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/ One-dimensional many-body interacting systems with conservation laws

which admits a certain number of conservation laws,

0igi + 0ufi =0,  0:Qi=0, Qi=)> qx)

TEZ

For illustration purposes, | concentrate on the XX model:

H:—Z [010;+1+0x0$_|_1—|—h0 }
x €L

but all ideas hold for more general systems, integrable or not.

| will consider throughout a thermal state
() = Z—lTr(e—ﬁH . )

but all ideas hold for more general states such as GGEs ¢ 2. BZQ??.

" /

We are given some Hamiltonian H for an extensive (infinitely long) system in one dimension,
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/ Correlations at large scales of space and time

The problem under study: dominant correlations at large scales of space and time:
(a(@,)6(0,0))° ~ 727 (|a],t — o0)

where (a (x,t)6(0,0))¢ = (a(x,t)6(0,0)) — (a(x,t))(6(0,0)) is the covariance.

| will be concentrating on hyperbolic scaling,

x|, t — o0, x/tfixed.
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/ Correlations at large scales of space and time \

The problem under study: dominant correlations at large scales of space and time:
(a(2,)6(0,00¢ ~ 277 (|z|,t — o0)

where (a (x,t)6(0,0))¢ = (a(x,t)6(0,0)) — (a(x,t))(6(0,0)) is the covariance.

| will be concentrating on hyperbolic scaling,

x|, t — o0, x/tfixed.

e Even in integrable systems, with Bethe ansatz and inverse scattering, this is a monumental

problem: dynamics is difficult

e Hydrodynamics offers a number of universal principles, valid with or without integrability,
which give asymptotics in terms of much simpler quantities; much of these are fully

accessible in integrable systems via TBA and GHD.
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/ Boltzmann-Gibbs principle: physical picture

There is a reduction of the number of degrees of freedom, a projection onto slowly
decaying hydrodynamic modes (or ballistic waves),

lim (a(0,0)6(x,t))® ~ projection of a onto modes g;
x,t— 00

X propagation (¢;(0,0)q,(x,t))°

X projection of modes ¢; onto 6

a(0,0) qi7s 5(56,?5)

yas *’é

oo




/ Boltzmann-Gibbs principle: theorems

Define inner product (“susceptibilities” with wavenumber k) (we look for £ — 0)
(a,6)r =) e*(al(x)6(0))°
T

Define matrix of susceptibilities (or static correlation matrix)

Cz'j = <(7@'7 qj>07 with inverse Cijij = 5;71




/ Boltzmann-Gibbs principle: theorems

Define inner product (“susceptibilities” with wavenumber k) (we look for £ — 0)
(a,6)r =) e*(al(x)6(0))°
T

Define matrix of susceptibilities (or static correlation matrix)
Cz'j = <(7@'7 qj>07 with inverse Cij ij = 5;71

Define an appropriate generalised limit & — 0,7 — oo with £t fixed (hyperbolic scaling)

1 /7
lim f(t¢, k) = banach lim — dt f(t,k/t)

kt=k T — 00 T 0
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/ Boltzmann-Gibbs principle: theorems

Define inner product (“susceptibilities” with wavenumber k) (we look for £ — 0)

(a,6), =) e (a’(2)6(0))°

X

Define matrix of susceptibilities (or static correlation matrix)
Cz‘j - <qz'7 qj>07 with inverse Cz'j cim = 5:’1

Define an appropriate generalised limit k — 0, ¢ — oo with k£t fixed (hyperbolic scaling)

1 /7
lim f(t,k) = banach lim — dt f(t,k/t)

kt=k T — 00 T 0

Theorem [BD 2020]. In every short-range homogeneous quantum spin chain, for any local

operator a, 6, we have

lim (a(t), 6)r = Z (@, qi)0 C7 Sjm (k) C™ (¢n, 6)o
i,7,m,m

where Sim(k) = lim (q; (%), gm )k

\ kt=k




/ Boltzmann-Gibbs principle: theorems \

Theorem [BD 2020]. In every short-range homogeneous quantum spin chain, for any local
operator a, 6, we have

kt=k 4
Z7]7m7n

where Sim(k) = 16121:11%(673' (t): gm) K

° (-, ->0 gives rise to an inner product and a Hilbert space, interpreted as the Hilbert space
of extensive homogeneous observables #.

