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Macroscopic numbers of Majorana modes are 
predicted to occur if a layer of ordinary 
superconductor is placed on a strong topological
insulator in a transverse magnetic field
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Majorana fermions are a candidate for qubits. This has led 
to great interest in them.  It has been the main focus 
of research at Microsoft Station Q.  Charlie Marcus at the 
Niels Bohr Institute is one of the leading experimentalists 
working in this field.  Various experimentalists have claimed
to see Majorana fermions but this has remained controversial.
Interaction effects involving Majorana fermions have not yet
been studied experimentally but at least two experimental 
groups are interested in studying them to test our 
theoretical predictions.



-A MM is localized near the centre of each superconducting vortex
-MM’s can tunnel between vortices and interact with each other 
with short-range interactions, ∝ "#$/&
-tunneling amplitude goes to zero if gate chemical potential of 
topological superconductor is tuned to a special value
-We have studied simplest possible version of this model 
with shortest possible range interactions-
“Majorana-Hubbard Model”, 
hopping amplitude t, interactions g, g/t of either sign
So far: -1 dimensional case, 2 dimensional square lattice, square
lattice ladders, triangular lattice ladders
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1D Case

•No conserved particle number in this model but important 
discrete symmetries
•Can be studied by field theory and DMRG
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-Majoranas ”like” to pair up and form complex “Dirac” fermions

-defining !" =
$%&'($%&)*

+
, -.+" .+"'/ =2!"'!" − 1 so	half	the	

interactions	terms	become	−A∑" 2!"'!" − 1 2!"'/' !"'/ − 1
-note	that	g>0	is	attractive	interaction,	g<0	repulsive
-no	conserved	charge	so	mean	field	density	determined	by	
interactions.		2	mean	field	ground	states	for	g>0	(attractive
interactions)

-2	ways	of	pairing	up	MM’s

-resulting	Dirac	levels	are	empty
(for	t>0)
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We may rewrite full Hamiltonian in complex fermion basis defining
!"# ≡ 2&#'&# − 1 as:

* =,
#
{."̂# − . &#' − &# &#'0' + &#'0 + 2 −"̂#"̂#'0 + &#' − &# "̂#'0 &#'3' + &#'3 }

Keeping only 1st t term and 1st g term is mean field theory
-remarkably, this turns out to be qualitatively correct at 
large |g|



4 mean field ground states for g<0 (repulsive interactions)
-charge density wave
-we verified that these phases occur at strong coupling 
numerically - DMRG
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Non-interacting model we solve by Fourier transforming:

!" =
1
2&'()*

+
!(,-"(

Note that !." = !"/. We can diagonalize: 0 = 21 '
*2"23

!"/!" 456 "
7

k

Note that all states are empty in ground state.  There 
are only particle excitations, not holes – signature of 

Majorana fermions. Low energy excitations have 
linear dispersion: relativistic
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Low energy effective Hamiltonian is relativistic Majorana model:
Let !" ≈ 2!% &' − )* + (−1)"2!/ &' + )*

0 = 2&345[!%78!% − !/78!/] where !%// is Hermitean, v=4t

These operators have RG scaling dimension ½ so that
H has dimension 1 (energy).  Lowest dimension 
continuum interaction term is
0;<= = −256@ ∫45!%78!%!/78!/ of dimension 4, 
highly irrelevant at weak coupling. (Derivatives needed 
since !%//B =constant.)   So, we expect to get 
free Majorana dispersion at least for small enough g.
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At sufficiently large g we find broken symmetry phases 
predicted by Mean Field Theory.  Remarkably, transition
at g>0 occurs at g≈256 and for g<0 at g≈ −3.0. This made
numerics extremely challenging. Correlation length is 
∞ for 0<g<256 and only comes down to perhaps a few 
hundred at g= ∞. Nature of 2nd order phase transition for
g=256 is interesting. The critical line with g<256 corresponds
to the 1D quantum Ising model: ' = ∑*[−,*-,*./- + ℎ,*2]
at critical point h=1. The symmetry that keeps model critical
is translation by 1 site, which takes 45 → −45 forbidding 
the mass term 7 45 48. The corresponding symmetry in 
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Ising model is called Kramers-Wannier duality.  This is a 
symmetry which takes h-1→-(h-1) for h near 1.  It switches
broken and unbroken symmetry phases. Ising transition 
becomes 1st order if we insert a high enough density of 
randomly located vacancies. This transition can be realized 
By using s=1 spins, instead of s=1/2 and inserting a (Sz)2

term which favours Sz=0. 
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Fermions”

