Connectivity operators of 2d loop models

Yacine Ikhlef LPTHE, CNRS/Sorbonne Université

collaborators: B. Estienne, Th. Dupic, J. Jacobsen, A. Morin-Duchesne, H. Saleur

> September 2021 Saclay

> > ◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

This talk is dedicated to The 130 cleaners of the Jussieu campus On strike since 14th September!

Donate to the support fund: https://www.leetchi.com/c/solidarite-avec-les-grevistes -du-nettoyage-de-jussieu

990

Outline

1. Introduction

2. OPE structure constants

3. Fusion on the lattice

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

1. Introduction

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

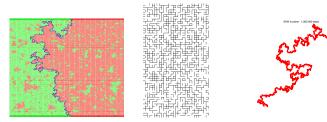
Critical random curves

 \blacktriangleright Classical 2d critical system \rightarrow random fractal curves

(ロト (個) (E) (E) (E) (E) のへの

Critical random curves

- Classical 2d critical system \rightarrow random fractal curves
- Examples: domain walls of a ferromagnet, contours of percolation clusters, configuration of a self-avoiding walk



イロト イヨト イヨト 一日

Sac

pictures courtesy of Tom Kennedy (University of Arizona)

Critical random curves

- Classical 2d critical system \rightarrow random fractal curves
- Examples: domain walls of a ferromagnet, contours of percolation clusters, configuration of a self-avoiding walk

pictures courtesy of Tom Kennedy (University of Arizona)

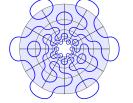
► Non-trivial fractal dimensions $d_{\text{Ising DW}} = 11/8$ $d_{\text{perco contour}} = 7/4$ $d_{\text{SAW}} = 4/3$

[# disks of radius ϵ needed to cover the curve = $N(\epsilon) \propto 1/\epsilon^{d_f}$]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The dense O(n) loop model

Dense loops configurations on the square lattice:

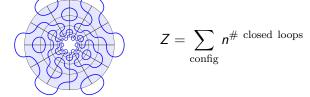


$$Z = \sum_{\rm config} n^{\# \rm \ closed \ loops}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

The dense O(n) loop model

Dense loops configurations on the square lattice:

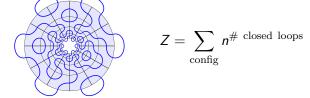


► Loops \equiv cluster contours of critical FK model with $q_{\text{FK}} = n^2$ [Example: at n = 1, loops \equiv percolation cluster contours]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

The dense O(n) loop model

Dense loops configurations on the square lattice:



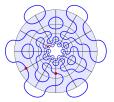
► Loops \equiv cluster contours of critical FK model with $q_{\text{FK}} = n^2$ [Example: at n = 1, loops \equiv percolation cluster contours]

► There exists a dilute variant ⇒ critical polymers, domain walls, ...

Connectivity operators

Examples of correlation functions:

• $\mathbb{P}[r_1, \ldots r_p \text{ sit on the same loop}] =$



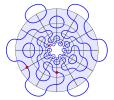
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

• $\mathbb{P}[r_1, \ldots r_p \text{ sit on the same FK cluster}]$, etc.

Connectivity operators

Examples of correlation functions:

• $\mathbb{P}[r_1, \ldots r_p \text{ sit on the same loop}] =$



• $\mathbb{P}[r_1, \ldots r_p \text{ sit on the same FK cluster}]$, etc.

"Local operator" = insertion of a marker (like •)

	Description	of the	operator	spectrum
--	-------------	--------	----------	----------

	generating alg.	operator content
lattice	periodic TL	(quotients of)
		standard modules
continuum	continuum $\operatorname{Vir}\otimes \overline{\operatorname{Vir}}$ dis	
		primary ops.

◆□▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

	Description	of the	operator	spectrum	
--	-------------	--------	----------	----------	--

	generating alg.	operator content
lattice	periodic TL	(quotients of)
		standard modules
continuum	$\operatorname{Vir}\otimes \overline{\operatorname{Vir}}$	discrete set of
		primary ops.

