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Operator entanglement

Jérome Dubail
Laboratoire de Physique et Chimie Théoriques, CNRS, Nancy, France

Hubert’s 60 birthday, Saclay, September 2021



Computing entanglement entropies:

-a business that was ‘suspiciously’ trendy in the late 2000s
(2007-2010: my PhD years with Hubert and Jesper)

-a topic | entered thanks to Jean-Marie Stéphan, my office mate in Saclay
(wonderful time with other PhD students/postdocs in the group at the time:
Constantin Candu, Azat Gainutdinov, Roberto Bondesan, Balazs Pozsgay...)

-although at the time, Hubert was not working on entanglement entropies, his
support and encouragements to publish our results with Jean-Marie were very
important

-a topic Hubert also contributed to, together with Jesper, Paolo Zanardi, Romain
Vasseur, Edouard Boulat, Romain Couvreur, and others...



S0, more than a decade later, I'm still computing entanglement
entropies...

okay, but this time it's about operators! (as opposed to states)



What is ‘operator entanglement’?
The definition

Take a quantum system corresponding to a Hilbert space

H=HisQHE

For simplicity, take H.4 = C% and Hp = C45,

Take an operator () acting on H., namely a complex matrix of size dadpg X dadp .

We would like to know ‘how far’ this operator is from a product operator

O~ 04x 0P
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What is ‘operator entanglement’?
The definition

Take a quantum system corresponding to a Hilbert space

H=HisQHE

For simplicity, take H 4 = C% and Hp = C45

Take an operator () acting on 7, namely a complex matrix of size dadp X dadg .

One can write an ‘operator Schmidt decomposition’

O =) )05 07
J

VirOtTO

where tr[OZATO;‘] = tr[OiBTOf] = d;; and A; =0



What is ‘operator entanglement’?
The definition

Take a quantum system corresponding to a Hilbert space

H=HisQHE

For simplicity, take H 4 = C% and Hp = C45

Take an operator () acting on 7, namely a complex matrix of size dadp X dadg .

Operator entanglement is then defined as

1 2
1—0410g Z)\j
J

with Renyi index @ > 0. (The limit & — 1 works as usual.)




What is ‘operator entanglement’?
The definition

Of course, this is nothing but saying that the dadp X dadp matrix O acting on H
can be viewed as a vector ‘O) in the the larger Hilbert space H & H of dimension

dil X dQB. We are simply looking at the usual entanglement entropy of that state | ().



Why care about ‘operator entanglement’?
One motivation: study of entanglement power

[Zanardi, Zalka, Faoro 2000], [Zanardi 2001], [Wang, Zanardi 2002]

Question: how much entanglement is produced by a unitary operator U, in average?

A 1 B

Zanardi et al. studied the entanglement power:

e(U) = E(U [va) [¥B))

[Ya)lYB)



Why care about ‘operator entanglement’?
One motivation: study of entanglement power

[Zanardi, Zalka, Faoro 2000], [Zanardi 2001], [Wang, Zanardi 2002]

In particular, they investigated whether

Sa(U |¥a) [¥B))

had something to do with the operator entanglement.

[Ya)lyB)

Answer: in general, no direct relation.
However for the Renyi-2 entropy, there is a relation. It reads

exp[—Sa(U [0a) [g)) ] ")

x 1-— (d_il_21)2 - (dj_21)2 (exp[—Sg(U)] -+ eXp[_SQ(US)] _ exp[—SQ(S)])

inthe case dy = dg = d . § isthe operator that swaps the subsystems A and B.



Why care about ‘operator entanglement’?
Another motivation

Question: can an operator 0, acting on a 1d system (spin chain) be well
approximated by a Matrix Product Operator (MPO) with small bond dimension?

In that context, operator entanglement was first investigated by [Prosen, Pizorn
2007], [Znidaric, Prosen, Pizorn, 2008] (they were calling it ‘Operator Space
Entanglement Entropy’ or OSEE).

Recently, revived interest in this quantity:

[JD 2016], [Zhou, Luitz 2016], [Jonay, Huse, Nahum 2018], [Xu, Swingle 2018],
[van Nieuwenburg, Zilberberg 2018], [Pal, Lakshminarayan, 2018], [Wang, Zhou,
2019], [Lezama, Luitz, 2019], [Alba, JD, Medenjak 2020], [Bertini, Kos, Prosen 2020]
etc.



Why care about ‘operator entanglement’?

Another motivation
S. (%)) bounded [Cirac Verstraete 2006],

(0<a<1) [Schuch, Wolf, Verstraete Cirac 2008]

W Bidssibibbann

Sa«(0) bounded
0<a<l)
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Why care about ‘operator entanglement’?
Another motivation

Question: can an operator () acting on a 1d system (spin chain) be well
approximated by a Matrix Product Operator (MPO) with small bond dimension?

A warning:

- by treating the operators as states, we tackle ‘approximability’ only with respect to
the L%norm. Not the L “norm.