t[H,]

e Time evolution 7+ = €’ ives rise to a unitary operator on #¢.
¢
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where

e Time evolution 7; = €'

Boltzmann-Gibbs principle: theorems

Theorem [BD 2020]. In every short-range homogeneous quantum spin chain, for any local

operator a, 6, we have

lim (a(t), 6)r = Z (@,4i)0 C7 Sjm (k) C™™ {qn, 6)o
1,7,1,Nn

Sjm(’{’) — kl%I:n’JqJ (t)aqm>k

° (-, ->0 gives rise to an inner product and a Hilbert space, interpreted as the Hilbert space

of extensive homogeneous observables #.

t1H:] gives rise to a unitary operator on #.

e The space of conserved charges is rigorously defined as Q = N;ker 7 C #.

e The conserved quantities g; are any finite or countable basis, Q = span{q; }.

~

/
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Boltzmann-Gibbs principle: theorems

Theorem [BD 2020]. In every short-range homogeneous quantum spin chain, for any local

operator a, 6, we have

Jim ((6).6) = 3 (@,01)0 €7 (k) €™ (g, 6)o
1,7,MM,N

where Sim(k) = lim (q;(t), gm )k

kt=k

(-, ->0 gives rise to an inner product and a Hilbert space, interpreted as the Hilbert space

of extensive homogeneous observables #.

tlH,-] gives rise to a unitary operator on #.

Time evolution 7 = el
The space of conserved charges is rigorously defined as Q = N;ker 7, C #.

The conserved quantities g; are any finite or countable basis, Q = span{q; }.

Q is infinite-dimensional in integrable systems. It is conjectured to be finite-dimensional in

chaotic systems.

~

/

11



/ Boltzmann-Gibbs principle: theorems \

Theorem [BD 2020]. Under an appropriate extension of the space of local operators (as
elements of the Gelfand-Naimark-Segal space), every local density g; has an associated local
current j; satisfying

Orqi(z,t) + O0p ji(x,t) =0
and for every local q;, gy,

d ; n . , In
&Szm(/ﬁ?) =1 ;Az Snm(/f) —| Z <]’é7Ql>OC Snm(/f)

n
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/ Boltzmann-Gibbs principle: theorems \

Theorem [BD 2020]. Under an appropriate extension of the space of local operators (as
elements of the Gelfand-Naimark-Segal space), every local density g; has an associated local
current j; satisfying

Orqi(x,t) + Oz ji(x,t) =0

and for every local q;, g,

d ] n ] : In
@Sim(/‘i) — 1 zn:A,L Snm(ff) —1 Z <J7L>Ql>0c Snm(ff)

n

The solution is S(x) = exp[iAx|C. Physically, the equation comes from linear response,
leading to wave-propagation equations

Oroqi(x,t) + ZAijax&lj(i’?at) =0, A/ = 8<ﬁ.>
J

[physical argument can be extended to nonlinear response for higher-point functions: BD 2019 and especially Fava,

Qiswas, Gopalakrishnan, Vasseur, Parameswaran 2021] /
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/ Boltzmann-Gibbs principle: fluid-cell averaging

A more physical way of re-writing the final result is using fluid-cell averaging

(@(lx, £6)6(0,0))° ~ €7y (a,q:)0 CY 6(x — At);" (gn. 6)0

7’?]7“

1 oa [
a(x,t):ﬁ Z / dsa(x +y,t+ s)
y=—R" &

by

!> R — o0
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/ Boltzmann-Gibbs principle: application to integrable systems \

The result can be evaluated in integrable systems

(@(lx, £6)6(0,0))° ~ €7y (a,q:)0 CY 6(x — At);" (gn. 6)0
1,7,M
e C: known from TBA
e A: known from GHD

o (a,q;)g = —0{a)/OB": known if the GGE average (a ) is known

15



/ Boltzmann-Gibbs principle: application to integrable systems \

The result can be evaluated in integrable systems

(@(lx, £6)6(0,0))° ~ €7y (a,q:)0 CY 6(x — At);" (gn. 6)0
©,J,m
e C: known from TBA
e A: known from GHD
o (a,q;)g = —0{a)/OB": known if the GGE average (a ) is known

