Can the Macroscopic Fluctuation Theory be Quantized?

Denis Bernard (CNRS & LPENS, Paris) with

Michel Bauer, Fabian Essler, Ludwig Hruza, Tony Jin, Alexandre Krajenbrink, Marko Medenjak, Lorenzo Piroli.

IPhT Hubert Saleur's Fest, Sept. 2021

Back in the 80's...

Le pavillon de Valois de l'ancien château de Saint-Cloud accueille de 1882 à 1987

Hopefully useful in a future collaboration...

Is there a Quantum Analogue of the Macroscopic Fluctuation Theory?

- Is there universality in the fluctuations (of local observables, of entanglement, etc) in out-of-equilibrium diffusive many-body systems?....
- Which questions we would like to address?
 - -> Describe diffusive (not ballistic) but coherent processes (at mesoscopic scale) and their fluctuations in many body systems out-of-equilibrium ...
 - -> Get quantitative information on transport, interferences, entanglement or information statistics and dynamics, on monitoring, etc, in those systems ...
- Nice, rich, quantum stochastic processes, generalising well known classical processes (say SSEP, ASEP) with unexpected connexions ... (integrability, probability & group theory, combinatorics, ...)

Classically: the Macroscopic Fluctuation Theory

— An effective theory coding for the fluctuations in out-of-equilibrium classical systems

via a noisy Fourier-Fick's law

$$\begin{split} \partial_t \mathfrak{n}(x,t) + \partial_x \mathfrak{j}(x,t) &= 0 \\ \mathfrak{j}(x,t) &= -D(\mathfrak{n}) \partial_x \mathfrak{n}(x,t) + \sqrt{L^{-1}\sigma(\mathfrak{n})} \, \xi(x,t) \end{split}$$

j(x,t) = current

[Bertini, Sole, Gabrielli, Jona-Lasinio, Landim, ...]

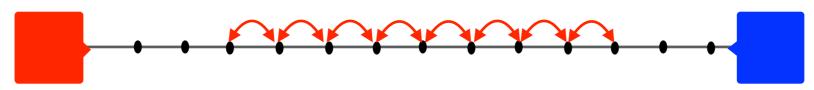
n(x,t) = profile

-> Statistics on profile, transport and their fluctuations.

Say, large deviation functions for fluctuations of the density profile:

$$\mathbb{P}\mathrm{rob}\Big[\mathrm{profile} = n(\cdot)\Big] \asymp e^{-(L/a_{uv})\,F[n(\cdot)]} \qquad \qquad \text{``analogue "`offree energy out-of-equilibrium'}$$

— MFT emerged from studies of (stochastic) lattice out-of-equilibrium models...



SSEP: Markov chain model of hopping particles

A (Putative) Quantum Mesoscopic Fluctuation Theory?

- Is quantizing (naively) the MFT an option ? $\partial_t \mathfrak{n}(x,t) + \partial_x \mathfrak{j}(x,t) = 0$ $\mathfrak{j}(x,t) = -\underline{D(\mathfrak{n})}\partial_x \mathfrak{n}(x,t) + \sqrt{L^{-1}}\underline{\sigma(\mathfrak{n})}\,\xi(x,t)$
 - -> Other options ...
 - -> Simple (realistic?) toy models...

What / how for Q-MFT?

- -> Deal with diffusive (not ballistic), noisy but coherent quantum processes ... in many-body systems (out-of-equilibrium) ...
- -> Transport but beyond « hydrodynamics » (off-diagonal contribution)

```
structure of coherences;structure of entanglement;dynamics/fluctuations;
```

-> Not yet fully available... Look for simple models (if universal enough)...

— Fermions hopping on a lattice with Brownian amplitudes

$$dH_t = \sqrt{D} \sum_j \left(c_{j+1}^\dagger c_j \, dW_t^j + c_j^\dagger c_{j+1} \, d\overline{W_t^j} \right)$$
 + boundary terms...

— One of the simplest model of quantum (fluctuating) diffusion

$$d\hat{n}_j = D \; (\Delta \hat{n})_j \, dt + d[\mathrm{Qu-Noise}]$$
 for $\hat{n}_j = c_j^\dagger c_j$ = number operators.