CONNECTION TO SPIN CHAINS

A standard Jordan-Wigner transformation �z
j = 2n j � 1 and

�+j = ei⇡
P

k< j nk c†j brings the Hamiltonian (2) of the main text
to the form of a spin chain

H = t1
X

j

�z
j � t2

X

j

�x
j�

x
j+1 � g1

X

j

�z
j�

z
j+1 � g2

X

j

�x
j�

x
j+2,

(1)
which for g1 = 0 corresponds to the anisotropic next-nearest-
neighbor Ising (ANNNI) model [1]. For t1 = t2 = 0, the
Hamiltonian (1) is dual to a transverse field Ising model with
4-spin interactions

Hg = �g1

X

j

⌧z
j � g2

X

j

⌧x
j�1⌧

x
j⌧

x
j+1⌧

x
j+2, (2)

in terms of domain-wall variable ⌧z
j = �

z
j�

z
j+1.

The Hamiltonian (2) is self-dual at g1 = g2 [2, 3]. As ar-
gued in Refs. [4, 5], the ground state of Hg is 8-fold degener-
ate for g1 = 0, while the g1 term causes quantum fluctuations
between these degenerate states. This bears a striking sim-
ilarity to the 8-state Potts model, which strongly suggests a
first-order phase transition at g1 = g2 [4, 5].

SIMILARITIES WITH THE BLUME-CAPEL MODEL

As mentioned in the main text, the canonical example of
the TCI CFT appears in the Blume-Caple model, which is a
quantum spin-1 chain with the Hamiltonian

HBC = �
X

j

h
S z( j)S z( j + 1) � �S x( j) � �S 2

z (i)
i
. (3)

Similar to the one-dimensional spin- 1
2 transverse-field Ising

model, which corresponds to the two-dimensional classical
Ising model at finite temperature, this spin chain corresponds
to a two-dimensional classical Ising model with vacancies
(S z = 0), with � serving as a chemical potential for these va-
cancies. For � = �1, the Blume-Caple model maps to the
transverse-filed Ising model and exhibits a 2nd-order phase
transition between a ferromagnet and a paramagnet with the
critical point given by the Ising CFT. For � = 0, the model is
classical and has a 1st-order transition between a ferromagnet
and the S z( j) = 0 state. The line of the 2nd-order transition
terminates at the TCI point, where a line of 1st-order transition
begins.

The above Hamiltonian has two dimensionless parame-
ters. We can write a generalization of our model, which also
has two dimensionless parameters, by staggering the hopping
terms [Eq. (2) of the main text with g1 = g2 = g > 0]. The
phase diagrams are essentially the same as seen in Fig. 1. In

FIG. 1: Left: the phase diagram of the Blume-Capel model (3) from
Ref. [7]. Right: the phase diagram of our model with staggered hop-
ping [Eq.(2) of the main text] with g1 = g2 = g > 0. The solid blue
(dashed green) line represents a 2nd (1st) order transition with the
TCI point denoted by a red star.

our model broken translation t1 � t2 , 0 immediately gaps the
system.

FINITE SIZE SPECTRUM FROM CFT

The finite size spectrum of the Ising and TCI model with
both APBC and PBC can be derived using modular invari-
ance [6]. Consider an imaginary time Feynman path integral
for the partition function at inverse temperature � for free rel-
ativistic Majorana fermions. As is well known, the boundary
conditions must be antiperiodic in the imaginary time direc-
tion. Thus, when we also impose APBC in the space direction
the partition function

Z =
X

n

e�2⇡vyn�/L, with En =
2⇡vyn

L
(4)

is modular invariant. Each state corresponds to a left and
right-moving factor and the energy is a sum of left and right
moving parts:

yn = xn + x̄n, with xn = �
c

24
+ xi + n, (5)

for nonnegative integers n, constants xi, which characterize
each conformal tower of states, and the central charge c of
the CFT. Each excited state in left and right moving confor-
mal towers can occur independently. We define the character
corresponding to a given chiral conformal tower as

�i(�/L) ⌘
1X

n=0

dine�(2⇡v�/L)(�c/24+xi+n), (6)

where din are nonnegative integers, which account for possible
degeneracies of excited states in each conformal tower. The

Solid line is 2nd order transition
dashed line is 1st order.  Star marks
transition from 2nd to 1st order:
tricritical Ising model. This model
is a Supersymmetric conformal 
field theory. For
g slightly bigger than 256 we 
predict fermions and bosons (bound
states)  of same mass.