For conserved densities

(q;(x, £t)q;(0,0))° ~ £ /dk pp(k)(1 = n(k))d(z — v (k)t)h{" (k)" (k)

" /
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/ Boltzmann-Gibbs principle: application to XX model \

XX model:

H:—Z [alai+1—|—0xaa§+1—|—h0 }
xEL

By Jordan-Wigner transformation: v° (k) = 4 sin k, and 0 = 2ala, — 1: conserved
fermion density with h(k) = 2.

17



/ Boltzmann-Gibbs principle: application to XX model \

XX model:

H:—Z [010;+1+03}0x+1+h0 }
T EL

By Jordan-Wigner transformation: v°% (k) = 4sin k, and 0® = 2al.a, — 1: conserved
fermion density with h(k) = 2.

x|, t — 00, z/t =&

Boltzmann-Gibbs principle gives

0oy~ = [ " k(e — v(k))n(k) (1 — n(k))

™ —TT

2
2 Y- (<
o a=4

where
1

1 4 exp {—B(2h$ \/W)}

n4 —
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/ Boltzmann-Gibbs principle: application to XX model

XX model:

H:—Z [alai+1—|—0xaa§+1—|—h0 }
xEL

By Jordan-Wigner transformation: v° (k) = 4 sin k, and 0 = 2ala, — 1: conserved
fermion density with h(k) = 2.

\:C\,t%oo, Qj/t:f

By direct Wick’s theorem and saddle point analysis

(02 ()o5(0))° ~

T|t| \/16 — &2 = Z

X Mg (1 —n, + al (1 — n_a)(_l)xe—Qai(a: arcsin(§/4)+t\/@))

~

/
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/ Boltzmann-Gibbs principle: application to XX model \

XX model:

H:—Z [alai+1—|—0xaa§+1—|—h0 }
xEL

By Jordan-Wigner transformation: v° (k) = 4 sin k, and 0 = 2ala, — 1: conserved
fermion density with h(k) = 2.
‘ZE‘,t — 00, :E/t =§

By direct Wick’s theorem and saddle point analysis; fluid-cell averaging cancels oscillatory

term

—3 3 C
o, (t)oy (0
FORO) ~ R 3
& —2ai(x arcsin(£/4)+t4/16—£2)

xna(l—naJrai(l H—a H—re : )

— Boltzmann-Gibbs result

" /
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Boltzmann-Gibbs principle: application to XX model

XX model:

H=-) |

TEZ

11
o 0x+1—|—0xax+

1—|—h0}

By Jordan-Wigner transformation: ot = exp (17‘(‘ Zy 0 yay) al —> zero overlap

(o

,Qk>o = ( with all conserved quantities g = c,tck (where ¢, = FT. of a,,).

~
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/ Boltzmann-Gibbs principle: application to XX model
XX model:

H:—Z [alai+1—|—0xaa§+1—|—h0 }
xEL

By Jordan-Wigner transformation: ot = exp (17‘(‘ Zy 0 yay) al —> zero overlap

(o™, qr)o = 0 with all conserved quantities g, = c,tck (where ¢, = FT. of ay).
‘CC‘,t —r 00, ZE/t =&

Boltzmann-Gibbs principle gives

22
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/ Boltzmann-Gibbs principle: application to XX model \
XX model:

H:—Z [alai+1—|—0xam+1—|—h0 }
xEL

By Jordan-Wigner transformation: ot = exp (177 Zz;é aLay) al, —> zero overlap
(o™, qr)o = 0 with all conserved quantities g, = c,tck (where ¢, = FT. of ay).
‘CE‘,t —r 00, ZE/t =&

Fredholm determinant calculation gives exponential decay, subleading to Euler scale
[lts, Izergin, Korepin, Slavnov 1992; Jie (PhD thesis) 1998]

(72 (t)og (0))° < exp[—¢(§)1]
~ 0

— Boltzmann-Gibbs result

23



-

Boltzmann-Gibbs principle: application to XX model

Three different types of behaviours are seen:

e Monotonic algebraic decay: BG predicts

e Oscillating algebraic decay: BG does not predict

e Exponential decay: BG does not predict

Can we explain / evaluate oscillatory algebraic decay, and exponential decay, using

general hydrodynamic principles?

