
6 Yang-Baxter equation

In the preceeding chapter we have seen how to solve the six-vertex model by
the coordinate Bethe Ansatz. A natural next step is to identify the structures
that make such a solution possible, and then to exploit those structures to
solve more general classes of models. One would expect the structures in
question to be of algebraic nature.

Obviously this programme will require to first take a slightly more ab-
stract point of view. We shall expose the necessary ingredients in the first
half of this chapter, and then connect them concretely to the six-vertex model
in the second half.

6.1 R-matrix

Let us start by highlighting some crucial results from our analysis of the
six-vertex model:

1. The three Boltzmann weights of the six-vertex model define two inde-
pendent ratios a : b : c. From these we have defined two parameters:

• A parameter ∆ = a2+b2−c2

2ab which characterises the universality
class of the model. Only this combination appears in the Bethe
Ansatz equations, via the scattering amplitudes.

• Another uniformising parameter—called w in (5.52)—on which
the ratios a : b : c depend, but which does not change the value of
∆.

2. The scattering amplitudes—encoded in the S-matrix—are such that
that multi-particle scattering of several quasi-particles factorise into a
pruduct of two-particle scattering amplitudes.

We now attempt to formalise these properties for statistical models of a
particular type, defined on a so-called Baxter lattice. By this we mean any
lattice that can be drawn in the plane as a collection of lines (one can think of
them as straight lines, but this is not necessary) that undergo only pairwise
intersections. The lattice does not at all need to be regular. The degrees of
freedom live on the edges of the lattice, and interactions take place at the
vertices.
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Moreover, we suppose that to each line is associated a so-called spectral
parameter, analogous to the uniformising parameter discussed above. The
Boltzmann weights for a vertex where two lines with spectral parameters u
and v intersect is supposed to have the difference property: it must depend
only on the difference u− v. The weights of course also depends on ∆, and
on the states of the degrees of freedom defined on the edges adjacent on the
vertex.

The Boltzmann weights can be encoded as the matrix element of a linear
operator, called the R-matrix:

u

v

αi

βi

µi µi+1 = Rµi+1βi
µiαi (u− v) = a⟨µi+1|⊗ i⟨βi|Rai(u− v)|µi⟩a ⊗ |αi⟩i

(6.1)
At the risk of appearing pedantic, let us explain very carefully this notation:

• The indices µi,αi and µi+1, βi label the statistical degrees of freedom
defined on the lattice edges. The notation corresponds exactly to what
we have seen in the definition of the transfer matrix for the dimer
problem. The first pair of indices is the in-state, and the second pair is
the out-state. The time evolution thus goes in the North-East direction.

• A spectral parameter u is attached to the horizontal line, and v to the
vertical line. The R-matrix depends on the difference u− v. To avoid
any confusion about the sign, the lines carry an orientation.16 When
looking along the direction of the time evolution, the argument of R is
the spectral parameter seen on one’s left (namely u) minus the spectral
parameter seen on one’s right (namely v), both counted with a sign that
reflects the orientation of the lines along the direction of sight.

• We shall often refer to the spaces α and β as quantum and to the space
µ as auxiliary.

• The R-matrix acting between the auxiliary space and the ith quantum
is denoted by Rai. Its components are denoted Rµi+1βi

µiαi . Note that the

16These arrows should of course not be confused with the (six-vertex) arrow degrees of
freedom that live on lattice edges!
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order of the out-indices has been permuted: this convention defines
the R-matrix. One sometimes encounter the opposite, unpermuted
convention: this defines what is called the Ř-matrix.

More formally, the R-matrix is a linear operator

Rai : Va ⊗ Vi %→ Va ⊗ Vi , (6.2)

where the vector spaces Va (auxiliary) and Vi (quantum) carry the edge de-
grees of freedom. For instance, in the six-vertex model they are both equal to
the spin-12 representation space C2, since each arrow can be in two possible
states: the R-matrix is then a 4× 4 matrix.

The transfer matrix t is an endomorphism on the tensor product of all
quantum spaces

t : V1 ⊗ V2 ⊗ · · ·⊗ VL %→ V1 ⊗ V2 ⊗ · · ·⊗ VL . (6.3)

It can be written as

t = Tra (RaLRaL−1 · · ·Ra2Ra1) , (6.4)

where Tra denotes the trace over the auxiliary space Va. For simplicity we
have not written the dependence on the spectral parameters. Indeed, one has
the possibility of taking different spectral parameters for each quantum space
Vi, and also for Va, which will correspond to a completely inhomogeneous
lattice model. The matrix elements of t can be written very explicitly as

⟨β|t|α⟩ =
∑

µ1,...,µL

Rµ1βL
µLαL

RµLβL−1
µL−1αL−1

· · ·Rµ3β2
µ2α2

Rµ2β1
µ1α1

. (6.5)

Note that µ1 appears both in the rightmost and the leftmost factor, so we
indeed perform the operator Tra.