Phase Diagram for 1D Case

g/t

Ising
Ising
+ L.L.

gapped, 
2-fold deg.
super-
symmetric

gapped,
4-fold deg

Tri-critical
Ising

LifshitzGeneralized
C-IC

0

g/t=+∞ are equivalent, for g/t>>1 phase, low-lying
excited doublet has energy  ∝ |#| (1st order transition)
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There is also a remarkable intermediate phase for g<0 
(repulsive interactions).  This can be understand from 
interactions modifying the dispersion relation for the 
free Majorana fermions.  A 2nd neighbour hopping term is 
not allowed by symmetry.  The symmetry is time reversal:
! → −!, %& → (−1)&%&.   But a 3rd neighbour hopping term 
Is allowed and gets generated by interactions. This 
modifies the dispersion relation to * =2t sin k + 2t3 sin (3k)
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FIG. 6. (Color online) Dispersion relation indicating a Lifshitz
transition. For |t ′| < t/3, the zeros of the dispersion relation are at k =
0 and k = π . At |t ′| = t/3, the velocities of both these low-energy
modes vanish and for |t ′| > t/3, new low-energy modes appear at
finite momenta k0 and π − k0, with k0 = 0 at the Lifshitz transition
|t ′| = t/3.

we will see in Sec. V, a mean-field calculation captures this
transition with good accuracy (see Fig. 4).

Third-neighbor hopping is indeed allowed by all sym-
metries. [Spatial parity symmetry γj → (− 1)jγ− j forbids a
second neighbor hopping term. Notice that a naive parity
transformation γj → γ− j changes the sign of the nearest-
neighbor hopping term and the (− 1)j term simply correct for
this.] Consider a quadratic Hamiltonian

H = i
∑

j

γj [tγj+1 + t ′γj+3] = 1
2

∑

k

Ekγ (− k)γ (k) (3.3)

with Ek = 4t sin k + 4t ′ sin(3k). As in Appendix A, it is
convenient to regard γ (k) as an annihilation operator for the
regions of k where Ek > 0 and write γ (k) as γ †(− k) for the
complementary regions. Consider the case t > 0, t ′ < 0. For
t ′ > − t/3, Ek vanishes at k = 0 and π only, with velocity
v = 4t + 12t ′. However, v → 0 at t ′ = − t/3. For t ′ < − t/3,
Ek vanishes at four other points, ±k0 and ±(π − k0) with
sin k0 = (1/2)

√
3 + t/t ′. Now there are three regions of k

where Ek > 0, shown by thick black lines in Fig. 6. The
velocity at k = 0 is v0 = 16 sin2 k0, while at k = k0,π − k0,
we have v = 2v0 cos k0. Note that v0 and v increase linearly
with − t ′ − t/3 while k0 increase more rapidly ∝

√
− t ′ − t/3.

Here, k0 plays the role of a Fermi wave vector. We may again
introduce relativistic fermions to represent the low-energy
excitations as

γj ≈ 2γL(j ) + (− 1)j 2γR(j )

+ [e− ik0jψR(j ) + ei(k0− π)jψL(j ) + H.c.]. (3.4)

Here, ψR/L are Dirac fermion operators, simply related to
the Fourier modes of the original Majoranas as

ψR(q) = γ (k0 + q), ψL(− q) = γ (π − k0 − q),

− $ < q < $, (3.5)

where $ ≪ 1 is the momentum cut-off of the low-energy
sector. Note that the right/left movers occur at k points where
Ek has positive/negative slope. For k slightly larger than k0,
γ (k) is identified with a right-moving particle annihilation
operator whereas for k slightly less than k0 it is identified with
a right-moving antiparticle creation operator. The low-energy
Hamiltonian becomes

H0 = i

∫
dx[v0(γL∂xγL − γR∂xγR)

+ v(ψ†
L∂xψL − ψ

†
R∂xψR)]. (3.6)