~
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/ Finite-frequency hydrodynamic projections

The theorems on hydrodynamic projections stay valid if we replace time evolution by
T = pitadH 7 = p—iwt pitad H

and if we replace space translation by

e a(y) —maly+z) — =€y

That is, Hilbert space of “homogeneous” extensive observables # is based on ¢, and T; is

valid time-evolution unitary operators it. [BD 2020]

25



/ Finite-frequency hydrodynamic projections \

The theorems on hydrodynamic projections stay valid if we replace time evolution by

: B . o d
T = 611&8de —~ F=e 1wt61tad

and if we replace space translation by
e a(y) —maly+z) — =€y

That is, Hilbert space of “homogeneous” extensive observables #¢ is based on Lz, and 7y is
valid time-evolution unitary operators it. [BD 2020]

Redo the same hydrodynamic projection construction, but based on oscillating time evolution
and space translation: hydrodynamics near (w, k) instead of (0, 0).

w

\_ l“ Y,

26




/ Finite-frequency hydrodynamic projections

New fluid-cell average that extracts the oscillating part:

a(x,t) = % ER: /

y=—R"

R
ds eV~ (x 4+ y, t + 5)
R

New “susceptibility”

(a,6)0 =) " (at(x)6(0))°

x

New condition of conservation

i[H,Qi] =wQi, Qi=)» ¢*q(x)

27



/ Finite-frequency hydrodynamic projections

Same formula

(@(lx, ££)6(0,0))° ~ 71> “(a,q:)0 C7 6(x — At)* (gn, B)0

/I”..77n
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/ Application to XX model \

For every £ € (—4, 4) there are two modes of velocity £
]Cj: . U(]Cj:) = 4Sin(k:|:) = f

Then, there is an extensive (w, k)-conserved quantity with w = E(ky) — FE(k_) and
k=ky —k_:
Q = c'(ky)e(k-)

Using this, finite-frequency hydro projection correctly predicts

<E§; (t)O'S (0)>c w,’ k )(_1)xe—2ai(x arcsin(§/4)4+t4/16—£2)

mmz‘m“ -

Finite-frequency hydrodynamic projections give the correct oscillating algebraic decay! It is due

to the presence of two modes of different energies but with the same velocity.

" /
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/ Correlation functions of twist fields and ballistic fluctuation theory \

A “twist field” is a field e*#i(*:t) where the “potential” y; (, t) is formally defined by solving
the continuity equations:

%’(37,75) — axgpi(xat)a J'i(xat) — _atgpi(xat)

The two-point function is an exponential of a path-independent line integral in space-time:

(2.1)
(e M@t =200 = (exp [A / (Jidt — g;dz)])
(0,0)

(2, 1) (z,1) —pi(z,1)

A jidt — gida

(0, (3::) (0,0) | i(0,0)

" /
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Recall that

Correlation functions of twist fields and ballistic fluctuation theory \

r—1

+ _ i ir > al

O'm —amexp 17T CLyCLy
y=0

This involves the fermion density qo (7, t) = a.(t)a,(t).

Doing properly the JW transformation, one gets a “space-time Jordan-Wigner string”

(0 () (0)) = (al (t)emeol=D =000 g4(0))

x

The presence of a “string” leads to a field that is semi-local, and this is one reason why cht do

-

not project onto extensive conserved charges.

/
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/ Correlation functions of twist fields and ballistic fluctuation theory \

To the quantity
(,t)
(exp [)\/ (f:dt — qidx)b
(0,0)
we apply large-deviation theory:

(Lx,Lt)
e [\ [ (idt = qudo)]) = exp [¢F; (i)
(0,0)

F;(\; x,t) may be evaluated using Euler-scale Macroscopic Fluctuation Theory [BD,
Sasamoto, Yoshimura to appear], Or using the ballistic fluctuation theory [Myers, Bhaseen, Harris, Doyon
2019; Doyon, Myers 2019], in terms solely of objects from Euler hydrodynamics, as explained in
Takato’s talk.