Rules of the operator algebra?

$$\phi_{\mathbf{a}} \times \phi_{\mathbf{b}} \to \sum_{\mathbf{c}} N_{\mathbf{a}\mathbf{b}}^{\mathbf{c}} \phi_{\mathbf{c}}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

	generating alg.	operator content
lattice	periodic TL	(quotients of)
		standard modules
continuum	$\operatorname{Vir}\otimes \overline{\operatorname{Vir}}$	discrete set of
		primary ops.

Description of the operator spectrum

Rules of the operator algebra?

$$\phi_{\rm a} \times \phi_{\rm b} \to \sum_{\rm c} N_{\rm ab}^{\rm c} \, \phi_{\rm c}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Structure constants of the operator product expansion?

$$\phi_a(r').\phi_b(r) \underset{r'
ightarrow r}{\sim} \sum_c C^c_{ab} |r'-r|^{-x_a-x_b+x_c} \phi_c(r)$$

·	generating alg.	operator content
lattice	periodic TL	(quotients of)
		standard modules
continuum	$\operatorname{Vir}\otimes \overline{\operatorname{Vir}}$	discrete set of
		primary ops.

Rules of the operator algebra?

Description of the operator spectrum

$$\phi_{\rm a} \times \phi_{\rm b} \to \sum_{\rm c} N_{\rm ab}^{\rm c} \, \phi_{\rm c}$$

Structure constants of the operator product expansion?

$$\phi_{a}(r').\phi_{b}(r) \underset{r' \rightarrow r}{\sim} \sum_{c} C^{c}_{ab} |r'-r|^{-x_{a}-x_{b}+x_{c}} \phi_{c}(r)$$

Universal correlation functions?

 $\langle \phi_1(r_1) \dots \phi_p(r_p) \rangle$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

2. OPE structure constants

<□▶ <□▶ < 三▶ < 三▶ < 三▶ 三三 - のへぐ

[Nienhuis 84, Dotsenko-Fateev 84, Di Francesco-Saleur-Zuber 87, Nienhuis-Foda 89]

"Coulomb-Gas" = Imaginary Liouville action, compact field

$$A[\phi] = \int d^2 r \, \frac{\sqrt{g}}{4\pi} \left(\partial_\mu \phi \partial^\mu \phi + i Q \mathcal{R} \phi + \kappa \, e^{i\phi/b} \right) \,, \quad \phi \equiv \phi + 2\pi b$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

[Nienhuis 84, Dotsenko-Fateev 84, Di Francesco-Saleur-Zuber 87, Nienhuis-Foda 89]

"Coulomb-Gas" = Imaginary Liouville action, compact field

$$A[\phi] = \int d^2 r \, \frac{\sqrt{g}}{4\pi} \left(\partial_\mu \phi \partial^\mu \phi + i Q \mathcal{R} \phi + \kappa \, e^{i\phi/b} \right) \,, \quad \phi \equiv \phi + 2\pi b$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

▶ Parameters: $n = -2\cos \pi b^2$, $0 < b \le 1$, $Q = \frac{b^{-1}-b}{2}$

[Nienhuis 84, Dotsenko-Fateev 84, Di Francesco-Saleur-Zuber 87, Nienhuis-Foda 89]

"Coulomb-Gas" = Imaginary Liouville action, compact field

$$A[\phi] = \int d^2 r \, \frac{\sqrt{g}}{4\pi} \left(\partial_\mu \phi \partial^\mu \phi + i Q \mathcal{R} \phi + \kappa \, e^{i\phi/b} \right) \,, \quad \phi \equiv \phi + 2\pi b$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

- ► Parameters: $n = -2\cos \pi b^2$, $0 < b \le 1$, $Q = \frac{b^{-1}-b}{2}$
- Central charge: $c = 1 6Q^2$

[Nienhuis 84, Dotsenko-Fateev 84, Di Francesco-Saleur-Zuber 87, Nienhuis-Foda 89]

"Coulomb-Gas" = Imaginary Liouville action, compact field

$$A[\phi] = \int d^2 r \, \frac{\sqrt{g}}{4\pi} \left(\partial_\mu \phi \partial^\mu \phi + i Q \mathcal{R} \phi + \kappa \, e^{i\phi/b} \right) \,, \quad \phi \equiv \phi + 2\pi b$$