We now consider the effect of the interactions. These
are most rigorously treated if we added a t ′ term to the
Hamiltonian by hand, and then turned on a small g. However,
we expect the universal properties of the resulting phase to also
describe the case at hand where t ′ is generated dynamically.
However, in this case, we are not in the weak-coupling regime
since |g| must be O(t) to drive the Lifshitz transition. Since
we have more fields in the low-energy field theory, it is
possible to have nonderivative interaction terms. Many of these
come with spatially oscillating factors, making them irrelevant
for general values of k0. However, there are two nonoscillatory
four-fermion interactions allowed by symmetry:

Hint ≈
∫

dx[g0 : ψ
†
LψLψ

†
RψR : +g′γRγL(ψLψR + ψ

†
Lψ

†
R)],

(3.7)

where g0 = − 16g[cos k0 − cos(3k0)] for weak coupling and
“:” indicates normal ordering. Since we are considering g < 0,
we have g0 > 0 corresponding to repulsive interactions. The
effects of this term by itself are well-known and easily treated
using bosonization techniques, leading to a Luttinger liquid
(LL). This corresponds to a free massless relativistic boson
theory with the RG scaling dimensions varying continuously.
These scaling dimensions are controlled by a single dimen-
sionless parameter K known as the Luttinger parameter,
which takes the value K = 1 − g0

2πv
+ . . . for weak coupling.

Generally, we have K < 1 for repulsive interactions.
We now argue that the second term in Eq. (3.7) above is

irrelevant in the RG sense for K < 1. The scaling dimension of
ψLψR appearing in the g′ interaction is 1/K , which is larger
than one for repulsive interactions. The γRγL factor in this
term also contributes 1 to the scaling dimension which leads
to & = 1 + 1/K > 2, making it irrelevant. Therefore we find
that the Ising and LL sectors are decoupled in the low-energy
theory. This implies that a U(1) charge conservation symmetry
emerges in the LL sector of the Ising+LL phase, along with
an associated Fermi wave-vector k0. The charge is related to
the occupation of modes near momenta ±k0 and ±(π − k0) as

N̂ =
∑

− $<q<$

[γ †(k0 + q)γ (k0 + q)

+ γ †(π − k0 − q)γ (π − k0 − q) − 1]. (3.8)

235123-6

!

t3=0

t3=t/3

t3>t/3

0

For t3>t/3, low energy theory 
has both relativistic Majorana
fermions and complex fermions. 
Additional interaction terms allowed by 
symmetry and non-oscillating are:

"#$% = ' ()[+,-./-.-0/-0
++23.30(-.-0 + -./-0/]

1st term is standard Luttinger
liquid interaction- continuously 
changes “Luttinger parameter” 
which determines critical exponents.
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2nd term is irrelevant for repulsive interactions (g<0).
There is also a term that alternates with a wave-vector 
determined by k0: 

!"#$ = &'()*)+[-" ./012 34*5634*54+634+ − ℎ. :. ]

This is irrelevant unless repulsive interactions are very 
strong, K<1/4, and oscillates unless <= = >/4.
The transition into this “c=3/2 phase”, at g=-0.3,  is a 
“Lifshitz transition”. Not relativistic, cubic dispersion relation. 
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The transition out of the c=3/2 phase into the 
strong coupling broken symmetry phase occurs at g=-3.0. 
It occurs because K goes to ¼ and !" goes to # /4
simultaneously! We calculate K and k0 using DMRG to 
get the finite size spectrum and came to this remarkable
conclusion.



-the Majorana-Hubbard model on various lattices has 
rich phase diagrams
-Majoranas like to pair up to form complex fermions for 
strong enough coupling, breaking discrete symmetries
-Supersymmetry can be realized in both 1 and 2 dimensions

Conclusions
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2 Dimensional Square Lattice Case

21



g

t2

Signs of hopping terms 
are determined by 1 

flux quantum per plaquette.
Interactions on plaquettes.
g>0 is attractive interaction 22

! = !# + !%&' + !(
!# = )*+

,,&
.,,& (−1)&.,34,& + .,,&34

!%&' = 5+
,,&

.,,&.,34,&.,34,&34.,,&34

!( = )*(+
,,&,6,67

.,,(&.,36,(&367 s,s’=+1

t



-t2 term breaks T-reversal and parity symmetry and changes
phase diagram significantly
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-phases are characterized by spontaneously 
broken symmetries

