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1. Introduction



Critical random curves

I Classical 2d critical system → random fractal curves

I Examples: domain walls of a ferromagnet, contours of
percolation clusters, configuration of a self-avoiding walk

SAW in plane - 1,000,000 steps

pictures courtesy of Tom Kennedy (University of Arizona)

I Non-trivial fractal dimensions
dIsing DW = 11/8 dperco contour = 7/4 dSAW = 4/3

[# disks of radius ε needed to cover the curve = N(ε) ∝ 1/εdf ]
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The dense O(n) loop model

I Dense loops configurations on the square lattice:

Z =
∑

config

n# closed loops

I Loops ≡ cluster contours of critical FK model with qFK = n2

[Example: at n = 1, loops ≡ percolation cluster contours]

I There exists a dilute variant ⇒ critical polymers, domain
walls, . . .
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Connectivity operators

I Examples of correlation functions:

I P[r1, . . . rp sit on the same loop] =

I P[r1, . . . rp sit on the same FK cluster], etc.

I “Local operator” = insertion of a marker (like •)
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Theories for loop correlations

I Description of the operator spectrum

generating alg. operator content
lattice periodic TL (quotients of)

standard modules

continuum Vir⊗Vir discrete set of
primary ops.

I Rules of the operator algebra? φa × φb →
∑
c

Nc
ab φc

I Structure constants of the operator product expansion?

φa(r ′).φb(r) ∼
r ′→r

∑
c

C c
ab|r ′ − r |−xa−xb+xc φc(r)

I Universal correlation functions? 〈φ1(r1) . . . φp(rp)〉
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2. OPE structure constants



Scaling theory of the O(n) loop model
[Nienhuis 84, Dotsenko-Fateev 84, Di Francesco-Saleur-Zuber 87, Nienhuis-Foda 89]

I “Coulomb-Gas” = Imaginary Liouville action, compact field

A[φ] =

∫
d2r

√
g

4π

(
∂µφ∂

µφ+ iQRφ+ κ e iφ/b
)
, φ ≡ φ+2πb

I Parameters: n = −2 cosπb2, 0 < b ≤ 1, Q = b−1−b
2

I Central charge: c = 1− 6Q2

I Compactification ⇒

{
discretisation of vertex charges

existence of defects with δφ ∈ 2πbZ

I Zero-defect sector: εk with h = h̄ = hk+1,1 for k = 0, 1, 2, . . .

I Sector of defect charge δφ = 2πbm, with m ∈ Z× :
Φ̂em with (h, h̄) = (hem, he,−m) for e ∈ Z/m

[Kac notation: hrs = (r/b−sb)2−(1/b−b)2

4 ]
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OPEs for operators in the discrete spectrum
[B. Estienne and YI, Correlation functions in loop models, arXiv:1505.00585]

I The εk ’s are degenerate under Vir⊗Vir

I The Φ̂em’s are only degenerate under Vir or Vir

I Fusion rules (for generic c):

εj × εk → ε|j−k| + · · ·+ εj+k

Φ̂em × εk → Φ̂e−k,m + · · ·+ Φ̂e+k,m

Φ̂em × Φ̂e′m′ → ???

I Results from conformal bootstrap on 4-pt functions:

C (εj , εj , ε2k) = cj+1,0,k

C (Φ̂em, Φ̂e,−m, ε2k) =
√
ce,m,k ce,−m,k

with: cj,m,k =
∏k
`=1

γ(ρ`−m)γ(ρ`+m)
√
γ[2−ρ(2`−1)]γ[2−ρ(2`+1)]

γ[2−ρ(j+`)]γ[ρ(j−`)]γ[ρ(2`−1)]

ρ = b−2 , γ(x) = Γ(x)/Γ(1− x) .
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The case of loop-weighting operators
[Delfino and Viti, J. Phys. A 44, 032001 (2011)]

I FK cluster connectivity:

r1, r2, r3 sit on the same cluster
⇔

no loop separates r1 from {r2, r3} [+ permutations of 1,2,3]

I Loop-weighting operators in O(n) model:
〈. . .Vα(rj) . . .〉 gives weight nα = 2 cos 2πb(Q − α) to loops
encircling only rj .
Conformal dimensions h = h̄ = hα = α(α− Q)
FK “Spin” operator : Vασ with ασ = Q + b−1/4

I DV’s argument, supported by Monte-Carlo on percolation:

Pcluster[r1, r2, r3] = 〈Vασ(r1)Vασ(r2)Vασ(r3)〉O(n)

=
CIL(ασ, ασ, ασ)

|r1 − r2|2hσ |r2 − r3|2hσ |r1 − r3|2hσ

CIL(α1, α2, α3) = OPE constants for imaginary Liouville CFT
[Zamolodchikov ’05, Kostov-Petkova ’06]
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Extension of the Delfino-Viti result
[YI, J. L. Jacobsen, and H. Saleur, PRL 116, 130601 (2016)]