- ► Parameters: $n = -2\cos \pi b^2$, $0 < b \le 1$, $Q = \frac{b^{-1}-b}{2}$
- Central charge: $c = 1 6Q^2$

• Compactification $\Rightarrow \begin{cases} \text{discretisation of vertex charges} \\ \text{existence of defects with } \delta \phi \in 2\pi b\mathbb{Z} \end{cases}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

[Nienhuis 84, Dotsenko-Fateev 84, Di Francesco-Saleur-Zuber 87, Nienhuis-Foda 89]

"Coulomb-Gas" = Imaginary Liouville action, compact field

$$A[\phi] = \int d^2 r \, \frac{\sqrt{g}}{4\pi} \left(\partial_\mu \phi \partial^\mu \phi + i Q \mathcal{R} \phi + \kappa \, e^{i\phi/b} \right) \,, \quad \phi \equiv \phi + 2\pi b$$

- ▶ Parameters: $n = -2\cos \pi b^2$, $0 < b \le 1$, $Q = \frac{b^{-1}-b}{2}$
- Central charge: $c = 1 6Q^2$

$$\mathsf{Compactification} \Rightarrow \begin{cases} \mathsf{discretisation} \text{ of vertex charges} \\ \mathsf{existence of defects with } \delta \phi \in 2\pi b\mathbb{Z} \end{cases}$$

• Zero-defect sector: ε_k with $h = \overline{h} = h_{k+1,1}$ for k = 0, 1, 2, ...

[Nienhuis 84, Dotsenko-Fateev 84, Di Francesco-Saleur-Zuber 87, Nienhuis-Foda 89]

"Coulomb-Gas" = Imaginary Liouville action, compact field

$$A[\phi] = \int d^2 r \, \frac{\sqrt{g}}{4\pi} \left(\partial_\mu \phi \partial^\mu \phi + i Q \mathcal{R} \phi + \kappa \, e^{i\phi/b} \right) \,, \quad \phi \equiv \phi + 2\pi b$$

- ▶ Parameters: $n = -2\cos \pi b^2$, $0 < b \le 1$, $Q = \frac{b^{-1}-b}{2}$
- Central charge: $c = 1 6Q^2$

• Compactification $\Rightarrow \begin{cases} \text{discretisation of vertex charges} \\ \text{existence of defects with } \delta \phi \in 2\pi b\mathbb{Z} \end{cases}$

- Zero-defect sector: ε_k with $h = \overline{h} = h_{k+1,1}$ for k = 0, 1, 2, ...
- ► Sector of defect charge $\delta \phi = 2\pi bm$, with $m \in \mathbb{Z}^{\times}$: $\widehat{\Phi}_{em}$ with $(h, \overline{h}) = (h_{em}, h_{e, -m})$ for $e \in \mathbb{Z}/m$

[Kac notation:
$$h_{rs} = rac{(r/b-sb)^2 - (1/b-b)^2}{4}$$
]

[B. Estienne and YI, Correlation functions in loop models, arXiv:1505.00585]

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

• The ε_k 's are degenerate under $\operatorname{Vir} \otimes \overline{\operatorname{Vir}}$

[B. Estienne and YI, Correlation functions in loop models, arXiv:1505.00585]

- The ε_k 's are degenerate under $\operatorname{Vir} \otimes \overline{\operatorname{Vir}}$
- The $\widehat{\Phi}_{em}$'s are only degenerate under Vir or \overline{Vir}

[B. Estienne and YI, Correlation functions in loop models, arXiv:1505.00585]

- The ε_k 's are degenerate under $Vir \otimes \overline{Vir}$
- The $\widehat{\Phi}_{em}$'s are only degenerate under Vir or \overline{Vir}
- ► Fusion rules (for generic *c*):

$$\begin{aligned} \varepsilon_{j} &\times \varepsilon_{k} \to \varepsilon_{|j-k|} + \dots + \varepsilon_{j+k} \\ \widehat{\Phi}_{em} &\times \varepsilon_{k} \to \widehat{\Phi}_{e-k,m} + \dots + \widehat{\Phi}_{e+k,m} \\ \widehat{\Phi}_{em} &\times \widehat{\Phi}_{e'm'} \to ??? \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