Plan of the rest of the talk

1. basic results from 2d CFT (b 2016

1.  OE of evolution operator
2. OE of thermal state
3. OE of reduced density matrix after global quench

2. OE of Heisenberg-picture operators: integrable

VS. non-integrable
[Alba, JD, Medenjak 2020, Bertini, Kos, Prosen 2020, etc.]

3. OE of the density matrix under dissipative
evolution

work in progress with V. Alba, J. Schachenmayer, G. Preisser, D. Wellnitz,
2021



1.1 OE of the evolution operator

CFT prediction: linear growth

By adapting the a-sheeted surface/twist field trick of
[Calabrese Cardy 2004], [Calabrese Cardy 2005] /

[Cardy, Castro-Alvaredo, Doyon 2008], one can
easily derive the following result. / ¢ /

The evolution operator on an infinite line has an OE that blows up linearly in time.

A B

So(e ™) o t

Similarly to the linear growth of entanglement after a global quench [Calabrese Cardy

2005], this conclusion holds beyond CFT.
Same conclusion reached by [Zhou, Luitz 2016], [Jonay, Huse, Nahum 2018].



1.1 OE of the evolution operator

|
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bond dimension will blow up
exponentially with time



1.2 OE of thermal density matrix
CFT prediction: area law

BH

The thermal density matrix p = € on an infinite line has bounded OE:

b < 00

A B

Sy(e PH)Y = §<1+é> log 5

Note: it is formally the same calculation as for the entanglement entropy of the ThermoField Double
state. The logarithmic growth of the OE was also conjectured in [Znidaric, Prosen, Pizorn 2008].



1.2 OE of thermal density matrix
Consequence

A B

I I I I I I I I : I I I I I I I I
e—héT 6—h57’ 6—h57’ 6—h57‘ E 6—h57‘ 6—h57‘ e—héT 6—h57‘
| I | I [ I | | l I I I i I i I
e—h57‘ e—h(ST e—héT e—-h5’7' e—h57‘ e—h(ST e—h57‘
. | | | | | | | 3] | | | '. | '. .
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6—h57‘ e—héT 6—h57‘ 6—h57’ E 6—h57‘ 6—h57‘ 6—h57‘ 6—h57’

| I | I [ I i I« 1 I I I i I i I
e—h(ST e—h57‘ e—h5’7' 6—h57‘ e—h(ST e—héT e—h(ST

suggests that an efficient

compression is possible, so o _
MPO approximation should work This is a well-known fact, and it holds also for PEPS

in higher D
[Zwolak, Vidal 2004], [Hastings 2006],
[Molnar, Schuch, Verstraete, Cirac 2015], etc.

well at finite temperature



1.3 OE after a global quench

Global quench [Calabrese Cardy 2006]: |%o) — €% Jahg)

At time 1, take the reduced density matrix of a finite interval P A (t) :

B A B

Question: can p 4 (t) be approximated by an MPO?



1.3 OE after a global quench

Global quench [Calabrese Cardy 2006]: |%o) — €% Jahg)

At time 1, take the reduced density matrix of a finite interval P A (t) :

B Aq As B

Question: can p 4 (t) be approximated by an MPO?

The answer will depend on the behavior of Sa (,OA (t)) .



1.3 OE after a global quench

CFT prediction: ‘entanglement barrier’ at intermediate times

A=4,U4 XX spin chain
B A, A B
< > /
€ - > | —~
I — Ly~=16 r=8 CFT result
60l L, =32x2=16
L, =64 2=32
B LA =128 =64
50} -
= L4 =256 r=128
— a0}
<t
—
~ 30}
oy
20}
10}
0 1 1 1 ] 1
0 100 200 300 400 500

time ¢
(The CFT calculation parallels the one of [Coser, Tonni, Calabrese 2014] for the negativity, which has a
very similar behavior.) See also more recent studies by [Alba Calabrese 2018], [Wang Zhou 2019],
[Bertini Klobas]



2. OE of Heisenberg picture operators
Motivation: Heisenberg-picture DMRG/TEBD

Goal: calculate <¢0| Qb(t) |¢O>after a global quench.
Idea of DMRG/TEBD in Heisenberg picture: instead of approximating Sk WO>
by an MPS, one could approximate ¢(t) = e"**pe~**'* py an MPO.

[Hartmann, Prior, Clark, Plenio, 2009]
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OE of Heisenberg picture operators
Motivation: Heisenberg-picture DMRG/TEBD

Goal: calculate <¢0‘ Qb(t) WO) after a global quench.
Idea of DMRG/TEBD in Heisenberg picture: instead of approximating Sk WO>
by an MPS, one could approximate ¢(t) = e*"**pe~**'* py an MPO.