" /
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/ Correlation functions of twist fields and ballistic fluctuation theory \

lts basis is the concept of “measure bias”

b b .
(exp [\ [U510 (dt — gydz)] - )

lim (To 00 = (-

t—ro0 <exp [)\ f(—ﬁx,—ﬁt) (]zdt — qzd$>}>

By using path-invariance and hydrodynamic projections, one can show, order by order in A,

that ( : ->>\ must be a (G)GE, and that the A-dependent GGE satisfies a flow equation

NBI(NE) =sgn(el —tANE)), B (0:6) =4, =a/t.

JJidt — qidw

0
D
0
0
D
0
Q
Q
Q
Q
Q
0
Q
0
D
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/ Correlation functions of twist fields and ballistic fluctuation theory

The flow determines the large-deviation, with associated “specific free energy” — scaled

cumulant generating function — given by

N
Fi(\x,t) :/o AN (tji(\5€) =z ai(N5€))

In the XX model for the fermion number (2 = 0), the GGE along the flow is described by the

function
w(X; & k) = BE(k) + Asgn(z — tu(k))

and the scaled cumulant generating function is

Fo(A; z, 1) :/W dr aj—tv(k)|log(

= 2T

1 + e~ wN&k)
1+ e—w(k) )

-

~
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/ Correlation functions of twist fields and ballistic fluctuation theory \

Using the flow on states and the SCGF, the required correlation function factorises into:
[BD, Del Vecchio Del Vecchio 2021]

e an exponential decay due to the interaction between the “boundary fermions” that occurs
well within the region between them where \-GGE is established,

e and a contribution from the large-deviation for fluctuations of total spin, or total spin
transport:

(aj, (£t)eMeotte =200 q0(0)) < (a], (£t)ag(0))x exp [CFo(X; z,1]

fermion
correlations .
In GGE a;  Spin transport

fluctuations

j
.
Q
Q
R
D
-
D
0
&




/ Results in the XX model

An analysis of both factors (saddle point, and ballistic fluctuation theory) gives the correct
results (||, t — oo, x/t =& € R)

~

(oF(t)ay (0)) (E(k) =4h — 2cosk, v(k) = 4sink)
exp (1] [ 516 o) 1o ranh 25| (€ < 1
exp |a:|/ log| anhﬂET()u (|€] > 4, |h| < 2)

[lts, Izergin, Korepin, Slavnov 1992; Jie (PhD thesis) 1998][— asymptotics of Fredholm determinants]

)(

(@) exp { — || min ( arccosh(|h|/2),

arccosh(l/4) ~ /1~ 1) ]
X exp [\w\/ log‘ tanh ﬁEQ(k) |]

\ [BD, Del Vecchio Del Vecchio 2021 — hydrodynamics]

(1] > 4, |n[ > 2)

/
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Results in the XX model

Comparison with numerics, e.g. in space-like region, e—lzl/¢

-0.35
-0.55
-0.75

-0.95

-1.15

1o 15 20 25 30 ° B0
. B=0.75
. B=1.
.« B=1.25
o B=1.5
o B=1.75

—— Theory
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/ Conclusions \

Finite-frequency hydro projection

e Related works in interacting models where “dynamical symmetries” are used to bound

finite-frequency Drude weights [Buca, Tindall, Jaksch 2019; Medenjak, Prosen Zadnik 2020].

e Probably the principles used here can be extended to generic integrable models using the

finite-density form factors (see reviews [De Nardis, BD, Medenjak, Panfil 2021; Cortés Cubero,

Yoshimura, Spohn 2021]).

e Finite-frequency hydrodynamic equations? Higher-point functions?

Twist fields

e Immediately applicable to other fields of interest such as e1? in the sine-Gordon model [in

progress with del Vecchio del Vecchio, Kormos], potentially for W field in Lieb-Liniger.

e Can be used to study non-equilibrium dynamics of entanglement entropy....

" /
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