[B. Estienne and YI, Correlation functions in loop models, arXiv:1505.00585]

- The ε_k 's are degenerate under $Vir \otimes \overline{Vir}$
- The $\widehat{\Phi}_{em}$'s are only degenerate under Vir or \overline{Vir}

► Fusion rules (for generic *c*):

$$\begin{split} \varepsilon_{j} &\times \varepsilon_{k} \to \varepsilon_{|j-k|} + \dots + \varepsilon_{j+k} \\ \widehat{\Phi}_{em} &\times \varepsilon_{k} \to \widehat{\Phi}_{e-k,m} + \dots + \widehat{\Phi}_{e+k,m} \\ \widehat{\Phi}_{em} &\times \widehat{\Phi}_{e'm'} \to ??? \end{split}$$

Results from conformal bootstrap on 4-pt functions:

$$C(\varepsilon_j, \varepsilon_j, \varepsilon_{2k}) = c_{j+1,0,k}$$
$$C(\widehat{\Phi}_{em}, \widehat{\Phi}_{e,-m}, \varepsilon_{2k}) = \sqrt{c_{e,m,k} c_{e,-m,k}}$$

with:
$$\begin{aligned} c_{j,m,k} &= \prod_{\ell=1}^{k} \frac{\gamma(\rho\ell-m)\gamma(\rho\ell+m)\sqrt{\gamma[2-\rho(2\ell-1)]}\gamma[2-\rho(2\ell+1)]}{\gamma[2-\rho(j+\ell)]\gamma[\rho(j-\ell)]\gamma[\rho(2\ell-1)]}}\\ \rho &= b^{-2} \,, \qquad \gamma(x) = \Gamma(x)/\Gamma(1-x) \,. \end{aligned}$$

The case of loop-weighting operators

[Delfino and Viti, J. Phys. A 44, 032001 (2011)]

FK cluster connectivity:

 r_1, r_2, r_3 sit on the same cluster

no loop separates r_1 from $\{r_2, r_3\}$ [+ permutations of 1,2,3]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

The case of loop-weighting operators

[Delfino and Viti, J. Phys. A 44, 032001 (2011)]

FK cluster connectivity:

 r_1, r_2, r_3 sit on the same cluster

no loop separates r_1 from $\{r_2, r_3\}$ [+ permutations of 1,2,3]

• Loop-weighting operators in O(n) model: $\langle \dots V_{\alpha}(r_j) \dots \rangle$ gives weight $n_{\alpha} = 2 \cos 2\pi b(Q - \alpha)$ to loops encircling only r_j .

Conformal dimensions $h = \bar{h} = h_{\alpha} = \alpha(\alpha - Q)$

FK "Spin" operator : $V_{lpha_{\sigma}}$ with $lpha_{\sigma}=Q+b^{-1}/4$

The case of loop-weighting operators

[Delfino and Viti, J. Phys. A 44, 032001 (2011)]

FK cluster connectivity:

 r_1, r_2, r_3 sit on the same cluster

no loop separates r₁ from {r₂, r₃} [+ permutations of 1,2,3]
Loop-weighting operators in O(n) model:

 $\langle \dots V_{\alpha}(r_j) \dots \rangle$ gives weight $n_{\alpha} = 2 \cos 2\pi b(Q - \alpha)$ to loops encircling only r_j .

Conformal dimensions $h = \bar{h} = h_{\alpha} = \alpha(\alpha - Q)$ FK "Spin" operator : $V_{\alpha_{\sigma}}$ with $\alpha_{\sigma} = Q + b^{-1}/4$

DV's argument, supported by Monte-Carlo on percolation:

$$\mathbb{P}_{\text{cluster}}[r_1, r_2, r_3] = \langle V_{\alpha_{\sigma}}(r_1) V_{\alpha_{\sigma}}(r_2) V_{\alpha_{\sigma}}(r_3) \rangle_{O(n)}$$
$$= \frac{C_{\text{IL}}(\alpha_{\sigma}, \alpha_{\sigma}, \alpha_{\sigma})}{|r_1 - r_2|^{2h_{\sigma}} |r_2 - r_3|^{2h_{\sigma}} |r_1 - r_3|^{2h_{\sigma}}}$$