Before going on, it is legitimate to ask oneself whether this formalism is
general enough to accommodate “all” statistical models of interest:

• A first question concerns the generality of the Baxter lattice. This
of course encompasses all regular lattices for which all vertices are of
degree four. What then about other lattices, such as the hexagonal and
triangular lattices, which are widely used in statistical physics? One
can usually find one’s way out by making suitable transformations.
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For instance, on the hexagonal lattice one can shrink all edges along
one of the three principal direction to zero, thus regrouping pairs of
3-valent vertices to form 4-valent vertices:17 This turns the hexagonal
lattice into a square lattice. The triangular lattice can be turned into
a hexagonal lattice by duality, or into a Kagomé lattice (which is a
Baxter lattice) by going to the medial lattice. Other possible tricks
include decimation procedures.

• A second question is how to deal with situations where the statistical
degrees of freedom are not defined on the edges, but rather on the
vertices. Going to suitably defined dual variables will usually enable
us to transform such a model into one involving edge variables.

• Finally, how could one deal with long-range interactions, mediated by
spatially extended objects, such as clusters or loops? One possibility
is to define the R-matrix on appropriate representation spaces that
take into account the non-locality of the interaction. Another option
is to transform the model into one with local interactions. We shall
see both possibilities at play in our subsequent treatment of the Potts
model, which can be represented either as a Temperley-Lieb loop model
with non-local interactions, or transformed into a six-vertex model with
complex Boltzmann weights.

6.2 Commuting transfer matrices

A statistical model defined on a Baxter lattice is said to be integrable pro-
vided its R-matrix satisfies the Yang-Baxter equation and the inversion re-
lation. The Yang-Baxter relation reads pictorially:

u1 u2 u3

1 2 3

R23

R13

R12

=

u1 u2 u3

1 2 3

R12

R13

R23

(6.6)

17This is a lattice version of the Hubbard-Stratonovich transformation used in field
theory.
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The algebraic transscription is

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) , (6.7)

where we have set u = u1 − u2 and v = u2 − u3, so that u1 − u3 = u + v.
We stress again that the spectral parameters ui always follow the lines of the
Baxter lattice. The same is true for the labels of the representation spaces,
that appear as subscripts for theR-matrix. It is sometimes convenient to have
these labels stay well-ordered in space (i.e., with 1 on the left, 2 in the middle,
and 3 on the right) at all times (in the diagram time flows upwards). In that
case one uses instead the Ř-matrix, for which the Yang-Baxter equation reads

Ř23(u)Ř12(u+ v)Ř23(v) = Ř12(v)Ř23(u+ v)Ř12(u) . (6.8)

The inversion relation can be represented pictorially as

u1 u2

∝

u1 u2 (6.9)

and reads algebraically
R12(u)R12(−u) ∝ I . (6.10)

The constant of proportionality could of course be set to unity by a suitable
rescaling of R. Note also how the sign convention for spectral parameters
comes into use when writing (6.10).

We shall show below that the R-matrix of the six-vertex model indeed
satisfies (6.7) and (6.10).

The relations (6.7) and (6.10) imply the commutation of two transfer
matrices corresponding to different choices of spectral parameters on the
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auxiliary lines. This is best demonstrated graphically:

u1

u2

v1 v2 · · · vL

=
u1

u2

v1 v2 · · · vL

=

u1

u2

v1 v2 · · · vL

=
u1

u2

v1 v2 · · · vL (6.11)

The first picture represents the product t(u2)t(u1), since the two crossings
to the left amount to the identity by (6.10).18 In the second picture we have
used (6.7) to push the v1 line to the left. This is repeated in the third picture
for the next v2 line. Repeating this operation L times, we finally arrive at the
last picture, which represents the product t(u1)t(u2), apart from the crossings
on the left and right. But the right crossing can be taken around the periodic
boundary condition (more formally: we are using the cyclicity of the trace),
and using once more (6.10) the two crossings annihilate. Summarising, we
have shown that

t(u2)t(u1) = t(u1)t(u2) . (6.12)

The existence of an infinite family of commuting transfer matrices has
important consequences. Indeed the Bethe Ansatz technique permits us to
diagonalise all these transfer matrices simultaneously.