-what are symmetries of H which might get broken?
1) Translation by 1 site in x or y direction
2) π/2 rotation symmetry

(if t2=0 only)
3) Time reversal
4) Parity (spatial reflection)
(PT a symmetry even for t2 non-zero)
In addition there are “emergent symmetries” in 
low energy effective field theory 24



-these pairing phases also break 
rotational symmetry and parity symmetry (t2=0)
-depending on sign of g, we can obtain 
“ferromagnetic” or “antiferromagnetic” pairing 
phases:
<iγm,nγm,n+1>=A+B(-1)n

-ferromagnetic
favoured for g>0
-pairs of Majoranas form Dirac fermions, all 
energy levels empty
-4 ground states                

25



<iγm,nγm,n+1>=C(-1)m+D(-1)m+n 

-antiferromagnetic
-favoured for g<0
-pairs of Majoranas form
Dirac fermions: alternating
filled or empty
-8 ground states in this case:
-Translate by 1 site in 
x or y direction

26



-these pairing phases also break 
rotational symmetry and parity symmetry (t2=0)
-Time Reversal:
takes γm,nè(-1)m+nγm,n,   iè-i (anti-unitary)
-broken by it2γm,nγm+1,n+1

27



Field Theory/Renormalization 
Group Approach and Nature of Critical Points

-exact dispersion relation for non-interacting model:

!± = ± (4&'() *+)- + (4&'() */)- + (8&-12'*+ cos */)-
with 0<kx<π, -π/2<ky<π/2,  
-for t2<<t,  low energy excitations near 2 points in 
k-space: (0,0) and (π,0) where Lorentz-invariant dispersion 

relation occurs:  !±~ ± 16&- * - + 64 &- -

-2 “valleys” like in graphene but Majorana modes
28



-low energy field theory has 2 species of 
2-component Majorana fermions which can be combined into
a single species of Dirac fermions
-ignoring higher derivative terms, Lagrangian
density, including interactions, is Lorentz invariant

Here the γμ are 3 2-dimensional gamma matrices, I set v=1 
and                
-2 components from inequivalent even and odd rows  
-in addition to emergent Lorentz invariant there is
an emergent U(1) (particle number conservation)
symmetry! 29



-Interactions are “irrelevant” in RG sense
-if bare g is small enough, it renormalizes to 0
giving an effective free fermion phase
The interaction term in the low energy theory is

For g>0 this is an attractive pairing interaction,
so we get a transition to a superfluid phase for 
strong enough positive g – corresponds to 
ferromagnetic pairing phase
-also higher dimension U(1) breaking terms

30



-for t2=0, fermions are massless in g<gc phase
-at superfluid transition we get a massless
(Goldstone) boson as well as massess fermions
-this transition is Supersymmetric – equivalent 
fermions and bosons
-this has been studied in other condensed matter
contexts but it is remarkable here that U(1) 
symmetry is emergent
-a non-zero t2 gives fermions a mass
-now superfluid transition is in usual U(1)-breaking
(2+1) dimensional universality class

31
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There is a U(1) breaking term in the effective Hamiltonian:
!"#$ = &′ ∫ )*[,-./,- ,0./,0-,-.1,-,0.1,0+h.c.].
With Kyle Wamer we showed that this remains irrelevant
at critical point, using the 2- expansion.

Note that this lattice model evades the 
Nielsen-Ninomiya theorem. We only get 1 channel of 
Lorentz invariant fermions in the low energy model. The 
reason is that U(1) symmetry is broken in the lattice model.



Results on Ladders

33

We have studied 2 and 4-leg ladders, with square 
lattice geometry by a combination of analytic and 
DMRG methods. In the 2-leg case, there is an exact U(1)
symmetry, as we see by defining complex fermions:
!" = (%",' + ) −1)"%",- /2. Then, the horizontal hopping
term becomes: 2)1 ∑" !"3!"3- − ℎ. !. and the vertical
hopping term 21 ∑"(−1)"!"3!" .
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If we impose periodic boundary conditions in the vertical
direction, the vertical hopping term vanishes. Then, by 
Jordan-Wigner transformation, H maps into the xxz model:

! =#
$
[&(()* ()+,* + ().()+,. ) + 21()2 ()+,2 ].

