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Integrability is a very useful tool:

• quantum condensed matter

• quantum impurity problems

• classical stat. mech.

• stochastic processes

• random tilings

• string theory

• ultra-cold cold atoms

• combinatorics

• …


Open Quantum Systems.A (fairly) new kind of nail:



Lindblad equation for open quantum systems

Important as even cold atom systems are not perfectly isolated 

S

E

⇢(0) = ⇢S(0)⌦ ⇢E(0)

⇢S(t) = TrE [⇢(t)]

H = HS +HE +Hint

⇢(t) = e�iHt⇢(0)eiHt

Hamiltonian

initial state

density matrix

reduced DM

Goal: determine e.g. Tr[ρS(t) ΟS(x)] ΟS(x) = local operator 
acting on system



Lindblad equation for the reduced density matrix

Assumptions: separation of time scales
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Steady State.– The NESS is characterized by the condition L⇢ = 0. In the sector L = N = 2M , where L is the

total number of sites, it is easy to read o↵ the NESS in the Hubbard model representation

|NESSi =
�
⌘†
�M |0i, (10)

where |0i is the fermion vacuum defined by cj,�|0i = 0. Given that HHubb|0i = 0, the ⌘-pairing symmetry implies that
the state (9) has zero eigenvalue as well and therefore is a steady state. ⌘-pairing states like (9) attracted attention
in the early nineties in relation to high-Tc superconductivity, because they are exact eigenstates of the Hubbard
Hamiltonian that display o↵-diagonal long-range order[19]. However, in the Hubbard model they can never be ground
states. The corresponding state in the dissipative model is obtained by undoing the unitary transformation and is
of the form

P
nj2{0,1} |n1, . . . , nLi" ⌦ |n1, . . . , nLi#, where |n1, . . . , nLi run over all Fock states of one flavour. Hence
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Lk: jump operators, describe coupling to environment

(integrate out bath avoiding retardation)

Are there integrable Lindblad equations?
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j ãj � a†jaj � ã†j ãj
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space of operators is a linear 

vector space itself

“vectorization”

Operators acting from the left/right:

“Superoperator formalism”

|ρ⟩ = ∑
n,m

⟨n |ρ |m⟩ |m⟩ |n⟩⟩

𝒪ρ → 𝒪 |ρ⟩ ≡ ∑
n,m

⟨n |ρ |m⟩ (𝒪 |m⟩) |n⟩⟩

ρ𝒪 → �̃� |ρ⟩ ≡ ∑
n,m

⟨n |ρ |m⟩ |m⟩( �̃� |n⟩⟩) ⟨n′ | �̃� |n⟩ = ⟨n |𝒪 |n′ ⟩
for bosonic ops



Lindblad eqn becomes ∂
∂t

|ρ⟩ = ℒ |ρ⟩

ℒ = − iH + i H̃ + ∑
a

γa [LaL̃†
a −

1
2 (L†

aLa + L̃aL̃†
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Search for Lindblad equations for which 𝓛 is the (non-
hermitian) Hamiltonian of a quantum integrable model.

Medvedyeva, Essler & Prosen ’16

Rowlands & Lamacraft ’18, Shibata & Katsura ’19


Essler& Ziolkowska ’20, Essler& Piroli ’21, Robertson & Essler ’21

Buca et al ’20, Nakagawa, Kawakami & Ueda ‘20


de Leeuw, Paletta & Pozsgay ’21 …



•    •    •    •    •    •    •

Setup considered here

jump ops act on all n.n. bonds

Lindbladian: ℒ = − iH + i H̃ + γ∑
j

[LjL̃†
j −

1
2 (L†

j Lj + L̃jL̃†
j )]

structure of a 

2-leg ladder

•    •    •    •    •    •    •

•    •    •    •    •    •    •

H

H̃

L†
j Lj

L̃jL̃†
j

LjL̃†
j

Lindblad structure is very restrictive and most integrable ladders

cannot be accommodated.