— Quadratic but noisy model (—> free fermion techniques):

The evolution is stochastic, so is the quantum state and hence : $G_{ij}=\langle c_j^\dagger c_i \rangle_t$ Stochastic process on ${\it G}$: $G_{t+dt}=e^{-idh_t}G_te^{+idh_t}$ with 'dh' the one-particle hamiltonian

Closed versus Open systems
 (A): closed -> equilibrium
 (B): open -> driven out of equilibrium

The Quantum SSEP (II):

— Relation to SSEP ? In mean, for $ar{
ho}_t := \mathbb{E}[
ho_t]$

For mean density matrices, diagonal in the occupation number basis, the dynamical equation $\partial_t \bar{\rho}_t = \mathcal{L}_{\rm ssep}(\bar{\rho}_t)$ is the SSEP master equation.

— The quantum model codes for quantum coherent effects.



More than in the classical analogue (due to coherences/interferences)

— Higher moments and fluctuations : $ar{
ho}_t^{(n)} := \mathbb{E}[
ho_t \otimes \cdots \otimes
ho_t]$

Their dynamics is also Lindblad like (but at higher rank)

$$\partial_t ar{
ho}_t^{(n)} = \mathcal{L}_{\mathrm{ssep}}^{(n)}(ar{
ho}_t^{(n)})$$
 spin chain dynamics ...

(A) Closed model: Fluctuations at Equilibrium

- Periodic boundary condition -> Equilibrium State (at large time)

- Steady/Invariant measure : $G_{ij} = \langle c_j^\dagger c_i \rangle$ mapping to RMT (via ergodicity)
 - 1 point functions (mean decoherence): $\mathbb{E}[G_{ii}] = N_1/L \equiv \bar{n} \qquad \text{(equilibrium)}$ $\mathbb{E}[G_{ij}] = 0 \qquad (i \neq j) \qquad \text{(decoherence)}$
 - 2 point functions (fluctuating coherences): ($\Delta \bar{n}=$ initial density variance, $N_k={
 m Tr}(G^k)$)

$$\mathbb{E}[|G_{ij}|^2]=rac{LN_2-N_1^2}{L(L^2-1)}\equivrac{(\Deltaar{n})^2}{L}$$
 i.e. $\langle c_j^\dagger c_i
angle\simeq O(rac{1}{\sqrt{L}})$

- -> Fluctuating coherences are generated from the inhomogeneities of the profile.
- Steady state = non random equilibrium state + fluctuations

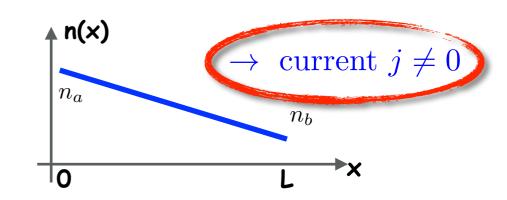
$$\lim_{t\to\infty}\rho_t\equiv\rho_{\rm eq.}+(\delta\rho)\qquad \text{with}\qquad \rho_{\rm eq.}=Z^{-1}~e^{-\mu\hat{N}_{\rm tot}}$$
 plus fluctuations are of order 1/L^{1/2}
$$-> \text{Large deviation function.}$$

(B) Open model: Non-Equilibrium Fluctuations

- Open boundary condition -> System is driven out-of-equilibrium

— Mean profile (x=j/L) —> out-of-equilibrium:

$$[n_j]:=\mathbb{E}[\langle c_j^\dagger c_j
angle]=n_a+x(n_b-n_a)$$
 (x=j/L, at large system size L)



- Fluctuations & coherences -> Steady statistics of (coherent) fluctuations.

$$\mathbb{E}[G_{ij}G_{ji}]=rac{1}{L}(\Delta n)^2x(1-y)+O(L^{-2})$$
 for $G_{ij}=\langle c_j^\dagger c_i
angle$

More generally, the scaling with L of the higher cumulants ensures the (formal) existence of large deviation function recursively known

$$\mathbb{E}[G_{i_1 i_N} \cdots G_{i_3 i_2} G_{i_2 i_1}]^c = \frac{1}{L^{N-1}} g_N(x_1, \cdots, x_N) + O(L^{-N})$$

Where are we (with Q-SSEP & Co)?