Noting that 56),8 6),, = (−1))(2;)+;) − 1) → (−1))()2 ,
We see that the antiferromagnetic order which occurs 
for g>1/2 corresponds to the mean field ground state:

3

(Here we use slightly di↵erent notation than in [27] to
simplify some formulas.) For a chain of 2W rows of length
L we Fourier transform the Majorana operators as

�e~k ⌘
1

p
2WL

X

m,n

ei(mkx+2nky)�em,2n, (2.2)

�o~k ⌘
1

p
2WL

X

m,n

ei[mkx+(2n+1)ky ]�0m,2n+1. (2.3)

The hopping term in H then becomes:

H0 = �4t
X

kx>0,ky

h ⇣
�e†~k �

e
~k
� �o†~k �

o
~k

⌘
sin kx

+
⇣
�e†~k �

o
~k
+ �o†~k �

e
~k

⌘
sin ky

i
.

(2.4)

Here we have used the fact that �e/o
�~k

= �e/o†~k
to restrict

the Brillouin zone to 0  kx < ⇡, �⇡/2  ky < ⇡/2. Di-
agonalizing the above noninteracting Hamiltonian gives
the following energy bands:

E± = ±4t
q
sin2 kx + sin2 ky. (2.5)

The low energy Hamiltonian corresponds to two two-
component relativistic Majorana fermions at the two
“Dirac points” (0, 0) and (⇡, 0), which can be combined
into a single relativistic Dirac fermion,  . The interac-
tion term becomes:

Hint = 32g( ̄ )2, (2.6)

which is an irrelevant interaction in the relativistic (2+1)-
dimensional field theory, leading to a massless phase for
su�ciently weak coupling. We predicted in Ref. [27] that,
at a critical positive coupling, gc4, there is a transition
into a phase with pairs of neighboring Majoranas forming
Dirac fermions. At a mean field level, these Dirac energy
levels are either filled or empty as indicated in Fig. (2);
unfilled circles correspond to empty states. In addition to
these ground states two others occur, rotated by ⇡/2 with
Dirac fermions forming on horizontal links. For large
enough negative g, g < gc1 a symmetry-breaking phase
occurs with the Dirac fermions levels alternating filled
and empty as indicated in Fig. (2). As shown in Fig. (2),
the strongly coupled ordered phase is four-fold (eight-
fold) degenerate for large positive (negative) g.

III. TWO-LEG LADDER

A. Phase diagram with nearest-neighbor hopping

In this case the model can be converted into a particle
number conserving Dirac model by defining:

cm ⌘
�m,0 + i(�1)m�m,1

2
. (3.1)

Figure 2. (a) The symmetry-breaking pattern for two of
the four strong-coupling ground states of the two-dimensional
Majorana-Hubbard model for g > 0 on the square lattice pre-
dicted in [27] using mean field theory. The other two states
can be obtained by a ⇡/2 rotation. (b) Four of the eight
symmetry-breaking patterns of the mean-field strong-coupling
ground states predicted in [27] for g < 0. The other four states
can be obtained by a ⇡/2 rotation. Blue circles are the Majo-
rana modes, a bond between them indicates the combination
of the MZMs into a Dirac fermion. The larger circle on the
bond represent the occupation of the Dirac mode.

We combine the Majoranas on each vertical link to make
Dirac fermions. Thus

�m,0 = cm + c†m

�m,1 = (�1)mi(c†m � cm) (3.2)

The horizontal hopping term become:

H0 = 2it
X

m

[c†mcm+1 � c†m+1cm]. (3.3)

The vertical hopping term vanishes with periodic bound-
ary conditions in the y direction since �m,0�m,1 +
�m,1�m,0 = 0. The interaction term becomes:

Hint = 2g(2c†mcm � 1)(2c†m+1cm+1 � 1). (3.4)
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and the ferromagnetic order which occurs for g<-1/2 corresponds
to the mean field state:

3

(Here we use slightly di↵erent notation than in [27] to
simplify some formulas.) For a chain of 2W rows of length
L we Fourier transform the Majorana operators as

�e~k ⌘
1

p
2WL

X

m,n

ei(mkx+2nky)�em,2n, (2.2)

�o~k ⌘
1

p
2WL

X

m,n

ei[mkx+(2n+1)ky ]�0m,2n+1. (2.3)

The hopping term in H then becomes:

H0 = �4t
X

kx>0,ky

h ⇣
�e†~k �

e
~k
� �o†~k �

o
~k

⌘
sin kx

+
⇣
�e†~k �

o
~k
+ �o†~k �

e
~k

⌘
sin ky

i
.