Hubbard-like models

Integrability structure of Hubbard is unusual Shastry ‘88

R[12],[34](λ, μ) = r13(λ − μ) r24(λ − μ) + h(λ, μ) r13(λ + μ) C1 r24(λ + μ) C2

r12(λ12)r13(λ13)r23(λ23) = r23(λ23)r13(λ13)r12(λ12)

r12(λ1 + λ2)C1r13(λ1 − λ3)r23(λ2 + λ3) = r23(λ2 + λ3)r13(λ1 − λ3)C1r12(λ1 + λ2)

YBE:

“Decorated YBE”:

Conjugation matrix: C2 = 1

This structure (essentially) ensures a Lindblad interpretation.

“Glueing together” two XX models



imaginary t Hubbard model
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or, via Jordan-Wigner
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Tight-binding model with dephasing noise



Maassarani models and GL(N,M) generalisations
Drummond et al ‘07

Maassarani ‘98
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with dephasing noise



Quantum ASEP Jin, Krajenbrink & Bernard ’20

Bauer, Bernard & Jin ’19, ‘20

H(t) =
L

∑
j=1

κj(t)σ+
j σ−

j+1 + κ̄j(t)σ−
j σ+

j+1

spin-1/2 chain coupled to quantum noise

TrE[ρEκj(t)κ̄k(t′ )] = J1δj,kδ(t − t′ ) TrE[ρEκ̄j(t)κk(t′ )] = J2δj,kδ(t − t′ )

Average over quantum noise ➝ Lindblad equation

L(1)
j = (L(2)

j )† = σ+
j σ−

j+1 2 jump operators/link(i)

(ii) no Hamiltonian part in the LE
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| ↑ ⟩j j⟨ ↑ | ⇒ |1⟩j

| ↓ ⟩j j⟨ ↑ | ⇒ |2⟩j

| ↑ ⟩j j⟨ ↓ | ⇒ |3⟩j

| ↓ ⟩j j⟨ ↓ | ⇒ |4⟩j

Superoperator formalism:

Basis of superoperators: Eab
j ≡ |a⟩j j⟨b | , a, b ∈ {1,2,3,4}

Lindblad equation:
d |ρS(t)⟩

dt
= ℒ |ρS(t)⟩



Operator space fragmentation

 has an extensive number of strictly local conservation lawsℒ

[ℒ, E22
j ] = 0 = [ℒ, E33

j ] j=1,..,L

Essler&Piroli ’20

➝  is block-diagonal ℒ
•

•••

•

•

•

•

•

•• •
•

•
•

•
•

|2⟩|2⟩

|3⟩

frozen under dynamics

{ |1⟩, |4⟩}

ℒ → ℒ[1,ℓ1−1] + ℒ[ℓ1+1,ℓ2−1] + ℒ[ℓ2+1,L−1]

2
1

L ℓ1

ℓ2

, = “defects”|2⟩ |3⟩



Each block of the Lindbladian is integrable!

S−1ℒ[m,n]S = −
J1J2

2 (2Δ +
n−1
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j σx

j+1 + σy
j σy
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Defect-free sector: Asymmetric exclusion process (ASEP)

ℒASEP =
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[J1σ+
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j+1 +
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4 (σz
j σz
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Spitzer ’70

Gwa&Spohn ’92


Derrida, Pasquier,…



➝ can use integrability methods to determine spectrum of ℒ

Tr [ρ(t)σ+
1 σ−

ℓ ] = ⟨ϕ |E22
1 eℒ[2,ℓ−1]tE33

ℓ eℒ[ℓ+1,L]t |ρ(0)⟩

What about correlation functions?

where ⟨ϕ | = ⊗L
j=1 [j⟨1 | + j⟨4 |]

Not known how to calculate this for ASEP/XXZ.



L(1)
j = (L(2)

j )† = σ+
j σ−

j+1

Look at simpler problem:

L(3)
j = (L(4)

j )† = σ+
j σ+

j+1

Here the corresponding Lindbladian has a free fermion point

& exhibits operator-space fragmentation

Tr [ρ(t)σ+
1 σ−

ℓ ] = ⟨ϕ |E22
1 eℒ[2,ℓ−1]tE33

ℓ eℒ[ℓ+1,L]t |ρ(0)⟩

Here we can calculate

for simple  by non-standard free-fermion methods.|ρ(0)⟩



Summary

1. Certain quantum master equations can be related to 

Yang-Baxter integrable models in interesting ways.


2. Spectral properties can be analysed using integrability.


3. Calculation of observables requires new methods.




Happy Birthday Hubert!