- Invariant measure (large time statistics)
 - -> Closed Q-SSEP: Mapping to RMT and to the HSIZ integral.
 - -> Open Q-SSEP: Combinatorial results... (« need a better description »)
- Large deviation for state fluctuations
 - -> Closed Q-SSEP: Formal power series (only).
 - -> Open Q-SSEP: Better characterization?... (« missing ... »)
- Entanglement (steady) statistics (dynamics ??)
 - -> Closed Q-SSEP: Large deviation function for sub-system entanglement
 - -> Open Q-SSEP: (« missing ... »)
- Fluctuation dynamics (scaling/continuous theory)
 - -> Closed Q-SSEP: Hydrodynamics like description of the large time dynamics of fluctuations (-> relevant corrections to diffusion)....
 - -> Open Q-SSEP: Hydrodynamics... (« in progress »)
- -> Extension of the domain of validity of those hydrodynamics equations « à la MFT »....

(Un-reasonable) connexions to combinatorics

- Recall
$$\left[G_{i_1i_N}\cdots G_{i_3i_2}G_{i_2i_1}\right]^c = \frac{1}{L^{N-1}}\,g_N(x_1,\cdots,x_N) + O(L^{-N})$$

- Take all points to be equal : $x_j = -t$

Then:
$$g_N(\mathbf{x})|_{x=-t} = t(1+t)\Phi_{N-1}(t)$$

Then:
$$g_N(\mathbf{x})|_{x=-t}=t(1+t)\Phi_{N-1}(t)$$

$$\Phi_2(t)=1+2t,$$

$$\Phi_3(t)=1+5t+5t^2,$$

$$\Phi_4(t)=1+9t+21t^2+14t^3,$$

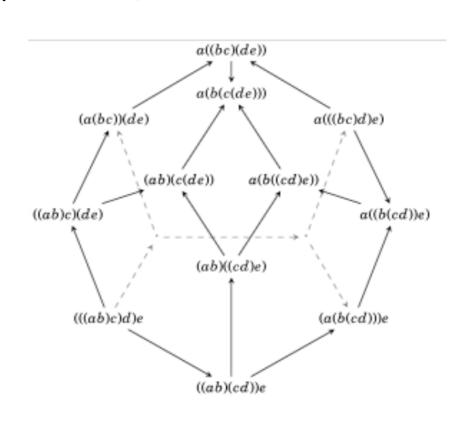
$$\Phi_5(t)=1+14t+56t^2+84t^3+42t^4.$$

-> These are the generating functions counting the number of (n-k) dimensional faces in the associahedron of order n.

- vertices = different parenthesis
- edges = associativity rule

$$(a(bc)) \longleftrightarrow ((ab)c)$$

- this graph is a polytope.



Conclusion:

Many open questions related to quantum stochastic processes and to constructing a Quantum Mesoscopic Fluctuation Theory

...

Thank you!!

Closed Q-SSEP invariant measure (ergodicity)

Theorem: [Bauer-Bernard-Jin]

Let G_0 be the initial matrix of 2-point functions Let Z(A) be the stationary generating function

$$Z(A) = \mathbb{E}\left[e^{\operatorname{tr}(AG)}\right]$$

Then:

Z(A) is U(L) invariant and represented by the Harish-Chandra-Itzykson-Zuber integral from random matrix theory:

$$Z(A) = \int_{U(L)} dV \, e^{\operatorname{tr}(VAV^{\dagger}G_0)}$$

- -> Large deviation function for G.
- Why: The U(L) invariance emerges from the dynamics (stationarity condition).
 - Consequence from Hormander's theorem (via iteration of small generators)

$$e^{-idh_{t_1}} \cdot e^{-idh_{t_2}} \cdots e^{-idh_{t_m}}$$

- -> A kind of ergodicity.
- If U(L) invariant

$$Z(A) = \int_{U(L)} dV \, Z(VAV^{\dagger}) = \int_{U(L)} dV \, \mathbb{E}[e^{\operatorname{tr}(AV^{\dagger}GV)}] = \int_{U(L)} dV \, e^{\operatorname{tr}(VAV^{\dagger}G_0)}$$

Closed Q-SSEP: dynamics of fluctuations (i)

[Bernard-Essler-Hruza-Medenjak]

— In the scaling limit:

$$a_{UV} \to 0, \ N \to \infty, L = Na_{UV} = \text{fixed}, \quad J \to \infty, D = Ja_{UV}^2 = \text{fixed}$$

Mean density is diffusive. Higher diffusive but with relevant corrections.