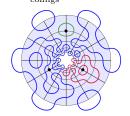
 $C_{IL}(\alpha_1, \alpha_2, \alpha_3) = OPE$ constants for imaginary Liouville CFT [Zamolodchikov '05, Kostov-Petkova '06]

Extension of the Delfino-Viti result

[YI, J. L. Jacobsen, and H. Saleur, PRL 116, 130601 (2016)]

• Define three-point function $Z_{n_1,n_2,n_3}(r_1,r_2,r_3) = \sum_{\text{configs}} n^{\ell_0} n_1^{\ell_1} n_2^{\ell_2} n_3^{\ell_3}$

 $\ell_0 = \#$ trivial loops $\ell_1 = \#$ loops encircling only r_1 $\ell_2 = \#$ loops encircling only r_2 $\ell_3 = \#$ loops encircling only r_3



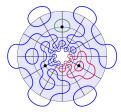
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シベ⊙

Extension of the Delfino-Viti result

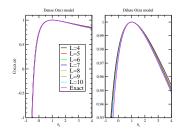
[YI, J. L. Jacobsen, and H. Saleur, PRL 116, 130601 (2016)]

• Define three-point function $Z_{n_1,n_2,n_3}(r_1,r_2,r_3) = \sum_{\text{configs}} n^{\ell_0} n_1^{\ell_1} n_2^{\ell_2} n_3^{\ell_3}$

$$\begin{split} \ell_0 &= \# \text{ trivial loops} \\ \ell_1 &= \# \text{ loops encircling only } r_1 \\ \ell_2 &= \# \text{ loops encircling only } r_2 \\ \ell_3 &= \# \text{ loops encircling only } r_3 \end{split}$$



Numerics on the cylinder: Z_{n1,n2,n3} matches C_{IL}(α₁, α₂, α₃) on large range of b and α_j's.



3. Fusion on the lattice

<□▶ <□▶ < 三▶ < 三▶ < 三▶ 三三 - のへぐ

Background on the periodic Temperley-Lieb algebra (1/3)Basic facts

• Generators of
$$PTL_N(n)$$

 $e_j = \underbrace{\prod_{i=1}^{N} \cdots_{j=j+1}^{N} \cdots_{N}}_{1 \ 2 \ \cdots \ N} \quad \Omega = \underbrace{\prod_{i=2}^{N} \cdots_{N}}_{1 \ 2 \ \cdots \ N} \quad \Omega^{-1} = \underbrace{\prod_{i=2}^{N} \cdots_{N}}_{1 \ 2 \ \cdots \ N}$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Background on the periodic Temperley-Lieb algebra (1/3)Basic facts

• Generators of
$$PTL_N(n)$$

 $e_j = \underbrace{\prod_{i=1}^{n} \cdots_{j=j+1}^{n} \cdots_{N}}_{1 = 1 + 1} \Omega = \underbrace{\prod_{i=2}^{n} \cdots_{N}}_{1 = 2 + 1} \Omega^{-1} = \underbrace{\prod_{i=2}^{n} \cdots_{N}}_{N}$
• Relations
 $e_j^2 = n e_j, \quad e_j e_{j\pm 1} e_j = e_j, \quad e_i e_j = e_j e_i \quad |i-j| > 1,$
 $\Omega e_j \Omega^{-1} = e_{j-1}, \quad \Omega \Omega^{-1} = \Omega^{-1} \Omega = 1, \quad e_{N-1} \dots e_2 e_1 = \Omega^2 e_1$

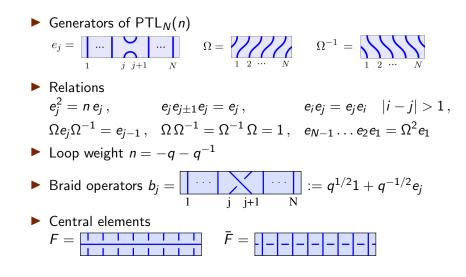
▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Background on the periodic Temperley-Lieb algebra (1/3)Basic facts

