley-Lieb algebra TLN (n) defined on N = 2L strands and with loop
weight n =

√
Q. The transfer matrix can be read off from (8.25):

T = QL/2

(
L−1∏

m=1

(I + x1E2m)

) (
L∏

m=1

(x2I + E2m−1)

)
, (9.13)

where x1 (resp. x2) defines the horizontal (resp. vertical) coupling constant
through (8.29).

We have seen in (8.35) that the Potts model is solvable if x2 = (x1)
−1. In

that case we have

T =

(√
Q

x1

)L
(

L−1∏

m=1

(I + x1E2m)

) (
L∏

m=1

(I + x1E2m−1)

)
. (9.14)

We recognise here the integrable Ř-matrix (9.6) and identify

x1 =
g(u)

f(u)
=

sin(u)

sin(γ − u)
. (9.15)

According to (8.31) we have also x1 = ω3

ω1

, and we note that this agrees
precisely with the parameterisation (6.13) used when studying the six-vertex
model.

124

Figure 23: List of all TL states on N = 4 strands. Each row corresponds to
a definite sector of the transfer matrix.

Figure 24: List of all TL reduced states on N = 4 strands. Each row corre-
sponds to a definite sector of the transfer matrix.

The transfer matrix T acts on states which can be depicted diagramati-
cally as non-crossing link patterns within a box bordered by two horizontal
rows, each of N points. The complete list of states for N = 4 is shown in
Fig. 23. The bottom (resp. top) side of the box corresponds to time t = 0
(resp. t = t0); the transfer matrix propagates the states from t0 to t0 +1 and
thus acts on the top of the box only.

A link joining the top and the bottom of the box is called a string, and
any other link is called an arc. We denote by s the number of strings in a
given state. Any state can be turned into a pair of reduced states by cutting
all its strings and pulling apart the upper and lower parts. For convenience,

125

a cut string will still be called a string with respect to the reduced state. The
complete list of reduced states for N = 4 is shown in Fig. 24.

Conversely, a state can be obtained by adjoining two reduced states,
gluing together their strings in a unique fashion. Thus, if we define d2j as
the number of reduced states with s = 2j strings, the number of states with
s = 2j strings is simply (d2j)

2.
The partition function ZN,M on an annulus of width N strands and height

M units of time cannot be immediately expressed in terms of reduced states
only, since these do not contain the information about how many loops (con-
tractible or non-contractible) are formed when the periodic boundary condi-
tion is imposed. We can however write it in terms of states as

ZN,M(n, ℓ) = 〈u|TM |v〉 . (9.16)

It is useful to slightly generalise the problem by giving the weight n to con-
tractible loops and a different weight ℓ to non-contractible loops. Recalling
(9.3) we shall parameterise the latter as27

ℓ = t + t−1 = [2]t . (9.17)

At time t0 = 0 the top and the bottom of the box must be identified.
Therefore, the right vector |v〉 is just the unit vector corresponding to the
unique state that contains no arcs and N strings (i.e., each link connects a
point on the bottom to the point immediately above it on the top).

At time t0 = M the top and the bottom of the box must be reglued.
Therefore, the left vector 〈u| is obtained by identifying the top and bottom
sides for each state. Counting the number of loops of each type gives the
corresponding weight as a monomial in the loop weights n and ℓ.

The reduced states can be ordered according to a decreasing number of
strings. The states can be ordered first according to a decreasing number of
strings, and next, for a fixed number of strings, according to its bottom half
reduced state. These orderings are brought out by the rows in Figs. 23–24.

With this ordering, T has a blockwise lower triangular structure in the
basis of reduced states, since the generator ei can annihilate two strings (if
their position on the top of the box are i and i + 1) but cannot create any
strings.

In the basis of states, T is blockwise lower triangular with respect to
the number of strings, for the same reason. Each block on the diagonal in

27This t has of course nothing to do with the “time” discussed above.

126

this decomposition corresponds to a definite number of strings. The block
corresponding to s = 2j strings is denoted T̃2j . But since T acts only on

the top of the box, each T̃2j = T2j ⊕ . . . ⊕ T2j is in turn a direct sum of
d2j identical blocks T2j which correspond simply to the action of T on the
reduced states with 2j strings.

