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1) Motivation and Model

Macroscopic numbers of Majorana modes are
predicted to occur if a layer of ordinary
superconductor is placed on a strong topological
insulator in a transverse magnetic field
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Majorana fermions are a candidate for qubits. This has led
to great interest in them. It has been the main focus

of research at Microsoft Station Q. Charlie Marcus at the
Niels Bohr Institute is one of the leading experimentalists
working in this field. Various experimentalists have claimed
to see Majorana fermions but this has remained controversial.
Interaction effects involving Majorana fermions have not yet
been studied experimentally but at least two experimental
groups are interested in studying them to test our

theoretical predictions.



-A MM is localized near the centre of each superconducting vortex
-MM’s can tunnel between vortices and interact with each other
with short-range interactions, « e~"/¢

-tunneling amplitude goes to zero if gate chemical potential of
topological superconductor is tuned to a special value

-We have studied simplest possible version of this model

with shortest possible range interactions-

“Majorana-Hubbard Model”,

hopping amplitude t, interactions g, g/t of either sign

So far: -1 dimensional case, 2 dimensional square lattice, square
lattice ladders, triangular lattice ladders



1D Case

H=Y;[ityj¥js1 + GVj¥js1Vj+2Vjs3]

‘yj-l':‘yj, {V]; yk} — 25j,k

*No conserved particle number in this model but important
discrete symmetries
*Can be studied by field theory and DMRG



-Majoranas “like” to pair up and form complex “Dirac” fermions
(V2]+l]/2]+1)

-defining ¢; Y2 V2j+1 —Zc ¢; — 1 so half the

interactions terms become —g 2. ; (2 — 1)(2 +1Cj+1 — )

-note that g>0 is attractive interaction, g<0 repulswe
-no conserved charge so mean field density determined by

interactions. 2 mean field ground states for g>0 (attractive
interactions)

o © O O -2 ways of pairing up MM'’s

© © ©O O -resulting Diraclevels are empty
(for t>0)



We may rewrite full Hamiltonian in complex fermion basis defining

p; = 2¢i'c; — 1as:

H = z{tﬁj —t(qf" — ) (cfia + ¢1) + 9[=BiBj1 + (¢ — )Bjra(cfiz + Ga2) )
J

Keeping only 15t t term and 15t g term is mean field theory
-remarkably, this turns out to be qualitatively correct at

large | g|



o e o e

o e o e
o e o e

o e o e

4 mean field ground states for g<0 (repulsive interactions)
-charge density wave

-we verified that these phases occur at strong coupling
numerically - DMRG



Non-interacting model we solve by Fourier transforming:

L
1 .
_ 2N, ik
Vi ZLZy]e
N _]=O

Note that y_; = yx . We can diagonalize: # =2t z Vi Viesin

€

o<k<m

Note that all states are empty in ground state. There
are only particle excitations, not holes — signature of
Majorana fermions. Low energy excitations have

linear dispersion: relativistic
k
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Low energy effective Hamiltonian is relativistic Majorana model:

Let y; = 2yp(vt — aj) + (1) 2y, (vt + aj)
H = ivfdx[yRaxVR —vd,y] Where yg/p is Hermitean, v=4t

These operators have RG scaling dimension % so that
H has dimension 1 (energy). Lowest dimension
continuum interaction term is

Hipe = —2569 [ dxyr0,YrYL 0,V of dimension 4,
highly irrelevant at weak coupling. (Derivatives needed
since yﬁ/L =constant.) So, we expect to get

free Majorana dispersion at least for small enough g.
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At sufficiently large g we find broken symmetry phases
predicted by Mean Field Theory. Remarkably, transition

at g>0 occurs at g=256 and for g<0 at g= —3.0. This made
numerics extremely challenging. Correlation length is