Moreover, we can take derivatives of (6.12) with respect to u2. All these
derivatives commute with t(u1), hence are conserved by the time evolution
process. In other words, an integrable system has an infinite number of
conserved quantities. The first few derivatives can be identified with the
Hamiltonian, the momentum operator, and so on. We shall present explicit
examples below.

Note also that the various vector spaces in which the R-matrices act need
not be isomorphic. In particular, one can have different representations on
the quantum and auxiliary spaces. From a basic integrable model—such as

18The transfer matrices depend also on the spectral parameters v1, v2, . . . , vL of the
quantum spaces, but we omit this dependence for notational convenience.
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the six-vertex model in the spin-12 representation—one can construct higher-
spin solutions by appropriate fusions of representation spaces. One speaks
in that case of descendent models.

6.3 Six-vertex model

Let us parametrise the weights of the six-vertex model (cf. Fig. 15) as follows:

ω1 = ω2 = sin(γ − u) ,

ω3 = ω4 = sin u ,

ω5 = e−i(u−η) sin γ ,

ω6 = ei(u−η) sin γ . (6.13)

We have then ∆ = − cos γ. The gauge parameter η can be chosen at will,
since vertices of type 5 and 6 appear in pairs, and only the value of

√
ω5ω6

enters the computation of the partition function.
Denote by C2 = 0, 1 the occupation number of each edge in the particle

picture defined by the lower half of Fig. 15. The Ř-matrix can then be written
in the basis (C2)2 = {|00⟩, |01⟩, |10⟩, |11⟩} as

Ř =

⎡

⎢⎢⎣

ω1 0 0 0
0 ω5 ω4 0
0 ω3 ω6 0
0 0 0 ω2

⎤

⎥⎥⎦ . (6.14)

In the gauge η = 0 this becomes

Ř(u) =

⎡

⎢⎢⎣

sin(γ − u) 0 0 0
0 e−iu sin γ sin u 0
0 sin u eiu sin γ 0
0 0 0 sin(γ − u)

⎤

⎥⎥⎦ . (6.15)

We now claim that this Ř-matrix satisfies the Yang-Baxter equation (6.8),
where the uniformising parameter u has been identified with the spectral
parameter.

It is an instructive exercise to verify this. In tensor notation (6.8) reads
in the space (C2)3

(I⊗Ř(u))(Ř(u+v)⊗I)(I⊗Ř(v)) = (Ř(v)⊗I)(I⊗Ř(u+v))(Ř(u)⊗I) . (6.16)

89



This identity between 8×8 matrices is greatly simplified by the symmetries of
the problem. First, the number of particles is conserved. Second, the weights
are invariant under a global negation (0 ↔ 1) of the occupation numbers.

The only equations to be verified thus concern a 1 × 1 matrix (in the 0-
particle space |000⟩) and a 3× 3 matrix (in the 1-particle space |100⟩, |010⟩,
|001⟩). Only the latter gives rise to non-trivial equations.

The inversion relation (6.10) reads

Ř(u)Ř(−u) = sin(γ − u) sin(γ + u)I . (6.17)

6.3.1 Temperley-Lieb algebra

The Ř-matrix (6.15) can be decomposed as

Ř(u) = sin(γ − u)I + sin(u)E , (6.18)

where I is the identity operator in V 2 = (C2)2 and

E =

⎡

⎢⎢⎣

0 0 0 0
0 e−iγ 1 0
0 1 eiγ 0
0 0 0 0

⎤

⎥⎥⎦ . (6.19)

The operator E satisfies the basis-independent relations

E2 = 2 cos γ E ,

(E ⊗ I)(I ⊗E)(E ⊗ I) = E ⊗ I ,

(I ⊗ E)(E ⊗ I)(I ⊗ E) = I ⊗E , (6.20)

where now I is the identity in V . For a system of width L one defines on
VL = V ⊗L a family of L− 1 such operators:

Em = I⊗m−1 ⊗E ⊗ I⊗L−m−1 , for m = 1, 2, . . . , L− 1. (6.21)

They verify the relations

(Em)
2 = 2 cos γ Em ,

EmEm±1Em = Em ,

EmEm′ = Em′Em for |m−m′| > 1 (6.22)
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defining the so-called Temperley-Lieb (TL) algebra.
The TL algebra plays a major role in lattice models of statistical mechan-

ics, the Potts model in particular. In addition to the above spin- 12 arrow rep-
resentation, the TL algebra can be represented in terms of Fortuin-Kasteleyn
clusters, their surrounding loops, domain walls of Potts spins, two-row Young
tableaux, and much more. We shall come back to some of those issues in a
later chapter.