► Generators of $PTL_N(n)$ $e_j = \prod_{\substack{i \\ 1 \end{bmatrix}} \prod_{\substack{j \\ j \neq 1 \end{bmatrix}} \prod_{\substack{N \\ N \end{bmatrix}} \Omega = \prod_{\substack{1 \\ 2 \\ 1 \\ 2 \\ \dots \\ N \end{bmatrix}} \Omega^{-1} = \prod_{\substack{i \\ 1 \\ 2 \\ \dots \\ N \end{bmatrix}} \Omega^{-1} = \prod_{\substack{i \\ 1 \\ 2 \\ \dots \\ N \end{bmatrix}} \Omega^{-1} = \prod_{\substack{i \\ 1 \\ 2 \\ \dots \\ N \end{bmatrix}} \Omega^{-1} = \prod_{\substack{i \\ N \\ N \end{bmatrix}} \Omega^{-1} = \prod_{\substack{i \\ N \\ N \\ N \end{bmatrix}} \Omega^{-1} = e_j e_j , \qquad e_i e_j = e_j e_i \quad |i - j| > 1,$ $\Omega e_j \Omega^{-1} = e_{j-1}, \quad \Omega \Omega^{-1} = \Omega^{-1} \Omega = 1, \quad e_{N-1} \dots e_2 e_1 = \Omega^2 e_1$ ► Loop weight $n = -q - q^{-1}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Background on the periodic Temperley-Lieb algebra (1/3)Basic facts



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

• Vacuum module V(N): simple link states

Vacuum module V(N): simple link states

[Ex: _____]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ののぐ

Standard module W_{k,z}(N): link states with 2k defects and a twist line, all attached to a marked point

Vacuum module V(N): simple link states

Standard module $W_{k,z}(N)$: link states with 2k defects and a twist line, all attached to a marked point

- Action of PTL_N(n): graphical, weight n for closed loops, preserves defects $\begin{cases} k = 0 : \text{ weight } z + z^{-1} \text{ for loops encircling marked point} \\ k > 0 : \text{ twist factors } z^{\pm 1} \text{ when a defect crosses twist line} \end{cases}$

Vacuum module V(N): simple link states

Standard module W_{k,z}(N): link states with 2k defects and a twist line, all attached to a marked point

• Bilinear form $\langle u, v \rangle$ respecting graphical rules

Background on the periodic Temperley-Lieb algebra (3/3)

Properties of standard modules

• $W_{k,z}(N)$ is irreducible for "generic" z [Graham-Lehrer 98]

- $W_{k,z}(N)$ is irreducible for "generic" z [Graham-Lehrer 98]
- ► There is a nonzero homomorphism: $W_{\ell,\pm q^k}(N) \rightarrow W_{k,\pm q^\ell}(N)$ for $\ell > k$. [same for $q \rightarrow q^{-1}$] [Graham-Lehrer 98]

- $W_{k,z}(N)$ is irreducible for "generic" z [Graham-Lehrer 98]
- ▶ There is a nonzero homomorphism: $W_{\ell,\pm q^k}(N) \to W_{k,\pm q^\ell}(N)$ for $\ell > k$. [same for $q \to q^{-1}$] [Graham-Lehrer 98]

•
$$F \equiv [zq^k + (zq^k)^{-1}]1$$
 and $\overline{F} \equiv [z/q^k + (z/q^k)^{-1}]1$ on $W_{k,z}$

- $W_{k,z}(N)$ is irreducible for "generic" z [Graham-Lehrer 98]
- ► There is a nonzero homomorphism: $W_{\ell,\pm q^k}(N) \rightarrow W_{k,\pm q^\ell}(N)$ for $\ell > k$. [same for $q \rightarrow q^{-1}$] [Graham-Lehrer 98]

•
$$F \equiv [zq^k + (zq^k)^{-1}]1$$
 and $\overline{F} \equiv [z/q^k + (z/q^k)^{-1}]1$ on $W_{k,z}$