$$\mathfrak{g}_+(x,y,t) := \lim_{ ext{scaling}} \mathbb{E}[G_{jj}(t)G_{kk}(t)]$$
, (density correlations)
$$\mathfrak{g}_-(x,y,t) := \lim_{ ext{scalin}\sigma} \mathbb{E}[G_{jk}(t)G_{kj}(t)]$$
. (coherence correlations) with $\mathfrak{g}_\sigma(x,y,t) = \mathfrak{g}_\sigma^{(0)}(x,y,t) + \varepsilon\,\mathfrak{g}_\sigma^{(1)}(x,y,t) + O(\varepsilon^2)$. $\varepsilon = a_{UV}/L = 1/N$

- diffusion of densities
$$\partial_t \mathfrak{g}_\sigma^{(0)}(x,y,t) = D(\nabla_x^2 + \nabla_y^2) \mathfrak{g}_\sigma^{(0)}(x,y,t) \;.$$

$$\mathfrak{g}_+^{(0)}(x,y,t) = \mathfrak{n}(x,t) \mathfrak{n}(y,t) \;, \quad \mathfrak{g}_-^{(0)}(x,y,t) = 0 \;.$$

- correction to diffusion of coherences

$$\begin{split} \partial_t \mathfrak{g}_-^{(1)}(x,y,t) &= D(\nabla_x^2 + \nabla_y^2) \mathfrak{g}_-^{(1)}(x,y,t) + \mathfrak{h}_+(x,y,t) \ , \\ \text{with} \ h_+(x,y,t) &= 2 \, DL \, \nabla_x \nabla_y \big(\delta(x-y) \mathfrak{n}(x,t) \mathfrak{n}(y,t) \big) \ . \end{split}$$

(B) Open: Non-Equilibrium Steady Fluctuations

— Steady statistics of (coherent) fluctuations : for $G_{ij} = \langle c_j^\dagger c_i
angle$

Example:
$$[G_{ij}G_{ji}] = \frac{1}{L}(\Delta n)^2 x(1-y) + O(L^{-2}) \qquad \text{(with x=i/L, y=j/L, i$$

— Products of G's are represented by graphs. (vertices = points, edges = G-insertions) The steady measure is then a measure on labeled graphs.

(ii)
$$\left[G_{i_1i_N}\cdots G_{i_3i_2}G_{i_2i_1}\right]^c = \frac{1}{L^{N-1}}g_N(x_1,\cdots,x_N) + O(L^{-N})$$

- Claim:

 (i) The single G-loops are the dominant cumulants (of G's).

 (ii) $\left[G_{i_1i_N}\cdots G_{i_3i_2}G_{i_2i_1}\right]^c=\frac{1}{L^{N-1}}\,g_N(x_1,\cdots,x_N)+O(L^{-N})$ (iii) The g_N's are recursively explicitly known (polynomials in the x's) and can be computed from generating functions.

 (iv) The scaling with L ensures the existence of a large deviation function.

 - -> Ad-hoc techniques (using the permutation group and formal power series) Connexion with combinatorics (Catalan number, etc). (polynomials with integer coefficients)

Low order cumulants (Open Q-SSEP):

— Cumulants of order two at finite system size:

For ixj:
$$[G_{ij}G_{ji}]^c = \frac{(\Delta n)^2 \, (i+a)(L-j+b)}{(L+a+b-1)(a+b+L)(a+b+L+1)},$$

$$[G_{ii}G_{jj}]^c = -\frac{(\Delta n)^2 \, (i+a)(L-j+b)}{(L+a+b-1)(a+b+L)^2(a+b+L+1)},$$

$$[G_{ii}^2]^c = \frac{(\Delta n)^2 \, \big(2(i+a)(L-i+b)-(L+a+b)\big)}{2(a+b+L)^2(a+b+L+1)},$$

— Cumulants of order two at large system size:

For x[G_{ij}G_{ji}]^c = \frac{1}{L}(\Delta n)^2 x(1-y) + O(L^{-2}),
$$[G_{ii}G_{jj}]^c = -\frac{1}{L^2}(\Delta n)^2 x(1-y) + O(L^{-3}),$$

$$[G_{ii}^2]^c = \frac{1}{L}(\Delta n)^2 x(1-x) + O(L^{-2})$$
 diagon

off-diagonal fluctuations (coherences)

diagonal fluctuations

$$= [G_{ii}G_{jj}] \text{ for } i \neq j \text{ by } [i \bigcirc j \bigcirc j], [G_{ij}G_{ji}] \text{ for } i \neq j \text{ by } [i \bigcirc j] \text{ and } [G_{ii}^2] \text{ by } [i \bigcirc j].$$