6.3.2 Pauli matrices

It is convenient to make manifest the spin-12 nature of the six-vertex model
by reexpressing things in terms of the Pauli matrices

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (6.23)

The arrow conservation then means that the transfer matrix t(u) commutes
with the total magnetisation

Sz =
1

2

L∑

m=1

σz
m . (6.24)

The Temperley-Lieb generator can be written as

Em =
1

2

[
σx
mσ

x
m+1 + σy

mσ
y
m+1 − cos γ (σz

mσ
z
m+1 − I)− i sin γ (σz

m − σz
m+1)

]
.

(6.25)

6.3.3 Spectral parameter and anisotropy

The physical meaning of the spectral parameter u is that it controls the
spatial anisotropy of the system. To see this qualitatively, note that in the
u → 0 limit, the Ř-matrix is proportional to the identity by (6.18). The
transfer matrix t(u) thus acts on a state just by shifting all spins one unit
to the right (with periodic boundary conditions); note that this follows from
the fact that time propagates in the North-East direction.

In a 1+1 dimensional quantum mechanical analogy, the u → 0 limit thus
means that interactions between spins happen very slowly. Equivalently, the
time direction has been stretched with respect to the spatial direction. A ho-
mogeneous system can be retrieved by rescaling time by a certain anisotropy
factor ζ(u).
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It does not appear feasible to determine ζ(u) without invoking certain
results of conformal field theory. Suffice it here to say that one finds

ζ(u) = sin

(
πu

γ

)
. (6.26)

This predicts that the isotropic point ζ(u) = 1 occurs for u = γ
2 . One then

has by (6.18) that Ř ∝ I +E, a fact that can be accounted for geometrically
within the loop representation of the Temperley-Lieb algebra.

6.3.4 Spin chain hamiltonian

Using (6.18) we thus see that in the completely anisotropic limit u → 0 the
transfer matrix becomes

t(0) = sinL(γ) e−iP , (6.27)

where e−iP is the shift operator that translate the lattice sites one unit to
the right. Equivalently, P can be interpreted as the momentum operator.

We know from the path-integral formalism that the transfer matrix (the
time evolution operator) is the exponential of the quantum hamiltonian. To
make things completely precise, note that to first order in u, one may omit
on of the factors sin(γ − u)I in (6.18) and take sin(u)E instead. The correct
development in the limit u → 0 therefore reads

t(u) ≃ t(0) exp

[
− u

sin γ
H

]
, (6.28)

where H is the Hamiltonian of the spin chain. Equivalently

H = − sin γ
∂

∂u
log t(u)

∣∣∣∣
u→0

= − sin γ t(0)−1t′(0) . (6.29)

Here the inverse t(0)−1 = (sin γ)−LeiP is just the shift in the opposite (left)
direction. The derivative t′(0) gives L terms, one for each of the factors in
the product (6.5). Using (6.18) we have Ř′(0) = − cos γ I + E. Therefore

H = L cos γ I −
L∑

m=1

Em . (6.30)
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Inserting the expression (6.25) for the TL generators in terms of Pauli
matrices, the piece in i sin γ (σz

m − σz
m+1) simplifies by telescopy. With open

boundary condition it would become a surface magnetic field acting on the
first and last spins. We consider instead periodic boundary conditions, so
this term vanishes alltogether. One is left with

H = −1

2

L∑

m=1

[
σx
mσ

x
m+1 + σy

mσ
y
m+1 +∆(σz

mσ
z
m+1 + I)

]
, (6.31)

where we recall that ∆ = − cos γ.
We thus arrive at the Hamiltonian of a Heisenberg-type spin chain, where

however the interaction is anisotropic along the z-direction. For that reason,
this is called the XXZ spin chain with anisotropy parameter ∆.19

Let us emphasize that due to the commutativity of transfer matrices, the
eigenvectors of the six-vertex model transfer matrix and of the XXZ spin
chain Hamiltonian are identical. It is thus equivalent to diagonalise one or
the other, and in that sense the two models are equivalent.

19We are here referring to an anisotropy between the different components of the inter-
action in the space direction. This should not be confused with the space-time anisotropy
linked with the spectral parameter u.
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