(2.4)

Here we have used the fact that �e/o
�~k

= �e/o†~k
to restrict

the Brillouin zone to 0  kx < ⇡, �⇡/2  ky < ⇡/2. Di-
agonalizing the above noninteracting Hamiltonian gives
the following energy bands:

E± = ±4t
q
sin2 kx + sin2 ky. (2.5)

The low energy Hamiltonian corresponds to two two-
component relativistic Majorana fermions at the two
“Dirac points” (0, 0) and (⇡, 0), which can be combined
into a single relativistic Dirac fermion,  . The interac-
tion term becomes:

Hint = 32g( ̄ )2, (2.6)

which is an irrelevant interaction in the relativistic (2+1)-
dimensional field theory, leading to a massless phase for
su�ciently weak coupling. We predicted in Ref. [27] that,
at a critical positive coupling, gc4, there is a transition
into a phase with pairs of neighboring Majoranas forming
Dirac fermions. At a mean field level, these Dirac energy
levels are either filled or empty as indicated in Fig. (2);
unfilled circles correspond to empty states. In addition to
these ground states two others occur, rotated by ⇡/2 with
Dirac fermions forming on horizontal links. For large
enough negative g, g < gc1 a symmetry-breaking phase
occurs with the Dirac fermions levels alternating filled
and empty as indicated in Fig. (2). As shown in Fig. (2),
the strongly coupled ordered phase is four-fold (eight-
fold) degenerate for large positive (negative) g.

III. TWO-LEG LADDER

A. Phase diagram with nearest-neighbor hopping

In this case the model can be converted into a particle
number conserving Dirac model by defining:

cm ⌘
�m,0 + i(�1)m�m,1

2
. (3.1)

Figure 2. (a) The symmetry-breaking pattern for two of
the four strong-coupling ground states of the two-dimensional
Majorana-Hubbard model for g > 0 on the square lattice pre-
dicted in [27] using mean field theory. The other two states
can be obtained by a ⇡/2 rotation. (b) Four of the eight
symmetry-breaking patterns of the mean-field strong-coupling
ground states predicted in [27] for g < 0. The other four states
can be obtained by a ⇡/2 rotation. Blue circles are the Majo-
rana modes, a bond between them indicates the combination
of the MZMs into a Dirac fermion. The larger circle on the
bond represent the occupation of the Dirac mode.

We combine the Majoranas on each vertical link to make
Dirac fermions. Thus

�m,0 = cm + c†m

�m,1 = (�1)mi(c†m � cm) (3.2)

The horizontal hopping term become:

H0 = 2it
X

m

[c†mcm+1 � c†m+1cm]. (3.3)

The vertical hopping term vanishes with periodic bound-
ary conditions in the y direction since �m,0�m,1 +
�m,1�m,0 = 0. The interaction term becomes:

Hint = 2g(2c†mcm � 1)(2c†m+1cm+1 � 1). (3.4)

For the 4-leg case there is no exact U(1) symmetry and the model
is not analytically solvable except at infinite coupling. We 
analyzed it with DMRG.  To analyze the infinite coupling limit we
define complex fermions:
!",$ ≡ ('",( + *'",$)/2, !",. ≡ ('",. + *'",/)/2.  Then it can

be seen that the interaction term preserves fermion parity on 
each rung (unlike the horizontal hopping term).
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So, at strong coupling we can restrict ourselves to only 
2 states (with fixed fermion parity) on each rung. We 
can map these 2 states into the xy model with Hamiltonian:
! = −2%∑'[ )'* )'+,* + )'.)'+,. ].  This is the gapless 
xy (or xz) model. Unlike the 2-leg case, this model is 
gapless with no broken symmetry (except for fermion 
parity).  Adding a small hopping term produces a gap. 
For small t/g we can ignore horizontal hopping since it 
changes the fermion parity on each rung. This can be 
shown to increase the energy by an amount of O(g).
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On the other hand, vertical hopping just gives a perturbation:
! =#