[Hartmann, Prior, Clark, Plenio, 2009]
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2. OE of Heisenberg picture operators
Motivation: Heisenberg-picture DMRG/TEBD

Goal: calculate <¢0‘ ¢(t) WO) after a global quench.
Idea of DMRG/TEBD in Heisenberg picture: instead of approximating e 11 Wo>

by an MPS, one could approximate ¢(t) = el pe Mt py an MPO.
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2. OE of Heisenberg picture operators

Motivation: Heisenberg-picture DMRG/TEBD

Goal: calculate <¢0‘ Qb(t) WO) after a global quench.

by an MPS, one could approximate ¢(t) = el pe Mt py an MPO.
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Idea of DMRG/TEBD in Heisenberg picture: instead of approximating € ’




2. OE of Heisenberg picture operators
Motivation: Heisenberg-picture DMRG/TEBD

Question: how does Sq (x, ¢(t)) grow with time?
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2. OE of Heisenberg picture operators

Known results (before 2020)

1
S1(x =0,t) ~ = logt
6
Sl (.CU — O, t) X 1 \
/
OE in Ising chai

OE in quantum chaotic Ising chain

141
12 7 .

10 / «\
. /]
- i
& /]

1 /f

[Jonay, Huse, Nahum, 2018]

Kree fermions)
v Sl (Sl?, ¢(t))

1
-40

[JD 2016]
(logarithmic growth found numerically by

[Prosen and Pizorn 2007])




2. OE of Heisenberg picture operators
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[Alba, JD, Medenjak 2020]



2. OE of Heisenberg picture operators
A conjecture (2020)

Conjecture formulated in [Alba, JD, Medenjak 2020]

(closely related conjecture by [Prosen and Znidaric 2007]).

The operator entanglement of local operators in interacting integrable
spin chains grows at most logarithmically with time (i.e. similarly to the
free fermion case).

Consequently, operator entanglement distinguishes integrable dynamics from chaotic dynamics.

Confirmed by analytic results in various systems: rule 54 chain [Alba, JD, Medenjak 2020], dual
unitary circuits [Bertini, Kos, Prosen 2020], holographic CFT [Caputa, Simon, Stikonas,
Takayanagi, Watanabe, 2015], etc.



3. OE of density matrix under Lindblad evolution
‘Standard’ scenario

Take a Hamiltonian for 1d system, for instance hard core bosons with hopping:

d .
H = Za;aﬂ'“ T aj’ﬂaﬂ' P = —i[H, p)
J
. coherent hopping
¥i N\ a
® l @ l I E o—0—— I O I
A : B

Question: how does the OE of the density matrix evolve after a quench from an initial state
with short-range correlations (e.g. Néel state)?

linear growth (exactly twice the
result for state entanglement)




3. OE of density matrix under Lindblad evolution
‘Standard’ scenario

Now add a dissipative part, for instance incoherent creation/annihilation of partiCIeS'

%p = —i|H, p +’YZ (a;r'/’aj 514y J’p}> JWZ <a3pa {a aj’p}>

/\Coherent hopping
o— l

“ incoherent
B creation/annihilation

of particles

>

Question: how does the OE of the density matrix evolve after a quench from an initial state
with short-range correlations (e.g. Néel state)?

7 initial linear growth (before
S1(p(t)) ~  dissipation kicks in)

_ exponential decay




3. OE of density matrix under Lindblad evolution

‘Standard’ scenario

Remark: the same observation has been used recently to argue against the ‘quantum
supremacy’ claim by Google [Noh, Jiang, Fefferman 2020]

x1 T2 T3 T4 Tp—3Tn-2Tn-1 Tn
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Figure 2: Noisy random circuit sampling in one dimension. Each noisy two-qubit gate is given by a 4 x4 Haar-random
unitary operation followed by a two-qubit depolarization channel N[p] with an error rate p. At the end of the circuit,
all the qubits are measured in the computational basis. For simplicity, we only consider even number of qubits.
Although the maximum circuit depth D is chosen to be even in the schematic illustration, we allow D to be odd as
well.

Maximum achievable
quantum correlation

S (focus of our work)
E ...........
£
-8
©
S E
=3
g s Deep circuits
=
Z0C Shallow circuits

Circuit depth

Figure 1: Schematic plot of the degree of non-trivial
quantum correlation as a function of the circuit depth.
When the circuit depth is small, quantum correlation
grows linearly in the circuit depth. On the other hand,
when the circuit depth is large, the system converges
to a depolarized state and thus the non-trivial quantum
correlations are washed away. The focus of our work is
to understand the optimal regime where the maximum
non-trivial quantum correlation is achieved. See also
Figs. 5 and 9.



3. OE of density matrix under Lindblad evolution
An exception to the standard scenario

Something odd happens for dephasing:

d a, a aTa
dt” HP+VZ( P15 =)
{:\ Noherent hopping
o + o o+ + o

B

Observation (Schachenmayer+Wellnitz+Preisser, work in progress): OE of the
density matrix after a quench from an initial state with short-range correlations

S1(p(t) |

dephasing

logarithmic growth at long time

e (?727)
- -




Conclusions

Operator Entanglement is interesting, it is useful to determine whether an operator
can be approximated by a Matrix Product Operator with small bond dimension

nice analytic calculations to do within 1+1d CFT, or with toy models (integrable
models, cellular automata, random circuits, dual unitary circuits, etc.)

some funny surprises:

the OE of operators in Heisenberg picture distinguishes chaotic from integrable dynamics
logarithmic growth of the OE of the density matrix under Lindblad evolution

% ’ Happy birthday Hubert!