I Define three-point function Zn1,n2,n3 (r1,r2,r3)=
∑

configs
n`0 n

`1
1 n

`2
2 n

`3
3

`0 = # trivial loops
`1 = # loops encircling only r1
`2 = # loops encircling only r2
`3 = # loops encircling only r3

I Numerics on the cylinder: Zn1,n2,n3 matches CIL(α1, α2, α3)
on large range of b and αj ’s.
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ni
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)

L=4
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3. Fusion on the lattice



Background on the periodic Temperley-Lieb algebra (1/3)
Basic facts

I Generators of PTLN(n)

I Relations
e2j = n ej , ejej±1ej = ej , eiej = ejei |i − j | > 1 ,

ΩejΩ
−1 = ej−1 , Ω Ω−1 = Ω−1 Ω = 1 , eN−1 . . . e2e1 = Ω2e1

I Loop weight n = −q − q−1

I Braid operators bj =
1 j j+1 N

:= q1/21 + q−1/2ej

I Central elements
F = F̄ =
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Background on the periodic Temperley-Lieb algebra (2/3)
Link-state representations

I Vacuum module V (N): simple link states

[Ex: ]

I Standard module Wk,z(N): link states with 2k defects and a
twist line, all attached to a marked point

[Ex: , ]

I Action of PTLN(n): graphical, weight n for closed loops,
preserves defects{
k = 0 : weight z + z−1 for loops encircling marked point

k > 0 : twist factors z±1 when a defect crosses twist line

I Bilinear form 〈u, v〉 respecting graphical rules
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Background on the periodic Temperley-Lieb algebra (3/3)
Properties of standard modules

I Wk,z(N) is irreducible for “generic” z [Graham-Lehrer 98]

I There is a nonzero homomorphism: W`,±qk (N)→Wk,±q`(N)
for ` > k . [same for q → q−1] [Graham-Lehrer 98]

I F ≡ [zqk + (zqk)−1]1 and F̄ ≡ [z/qk + (z/qk)−1]1 on Wk,z

I Action of connectivity op on vacuum:
PTLN(n).Ok,z(j).V (N) = Wk,z(N)

Ok,z(j) =

I How to define the fusion Wk,x ×W`,y ?
[Gainutdinov-Jacobsen-Saleur 16-18]
[Belletête–Saint-Aubin 18]
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Link states with two marked points
[YI–Morin-Duchesne 21]

I Xk,`,x ,y ,z(N): link states with 2k defects attached to a, and 2`
defects attached to b

[Ex: ]

I Twist parameters x , y , z for loop segments wrapped around
only a, only b, both a and b.

I Action of ej can connect defects attached to distinct marked
points.

I Result 1: The Xk,`,x ,y ,z(N)’s are PTLN(n) representations.

I Result 2: For z generic [and q not a root of unity]:

Xk,`,x ,y ,z(N) 'Wk−`,z(N)⊕
N/2⊕

m=k−`+1

2m−1⊕
r=0

Wm,z(k−`)/me iπr/m(N)

for k ≥ `. [Proof based on the properties of F , F̄ .]
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Correlation functions
I Example four-point function of connectivity operators on an

infinite cylinder of circumference N with k 6= `:

G = 〈Ok,x(r1)O`,y (r2)O`,y (r3)Ok,x(r4)〉cyl

[Twist factors around {r1, r2} or {r3, r4} are set to one in G ].

I By construction: G = 〈O`,y (r2)Ok,x(r1)v ,O`,y (r3)Ok,x(r4)v〉
v : ground state of V (N)

I “PTL block” decomposition [from structure of Xk,`,x ,y ,1(N)]:

G = G|k−`|,1 +

N/2∑
m=|k−`|+1

2m−1∑
r=0

Gm,e iπr/m

Gm,ω =
∑
j

〈O`,y (r2)Ok,x(r1)v , um,ω,j〉〈um,ω,j ,O`,y (r3)Ok,x(r4)v〉

{um,ω,j} : orthonormal basis of Wm,ω ⊂ Xk,`,x ,y ,1.
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Summary and Perspectives

I Analytical solution of (non-diagonal) conformal bootstrap ⇒
determined large family of OPE constants in the discrete
spectrum of O(n) model

I Numerical transfer-matrix diagonalisation ⇒ confirmed and
extended Delfino-Viti’s proposal for OPE constants of
loop-weighting operators

I Definition of family of PTL modules Xk,`,x ,y ,z , decomposition
of Xk,`,x ,y ,z over standard modules Wm,ω ⇒ described fusion
Wk,x ×W`,y inside correlation functions

I Complete set of fusion rules for O(n) CFT (especially defect
operators Φ̂e,m) ?

I Generalise lattice fusion to any modules M ×M ′ ?
Associativity ? Non-generic z ?
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Thank you for your attention!
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