$
[ − 2((*$+ *$,-+ + *$/*$,-/ ) + 21*$+ ]

for even fermion parity and 
! =#

$
[ − 2( *$+ *$,-+ + *$/*$,-/ − 21*$/ ]

for odd fermion parity. These lead to gapped states with 
the spins ordering in the z or +x direction for even or odd
fermion parity, for g>0.  For even fermion parity 
34$,64$,-, 34$,74$,8 → *$+ so the ferromagnetic order
corresponds to Majoranas pairing up to form Dirac fermions 
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enough negative g, g < gc1 a symmetry-breaking phase
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and empty as indicated in Fig. (2). As shown in Fig. (2),
the strongly coupled ordered phase is four-fold (eight-
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Figure 2. (a) The symmetry-breaking pattern for two of
the four strong-coupling ground states of the two-dimensional
Majorana-Hubbard model for g > 0 on the square lattice pre-
dicted in [27] using mean field theory. The other two states
can be obtained by a ⇡/2 rotation. (b) Four of the eight
symmetry-breaking patterns of the mean-field strong-coupling
ground states predicted in [27] for g < 0. The other four states
can be obtained by a ⇡/2 rotation. Blue circles are the Majo-
rana modes, a bond between them indicates the combination
of the MZMs into a Dirac fermion. The larger circle on the
bond represent the occupation of the Dirac mode.
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�m,1 = (�1)mi(c†m � cm) (3.2)
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The vertical hopping term vanishes with periodic bound-
ary conditions in the y direction since �m,0�m,1 +
�m,1�m,0 = 0. The interaction term becomes:
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Figure 2. (a) The symmetry-breaking pattern for two of
the four strong-coupling ground states of the two-dimensional
Majorana-Hubbard model for g > 0 on the square lattice pre-
dicted in [27] using mean field theory. The other two states
can be obtained by a ⇡/2 rotation. (b) Four of the eight
symmetry-breaking patterns of the mean-field strong-coupling
ground states predicted in [27] for g < 0. The other four states
can be obtained by a ⇡/2 rotation. Blue circles are the Majo-
rana modes, a bond between them indicates the combination
of the MZMs into a Dirac fermion. The larger circle on the
bond represent the occupation of the Dirac mode.

We combine the Majoranas on each vertical link to make
Dirac fermions. Thus

�m,0 = cm + c†m

�m,1 = (�1)mi(c†m � cm) (3.2)

The horizontal hopping term become:
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The vertical hopping term vanishes with periodic bound-
ary conditions in the y direction since �m,0�m,1 +
�m,1�m,0 = 0. The interaction term becomes:

Hint = 2g(2c†mcm � 1)(2c†m+1cm+1 � 1). (3.4)

On the other hand, for odd fermion parity
!"#,%"#,&, !"#,'"#,( → −+#, so we get the other 
mean field state: 

even fermion parity
odd fermion parity
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For g>0 we only find one transition.  Mapping into complex
fermions and ignoring interactions, we get 1 gapped 
complex fermion and 1 gapless complex fermion.  At small g,
we may integrate out the gapped mode.  Then we find the
U(1) breaking interactions are irrelevant and the U(1) 
preserving interactions are of standard spinless Luttinger
liquid form: Umklapp term.
We thus predict a Kosterlitz-Thouless transition
into a gapped phase at sufficiently strong g. This agrees 
well with DMRG results.  In the 2D limit we expect this 
transition to become SUSY.
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There are 3 additional transitions in the 4-leg ladder for negative g 
with stable phases with central charges 3/2, 2 and 1 which we 
haven’t fully understood



Triangular Lattice Case
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-Now 3 types of plaquettes. The mean field states only 
minimizes the energy on 1/6 of the plaquettes. 
So, mean field theory doesn’t predict Majorana pairing to form 
Dirac fermions. 
-DMRG results on the 4-leg ladder do not find broken symmetries 
even at strong coupling, consistent with the mean field theory. 
-There is a gapless phase for g<-0.55 which is rather mysterious
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-the Majorana-Hubbard model on various lattices has 
rich phase diagrams
-Majoranas like to pair up to form complex fermions for 
strong enough coupling, breaking discrete symmetries
-Supersymmetry can be realized in both 1 and 2 dimensions

Conclusions
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