oo for 0<g<256 and only comes down to perhaps a few
hundred at g= oo. Nature of 2" order phase transition for
g=256 is interesting. The critical line with g<256 corresponds
to the 1D quantum Ising model: H = };/[—0/0/,, + ho;']
at critical point h=1. The symmetry that Keeps model crltlcal
is translation by 1 site, which takes yp — —yp forbidding
the mass term m yy y;. The corresponding symmetry in
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Ising model is called Kramers-Wannier duality. This is a
symmetry which takes h-1—-(h-1) for h near 1. It switches
broken and unbroken symmetry phases. Ising transition
becomes 15t order if we insert a high enough density of
randomly located vacancies. This transition can be realized
By using s=1 spins, instead of s=1/2 and inserting a (5?)?
term which favours S%=0.
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Solid line is 2"? order transition

dashed line is 15t order. Star marks
transition from 29 to 1%t order:
tricritical Ising model. This model
IS a Supersymmetric conformal

\ field theory. For

g slightly bigger than 256 we

==

03 06 09 predict fermions and bosons (bound
0 states) of same mass. .



Phase Diagram for 1D Case

gapped,
2-fold deg.
gapped, Ising super-
4-folddeg +L.L. = Ising > symmetric
T (I | o/t
\ @ \
Generalized Lifshitz Tri-critical
C-IC .
Ising

g/t=+o0 are equivalent, for g/t>>1 phase, low-lying
excited doublet has energy « |t| (1%t order transition)
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There is also a remarkable intermediate phase for g<0
(repulsive interactions). This can be understand from
interactions modifying the dispersion relation for the
free Majorana fermions. A 2" neighbour hopping term is

not allowed by symmetry. The symmetry is time reversal:
[ > =L,y — (—1)jyj. But a 3™ neighbour hopping term
Is allowed and gets generated by interactions. This
modifies the dispersion relation to € =2t sin k + 2t; sin (3k)
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For t;>t/3, low energy theory
has both relativistic Majorana

fermions and complex fermions.
Additional interaction terms allowed by

symmetry and non-oscillating are:
S T f dx[g1 YR YrYL YL
e
. +92VrYL (WYL + YEYT]

15t term is standard Luttinger
w3 liquid interaction- continuously

changes “Luttinger parameter”

which determines critical exponents.

0 % 2r T 17




2"d term is irrelevant for repulsive interactions (g<0).
There is also a term that alternates with a wave-vector
determined by k,:

Hine = f dxygyL[e!@omxyra i ., — hc.]

This is irrelevant unless repulsive interactions are very
strong, K<1/4, and oscillates unless ky = /4.

The transition into this “c=3/2 phase”, at g=-0.3, is a
“Lifshitz transition”. Not relativistic, cubic dispersion relation.
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The transition out of the c=3/2 phase into the

strong coupling broken symmetry phase occurs at g=-3.0.
It occurs because K goes to %2 and k, goesto /4
simultaneously! We calculate K and k, using DMRG to
get the finite size spectrum and came to this remarkable
conclusion.
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Conclusions

-the Majorana-Hubbard model on various lattices has

rich phase diagrams

-Majoranas like to pair up to form complex fermions for
strong enough coupling, breaking discrete symmetries
-Supersymmetry can be realized in both 1 and 2 dimensions
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2 Dimensional Square Lattice Case




H:HO_I_Hint_I_HZ

Hy, = itz Vm,n[(_l)nym+1,n + V‘m,n+1]
mmn

Hint =Y E YmnVm+1inVm+1in+1Vmn+1
mn

HZ = 1L E Ym2nVm+s,2n+s 5,5=t1
mnmn,s,S/ . .
Signs of hopping terms
g t are determined by 1
®
.Q/ flux quantum per plaquette.