Action of connectivity op on vacuum:

$$PTL_N(n).\mathcal{O}_{k,z}(j).V(N) = W_{k,z}(N)$$

$$\mathcal{O}_{k,z}(j) =$$

- $W_{k,z}(N)$ is irreducible for "generic" z [Graham-Lehrer 98]
- ► There is a nonzero homomorphism: $W_{\ell,\pm q^k}(N) \to W_{k,\pm q^\ell}(N)$ for $\ell > k$. [same for $q \to q^{-1}$] [Graham-Lehrer 98]

•
$$F \equiv [zq^k + (zq^k)^{-1}]1$$
 and $\overline{F} \equiv [z/q^k + (z/q^k)^{-1}]1$ on $W_{k,z}$

Action of connectivity op on vacuum: $PTL_N(n).\mathcal{O}_{k,z}(j).V(N) = W_{k,z}(N)$

► How to define the fusion W_{k,x} × W_{ℓ,y} ? [Gainutdinov-Jacobsen-Saleur 16-18] [Belletête-Saint-Aubin 18]

[YI-Morin-Duchesne 21]

► X_{k,ℓ,x,y,z}(N): link states with 2k defects attached to a, and 2ℓ defects attached to b

[YI-Morin-Duchesne 21]

► X_{k,ℓ,x,y,z}(N): link states with 2k defects attached to a, and 2ℓ defects attached to b

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Twist parameters x, y, z for loop segments wrapped around only a, only b, both a and b.

[YI-Morin-Duchesne 21]

► X_{k,ℓ,x,y,z}(N): link states with 2k defects attached to a, and 2ℓ defects attached to b

- Twist parameters x, y, z for loop segments wrapped around only a, only b, both a and b.
- Action of e_j can connect defects attached to distinct marked points.

[YI–Morin-Duchesne 21]

► X_{k,ℓ,x,y,z}(N): link states with 2k defects attached to a, and 2ℓ defects attached to b

- Twist parameters x, y, z for loop segments wrapped around only a, only b, both a and b.
- Action of e_j can connect defects attached to distinct marked points.

▶ **Result 1**: The $X_{k,\ell,x,y,z}(N)$'s are $PTL_N(n)$ representations.

[YI-Morin-Duchesne 21]

► X_{k,ℓ,x,y,z}(N): link states with 2k defects attached to a, and 2ℓ defects attached to b

- Twist parameters x, y, z for loop segments wrapped around only a, only b, both a and b.
- Action of e_j can connect defects attached to distinct marked points.
- ▶ **Result 1**: The $X_{k,\ell,x,y,z}(N)$'s are $PTL_N(n)$ representations.

Result 2: For z generic [and q not a root of unity]:

$$X_{k,\ell,x,y,z}(N) \simeq W_{k-\ell,z}(N) \oplus \bigoplus_{m=k-\ell+1}^{N/2} \bigoplus_{r=0}^{2m-1} W_{m,z^{(k-\ell)/m}e^{i\pi r/m}}(N)$$

for $k \ge \ell$. [Proof based on the properties of F, \overline{F} .]

Correlation functions

Example four-point function of connectivity operators on an infinite cylinder of circumference N with k ≠ l:

$$G = \langle \mathcal{O}_{k,x}(r_1) \mathcal{O}_{\ell,y}(r_2) \mathcal{O}_{\ell,y}(r_3) \mathcal{O}_{k,x}(r_4) \rangle_{\text{cyl}}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

[Twist factors around $\{r_1, r_2\}$ or $\{r_3, r_4\}$ are set to one in G].

Correlation functions

Example four-point function of connectivity operators on an infinite cylinder of circumference N with k ≠ l:

$$G = \langle \mathcal{O}_{k,x}(r_1) \mathcal{O}_{\ell,y}(r_2) \mathcal{O}_{\ell,y}(r_3) \mathcal{O}_{k,x}(r_4) \rangle_{\text{cyl}}$$

[Twist factors around $\{r_1, r_2\}$ or $\{r_3, r_4\}$ are set to one in G].