In particular, the eigenvalues of T are the union of the eigenvalues of T2j ,
where the T2j now act in the much smaller basis of reduced states. This
observation is particularly useful in numerical studies.

9.3 The dimensions dk and Dk

In spite of the periodic boundary conditions, ZN,M(n, ℓ) is obviously not a
usual matrix trace. It can however be decomposed on standard traces by
constructing the transfer matrix blocks Tk algebraically within TLN(n). We
shall come back to this issue in the following sections.

For each block Tk we define the corresponding character as

Kk = tr (Tk)
M , (9.18)

where we stress that the trace is over reduced states. Obviously we have

Kk =

dk∑

i=1

(
λ

(k)
i

)M

, (9.19)

where λ
(k)
i are the eigenvalues of Tk. We recall that dk = dim Tk.

The expression of the partition function in terms of transfer matrix eigen-
values is more involved, due essentially to the non-local nature of the loops,
and reads

ZN,M =

L∑

j=0

D2jK2j , (9.20)

where Dk are some eigenvalue amplitudes to be determined. We shall provide
the answer in the next sections, using algebraic means.

In view of the Schur-Weyl duality (mentioned briefly in the introduction
to chapter 8) the Dk can also be interpreted as the (quantum) dimensions
of the commutant of TLN(n), which is the quantum algebra Uq(sl2). In
the corresponding bimodule, the partition function (9.20) therefore has a
multiplicity free decomposition.

127

Determining the dk is an exercise of elementary combinatorics that we deal
with now. Let E(j, k) denote the number of reduced states on 2j strands,
and using 2k strings, so that d2j = E(L, j). The corresponding generating
function reads

E(k)(z) =
∞∑

j=0

E(j, k)zj , (9.21)

where z is a formal parameter representing the weight of an arc, or of a pair
of strings. When k = 0, a reduced state with no strings is either empty, or
has a leftmost arc which divides the space into two parts (inside the arc and
to its right) each of which can accomodate an independent arc state. The
generating function f(z) ≡ E(0)(z) therefore satisfies f(z) = 1 + zf(z)2 with
regular solution

f(z) =
1 −

√
1 − 4z

2z
=

∞∑

j=0

(2j)!

j! (j + 1)!
zj . (9.22)

When k 6= 0, the strings simply divide the space into 2k + 1 parts each of
which contains an independent arc state. Therefore,

E(k)(z) = zkf(z)2k+1 =

∞∑

j=k

[(
2j

j + k

)
−
(

2j

j + 1 + k

)]
zj (9.23)

and in particular we have

d2j = E(L, j) =

(
2L

L + j

)
−
(

2L

1 + L + j

)
. (9.24)

Note that d2j depends on the number of strands N = 2L, but we usually will
not mention this explicitly.

The total number of reduced states is

L∑

j=0

d2j =

(
2L

L

)
, (9.25)

while the total number of (non-reduced) states is

L∑

j=0

(d2j)
2 = E(2L, 0) =

1

2L + 1

(
4L

2L

)
. (9.26)

128

In particular for N = 2L = 4 we have

d4 = 1 , d2 = 3 , d0 = 2 ,

in agreement with the number of reduced states shown in each row of Fig. 24.
The total number of states is 12 + 32 + 22 = 14 in agreement with Fig. 23.

9.4 Jones-Wenzl projectors

We have decomposed the full transfer matrix T to elementary blocks Tk that
have the property that the number of strings is precisely k and cannot be
lowered by the action of TLN(n). In more algebraic terms, Tk is the restric-
tion of T to a representation with precisely k strings. This representation is
known as the standard module Vk. It can be shown that Vk is irreducible
when q is not a root of unity.

Within Vk, the generator Em annihilates any (reduced) state for which
the strands at positions m and m + 1 are both strings, and acts in the usual
way on any other state. There exists an algebraic object that imposes this
restriction: the Jones-Wenzl (JW) projector.