Interactions on plaguettes.
°* o o o g>0 is attractive interaction ~



-t, term breaks T-reversal and parity symmetry and changes
phase diagram significantly
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-phases are characterized by spontaneously
broken symmetries

-what are symmetries of H which might get broken?
1) Translation by 1 site in x or y direction
2) /2 rotation symmetry

(if t,=0 only)

3) Time reversal

4) Parity (spatial reflection)

(PT a symmetry even for t, non-zero)

In addition there are “emergent symmetries” in
low energy effective field theory
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-these pairing phases also break

rotational symmetry and parity symmetry (t,=0)
-depending on sign of g, we can obtain
“ferromagnetic” or “antiferromagnetic” pairing

phases: SRS

<iVm nYmns1>=A+B(-1)" 0 ¢ ¢ 9
-ferromagnetic SRS R

favoured for g>0

-pairs of Majoranas form Dirac fermions, all
energy levels empty

-4 ground states
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<iVm,an,n+1>=C('1)m'I'D(']-)m-I-n
-antiferromagnetic
-favoured for g<0

-pairs of Majoranas form
Dirac fermions: alternating
filled or empty

-8 ground states in this case:
-Translate by 1 site in

X or y direction

0,

D
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-these pairing phases also break

rotational symmetry and parity symmetry (t,=0)
-Time Reversal:

takes v, » 2 (-1)™"y,,,, i=2?-i (anti-unitary)
-broken by it2Vm,an+1,n+1
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Field Theory/Renormalization

Group Approach and Nature of Critical Points

-exact dispersion relation

for non-interacting model:

Ey == \/ (4tsin ky)? + (4tsin ky)? + (8tycosky cos ky)?

with 0<k, <, -1t/2<k <m/2,
-for t,<<t, low energy excitations near 2 points in

k-space: (0,0) and (m,0) w

relation occurs: EL~ + \

nere Lorentz-invariant dispersion

16t2|/?\2 + 64(t,)>2

-2 “valleys” like in graphene but Majorana modes

28



-low energy field theory has 2 species of
2-component Majorana fermions which can be combined into
a single species of Dirac fermions
-ignoring higher derivative terms, Lagrangian
density, including interactions, is Lorentz invariant

L=y (iy"d, -muyp-32 g @y)°
Here the y* are 3 2-dimensional gamma matrices, | set v=1
and ¥ =y'y’
-2 components from inequivalent even and odd rows
-in addition to emergent Lorentz invariant there is
an emergent U(1) (particle number conservation)
symmetry!
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-Interactions are “irrelevant” in RG sense

-if bare g is small enough, it renormalizes to O
giving an effective free fermion phase

The interaction term in the low energy theory is

H,. = -64 g yiysyy, =32 g y)’

For g>0 this is an attractive pairing interaction,
so we get a transition to a superfluid phase for
strong enough positive g — corresponds to

ferromagnetic pairing phase
-also higher dimension U(1) breaking terms
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-for t,=0, fermions are massless in g<g. phase

-at superfluid transition we get a massless
(Goldstone) boson as well as massess fermions
-this transition is Supersymmetric — equivalent
fermions and bosons

-this has been studied in other condensed matter
contexts but it is remarkable here that U(1)
symmetry is emergent

-a hon-zero t, gives fermions a mass

-now superfluid transition is in usual U(1)-breaking
(2+1) dimensional universality class
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There is a U(1) breaking term in the effective Hamiltonian:
Hine = g’ f dx[y,0,Y, ¢zax¢2'¢1ayl/)1l/)25y1/)z+W-C-]-
With Kyle Wamer we showed that this remains irrelevant
at critical point, using the - expansion.