• By construction: $G = \langle \mathcal{O}_{\ell,y}(r_2)\mathcal{O}_{k,x}(r_1)v, \mathcal{O}_{\ell,y}(r_3)\mathcal{O}_{k,x}(r_4)v \rangle$ v: ground state of V(N)

Correlation functions

Example four-point function of connectivity operators on an infinite cylinder of circumference N with k ≠ l:

$$G = \langle \mathcal{O}_{k,x}(r_1) \mathcal{O}_{\ell,y}(r_2) \mathcal{O}_{\ell,y}(r_3) \mathcal{O}_{k,x}(r_4) \rangle_{\text{cyl}}$$

[Twist factors around $\{r_1, r_2\}$ or $\{r_3, r_4\}$ are set to one in G].

► By construction: $G = \langle \mathcal{O}_{\ell,y}(r_2)\mathcal{O}_{k,x}(r_1)v, \mathcal{O}_{\ell,y}(r_3)\mathcal{O}_{k,x}(r_4)v \rangle$ v: ground state of V(N)

• "PTL block" decomposition [from structure of $X_{k,\ell,x,y,1}(N)$]:

$$G = G_{|k-\ell|,1} + \sum_{m=|k-\ell|+1}^{N/2} \sum_{r=0}^{2m-1} G_{m,e^{i\pi r/m}}$$
$$G_{m,\omega} = \sum_{j} \langle \mathcal{O}_{\ell,y}(r_2) \mathcal{O}_{k,x}(r_1) v, u_{m,\omega,j} \rangle \langle u_{m,\omega,j}, \mathcal{O}_{\ell,y}(r_3) \mathcal{O}_{k,x}(r_4) v \rangle$$

 $\{u_{m,\omega,j}\}$: orthonormal basis of $W_{m,\omega} \subset X_{k,\ell,x,y,1}$.

► Analytical solution of (non-diagonal) conformal bootstrap ⇒ determined large family of OPE constants in the discrete spectrum of O(n) model

- ► Analytical solution of (non-diagonal) conformal bootstrap ⇒ determined large family of OPE constants in the discrete spectrum of O(n) model
- ► Numerical transfer-matrix diagonalisation ⇒ confirmed and extended Delfino-Viti's proposal for OPE constants of loop-weighting operators

- ► Analytical solution of (non-diagonal) conformal bootstrap ⇒ determined large family of OPE constants in the discrete spectrum of O(n) model
- ► Numerical transfer-matrix diagonalisation ⇒ confirmed and extended Delfino-Viti's proposal for OPE constants of loop-weighting operators
- ▶ Definition of family of PTL modules X_{k,ℓ,x,y,z}, decomposition of X_{k,ℓ,x,y,z} over standard modules W_{m,ω} ⇒ described fusion W_{k,x} × W_{ℓ,y} inside correlation functions

- ► Analytical solution of (non-diagonal) conformal bootstrap ⇒ determined large family of OPE constants in the discrete spectrum of O(n) model
- ► Numerical transfer-matrix diagonalisation ⇒ confirmed and extended Delfino-Viti's proposal for OPE constants of loop-weighting operators
- Definition of family of PTL modules X_{k,ℓ,x,y,z}, decomposition of X_{k,ℓ,x,y,z} over standard modules W_{m,ω} ⇒ described fusion W_{k,x} × W_{ℓ,y} inside correlation functions
- Complete set of fusion rules for O(n) CFT (especially defect operators ⊕_{e,m}) ?

< (1)< (1)<

- ► Analytical solution of (non-diagonal) conformal bootstrap ⇒ determined large family of OPE constants in the discrete spectrum of O(n) model
- ► Numerical transfer-matrix diagonalisation ⇒ confirmed and extended Delfino-Viti's proposal for OPE constants of loop-weighting operators
- Definition of family of PTL modules X_{k,ℓ,x,y,z}, decomposition of X_{k,ℓ,x,y,z} over standard modules W_{m,ω} ⇒ described fusion W_{k,x} × W_{ℓ,y} inside correlation functions
- Complete set of fusion rules for O(n) CFT (especially defect operators ⊕_{e,m}) ?

Generalise lattice fusion to any modules M × M' ? Associativity ? Non-generic z ?

Thank you for your attention!

<□▶ <□▶ < 三▶ < 三▶ < 三▶ 三三 - のへぐ