The JW projector Pk ∈ TLk(n) is defined by the recursion relation

Pk+1 = Pk −
[k]q

[k + 1]q
PkEkPk , for k ≥ 1 , (9.27)

and the initial condition P1 = I. Both sides of this equation act in TLk+1(n).
To keep the notation simple it is implicitly understood that the projector Pk

acts only on the k leftmost strands.
The first few JW projectors read explicitly

P1 = I ,

P2 = I − 1

n
E1 ,

P3 = I − n

n2 − 1
(E1 + E2) +

1

n2 − 1
(E1E2 + E2E1) . (9.28)

In the sequel it will turn out useful to have a diagrammatic representation
of Pk. We shall represent it as a bar across the strands being projected (here
and in the following all pictures are for k = 4):

Pk =
(9.29)

129

The JW has two crucial properties. First, it is idempotent and bigger
projectors swallow smaller ones:

PmPk = PkPm = Pk , for 1 ≤ m ≤ k . (9.30)

Second, no contractions are allowed among the strands having been pro-
jected:

EmPk = PkEm = 0 , for 1 ≤ m ≤ k − 1 . (9.31)

The proof of the properties (9.30)–(9.31) is by induction in k. The case
k = 1 is obvious: since P1 = I, the first property (9.30) is trivial, and for the
second property (9.31) there is nothing to be shown. Suppose therefore that
both properties hold for k and let us show them for k + 1. For convenience
we write αk = [k]q/[k + 1]q.

We consider first (9.31). For m < k we have

EmPk+1 = = − αk

(9.32)

where we have used (9.27). Both diagrams on the right-hand side are zero
by the induction hypothesis (9.31), whence EmPk+1 = 0 as required.

The argument for m = k is slightly more involved. We first use (9.27) to
write

EkPk+1 = − αk

(9.33)

In the second term on the right-hand side, the small loop cannot yet be
replace by n since it is “trapped” by the projector. We therefore use (9.27)
once more:

= − αk−1 = (n − αk−1)

(9.34)

130

where in the last step use was made of the induction hypothesis (9.30). In-
serting (9.34) into (9.33) we obtain

EkPk+1 = − αk(n − αk−1)

(9.35)

but by (9.30) the two diagrams on the right-hand side are identical. To have
EkPk+1 = 0 as required, we therefore need the coefficient to vanish

1 − αk(n − αk−1) = 0 ,

which is easily shown to be equivalent to

[2]q[k]q = [k − 1]q + [k + 1]q . (9.36)

But (9.36) is precisely the recursion relation satisfied by [k]q, so (9.31) is
proved.

Let us note that (9.34) is actually a quite useful identity. In algebraic
terms, and using (9.36), it can be written

EkPkEk =
[k + 1]q

[k]q
EkPk−1 . (9.37)

We still need to prove (9.30) for k + 1 and m ≤ k + 1. This is done by
induction in m. Since P1 = I the statement is trivial for m = 1. Suppose
now m ≤ k and that the statement has been proved for m − 1. We have

PmPk+1 = = − αm−1

(9.38)

After using the induction hypothesis on both diagrams on the right-hand
side we obtain

= − αm−1

(9.39)

131

But the second diagram on the right-hand side vanishes by (9.31), so we have
PmPk+1 = Pk+1 as required.

Exactly the same argument applies when m = k + 1, so the proof is
complete.

9.5 Markov trace

One of our main objectives is to compute the annulus partition function
ZN,M(n, ℓ) given by (9.16). This calls for algebraic way of imposing the peri-
odic boundary conditions in the time direction. This motivates the following
definition of the Markov trace.

Let w ∈ TLN(n) be a word in the TL algebra. We can represent w as a
diagram in a box, cf. Fig. 23. The Markov trace of w is defined as

Tr w = nN1ℓN2 , (9.40)

where N1 (resp. N2) is the number of contractible (resp. non-contractible)
loops formed when identifying the top and the bottom sides of the box. This
definition is extended by linearity to the whole algebra TLN(n). Pictorially
we can write

Trw = w

(9.41)

Contractible (resp. non-contractible) loops are those that cover an even (resp.
odd) number of dashed lines. The corresponding weights have been defined
as n = [2]q and ℓ = [2]t.