Note that this lattice model evades the
Nielsen-Ninomiya theorem. We only get 1 channel of
Lorentz invariant fermions in the low energy model. The
reason is that U(1) symmetry is broken in the lattice model.
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Results on Ladders

We have studied 2 and 4-leg ladders, with square
lattice geometry by a combination of analytic and
DMRG methods. In the 2-leg case, there is an exact U(1)
symmetry, as we see by defining complex fermions:

Cm = (Ymo T i(—1)mym,1)/2. Then, the horizontal hopping
term becomes: 2it Y...[c.} ¢, 1 — h.c.] and the vertical
hopping term 2t Y..,(—1)™ctc,, .
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If we impose periodic boundary conditions in the vertical
direction, the vertical hopping term vanishes. Then, by
Jordan-Wigner transformation, H maps into the xxz model:

H = Z [t(om Om1 T U%U%H) +290m0m41]-
J

Noting that ¥, o ¥m1 = (—1)™(2chcm — 1) > (-D™a7,
We see that the antiferromagnetic order which occurs
for g>1/2 corresponds to the mean field ground state:

BERE
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and the ferromagnetic order which occurs for g<-1/2 corresponds

to the mean field state: % i % i

For the 4-leg case there is no exact U(1) symmetry and the model
is not analytically solvable except at infinite coupling. We
analyzed it with DMRG. To analyze the infinite coupling limit we
define complex fermions:

Cm,a1 = (Vm,O + iym,l)/zi Cm,2 = (Vm,z + iym,B)/Z- Then it can
be seen that the interaction term preserves fermion parity on
each rung (unlike the horizontal hopping term).
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So, at strong coupling we can restrict ourselves to only
2 states (with fixed fermion parity) on each rung. We
can map these 2 states into the xy model with Hamiltonian:
H=-2g).l0%0%.1+ dy0,..]. Thisisthe gapless
xy (or xz) model. Unlike the 2-leg case, this model is
gapless with no broken symmetry (except for fermion
parity). Adding a small hopping term produces a gap.
For small t/g we can ignore horizontal hopping since it
changes the fermion parity on each rung. This can be
shown to increase the energy by an amount of O(g).
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On the other hand, vertical hopping just gives a perturbation:
H= ) [=20(0h0h + 0h0%e) + 2t07]
m

for even fermion parity and

H=) [=29(0h0i + Ohoie) - 2L03)
m

for odd fermion parity. These lead to gapped states with

the spins ordering in the z or +x direction for even or odd
fermion parity, for g>0. For even fermion parity

YmoYm1 1Vm2Ym3 — Om SO the ferromagnetic order
corresponds to Majoranas pairing up to form Dirac fermions
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On the other hand, for odd fermion parity
Ym1Ym2 (Ym3Ymo = —0pm SO we get the other
mean field state:

R
SEE 2o 0 ¢

even fermion parity % % % %

odd fermion parity
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For g>0 we only find one transition. Mapping into complex
fermions and ignoring interactions, we get 1 gapped
complex fermion and 1 gapless complex fermion. At small g,
we may integrate out the gapped mode. Then we find the
U(1) breaking interactions are irrelevant and the U(1)
preserving interactions are of standard spinless Luttinger
liquid form: Umklapp term.

We thus predict a Kosterlitz-Thouless transition

into a gapped phase at sufficiently strong g. This agrees
well with DMRG results. In the 2D limit we expect this
transition to become SUSY. 5



There are 3 additional transitions in the 4-leg ladder for negative g
with stable phases with central charges 3/2, 2 and 1 which we
haven’t fully understood
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Triangular Lattice Case

Ho = Lthj%-fyj where n;; € {+1,—1}

vAv e (i)

/N/\ ’ ’

N \/

P -1 kg . _
-— Ex 0
Kx 3




-Now 3 types of plaquettes. The mean field states only

minimizes the energy on 1/6 of the plaquettes.

So, mean field theory doesn’t predict Majorana pairing to form
Dirac fermions.

-DMRG results on the 4-leg ladder do not find broken symmetries
even at strong coupling, consistent with the mean field theory.
-There is a gapless phase for g<-0.55 which is rather mysterious
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Conclusions

-the Majorana-Hubbard model on various lattices has

rich phase diagrams

-Majoranas like to pair up to form complex fermions for
strong enough coupling, breaking discrete symmetries
-Supersymmetry can be realized in both 1 and 2 dimensions
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