In particular wish to know the Markov trace of the JW projectors Pk.
This can be found by using (9.27):

Tr Pk+1 = Tr − αk Tr
(9.42)

132

In the second diagram on the right-hand side we can slide the uppermost
projector across the periodic boundary condition to the bottom, where it
gets swallowed by the other projector. We thus have

Tr Pk+1 = [2]t Tr Pk − αk Tr
(9.43)

Note that the last diagram does not equal Tr Pk−1. Indeed, the small loop
on the right is contractible. For the moment it is “trapped” by the projector,
but we can liberate it by repeating the argument of (9.34). We arrive at

Tr Pk+1 = [2]t Tr Pk − αk ([2]q − αk−1) Tr Pk−1 . (9.44)

Thanks to (9.36) we have αk ([2]q − αk−1) = 1, and so we have the recursion
relation

[2]tTrPk = Tr Pk−1 + Tr Pk+1 (9.45)

with initial conditions Tr P0 = [1]t = 1 and TrP1 = [2]t = ℓ. Invoking again
(9.36) the solution is

Tr Pk = [k + 1]t = Uk(ℓ/2) . (9.46)

It is rather remarkable that this depends only on ℓ, and not on n.

9.6 Decomposition of the Markov trace

Assume that q is not a root of unity, so that the standard modules Vj are
irreducible. We now define a scalar product in Vj. Given two reduced states
|v1〉, |v2〉 ∈ Vj, cf. Fig. 24, each containing j strings. The scalar product
〈v1|v2〉 is obtained by reflecting |v1〉 in a horizontal mirror, then gluing to-
gether the two states. We define 〈v1|v2〉 = 0 unless each string in v2 connects
onto a string in v1. Otherwise we attribute a weight [2]q = n to each closed
loop and 1 to each string in the compound diagram.

Let us give some examples in TL4(n). The Gram matrices of scalar
products in V4, V2 and V0, cf. Fig. 24, read

M4 = [1] , M2 =

n 1 0
1 n 1
0 1 n

 , M0 =

[
n2 n
n n2

]
. (9.47)

133

As a side remark we point out that the determinants of the Gram matrices
may vanish if and only if q is a root of unity. We are supposing throughout
that this is not the case, so that the representation theory is generic. In more
technical terms, the algebra TLN(n) is supposed to be semi-simple.

A related observation is that the JW projectors are ill-defined when q is
a root of unity.

Since Vj are generic there exists a basis Bj which is orthonormal with
respect to the scalar product:

∀bk, bl ∈ Bj : 〈bk|bl〉 = δk,l . (9.48)

We also extend our definition of the scalar product so that states belonging
to different standard modules Vj and Vj′, with j 6= j′, are orthogonal.

The next step is to construct an element PN,j ∈ TLN(n) that projects
on Vj . In other words, PN,j must act as the identity on Vj and annihilate
all states of Vj′ with j′ 6= j. Obviously PN,N = PN is just the familiar JW
projector. For arbitrary j we define (the diagrammatic representation shows
the case N = 4 and j = 2)

PN,j =
∑

b∈Bj

|b〉 ◦ Pj ◦ 〈b| =
∑

b∈Bj b

b

(9.49)

This has the required properties and satisfies the completeness relation

N∑

j=0

PN,j = I ∈ TLN(n) . (9.50)

We are now in a position to attain the goal of decomposing the Markov
trace of any element w ∈ TLN(n) over standard traces—i.e., traces with
respect to the basis states b ∈ Bj . We first decompose w using (9.50):

w =
∑

j

PN,j w =
∑

j w

PN,j

(9.51)

134

Inserting the definition (9.49) and taking the Markov trace yields

Tr w

PN,j

=
∑

b∈Bj

b

b

w

=
∑

b∈Bj b

w

b

(9.52)

Returning to algebraic terms, this means that we have shown

Tr w =
∑

j

Tr Pj

∑

b∈Bj

〈b|w|b〉 =
∑

j

[j + 1]t trVj
w . (9.53)

The main result (9.53) applies in particular when w = TM , the Mth power
of the Potts model partition function. We have thus finished the demon-
stration that ZN,M indeed has the form (9.20) and identified the eigenvalue
amplitudes as Dj = [j + 1]t. The characters

Kj = trVj
TM (9.54)

defined in () are usually written K1,1+j for reasons that will become clear
later on. We can thus summarise our final result as

ZN,M(n, ℓ) =

L∑

j=0

[1 + 2j]t K1,1+2j(n) . (9.55)

The point is that the K1,1+2j can be computed exactly in the continuum
limit, using CFT techniques. The expression (9.55) will then give access
to—among many other things—exact crossing formulae in percolation.

Finally one should also note the sum rule

L∑

j=0

d2jD2j = ℓN , (9.56)

which expresses the fact that there are ℓ degrees of freedom living on each
site.

135

