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Critical random curves

» Classical 2d critical system — random fractal curves

» Examples: domain walls of a ferromagnet, contours of

pictures courtesy of Tom Kennedy (University of Arizona)

» Non-trivial fractal dimensions
drsing pW = 11/8

dperco contour — 7/4 dSAVV = 4/3
[# disks of radius ¢ needed to cover the curve = N(e) o< 1/e%]
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The dense O(n) loop model

» Dense loops configurations on the square lattice:

7 = § : n# closed loops
config

» Loops = cluster contours of critical FK model with gpg = n?

[Example: at n =1, loops = percolation cluster contours]

P> There exists a dilute variant = critical polymers, domain
walls, ...
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Connectivity operators

» Examples of correlation functions:

» P[r,...r, sit on the same loop] =

» P[r,...r, sit on the same FK cluster], etc.

» “Local operator” = insertion of a marker (like )
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Theories for loop correlations

» Description of the operator spectrum

generating alg.

operator content

lattice periodic TL (quotients of)
standard modules
continuum Vir ® Vir discrete set of

» Rules of the operator algebra?

primary ops.

$a X b= Y NS, b

» Structure constants of the operator product expansion?

Ba(r').dp(r) e Z CSlr' — r| 7o ¢ (r)

» Universal correlation functions?

(1(r1) ... dp(rp))
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[Nienhuis 84, Dotsenko-Fateev 84, Di Francesco-Saleur-Zuber 87, Nienhuis-Foda 89]

» “Coulomb-Gas”

Al¢] =

» Parameters:

> Central charge:
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Scaling theory of the O(n) loop model

[Nienhuis 84, Dotsenko-Fateev 84, Di Francesco-Saleur-Zuber 87, Nienhuis-Foda 89]

» “Coulomb-Gas” = Imaginary Liouville action, compact field
Aol = [ o YE (0,000 + QRO + 5 ¥/?) | 6= r2mb

» Parameters: n= —2coswh?®, 0<b<1l Q= bl-b

» Central charge: c=1-6Q

discretisation of vertex charges

» Compactification = i )
existence of defects with d¢ € 2wbZ

> Zero-defect sector: ¢4 with h = h = hiy1,1 for k=0,1,2,...

> Sector of defect charge d¢ = 2mbm, with m € Z* :
P with (h, h) = (hem, he.—m) for e € Z/m

[Kac notation: h,s = w]
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OPEs for operators in the discrete spectrum
[B. Estienne and YI, Correlation functions in loop models, arXiv:1505.00585]

» The ¢,'s are degenerate under Vir ® Vir
» The ®.m's are only degenerate under Vir or Vir

» Fusion rules (for generic c):

Ej X Ek = Eljmk| T T Ejtk
Do X £ — <j>e—k,m +---+ ¢e+k,m

~

(bem X (De’m’ — 777

» Results from conformal bootstrap on 4-pt functions:

Cl(ej,gj,€2k) = Ciy1,0.k

C(¢em7 ¢67,m, 82k) = v/ Ce,m,k Ce,—m,k

.  _rrk o Apt=m)v(pltm)\/v[2—p2e—1)]y[2—p(26+1)]
with:  Gmk = [Tes B G+ OHTPU— O (20— T)]

p=b72,  y(x)=T(x)/T(1—-x).
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The case of loop-weighting operators
[Delfino and Viti, J. Phys. A 44, 032001 (2011)]
> FK cluster connectivity:
r, r, r3 sit on the same cluster
=
no loop separates r; from {r, 3} [+ permutations of 1,2,3]
» Loop-weighting operators in O(n) model:
(... Va(rj)...) gives weight n, = 2cos2mb(Q — «) to loops
encircling only r;.
Conformal dimensions h = h = h, = a(a — Q)
FK “Spin" operator : V,_ with a, = Q +b71/4
» DV's argument, supported by Monte-Carlo on percolation:

IEDCluster[rla r, I’3] = <V&g(r1)Vaa(r2)vacr(r3)>0(n)

_ CIL(acr,aaaao)
|1 = 2l |ry — r3|?he |y — r3[2ho

Gr(a1, az, a3) = OPE constants for imaginary Liouville CFT
[Zamolodchikov '05, Kostov-Petkova '06]
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Extension of the Delfino-Viti result
[YI, J. L. Jacobsen, and H. Saleur, PRL 116, 130601 (2016)]
» Define three-point function Zny nyung (r1,r2,r8)= 32 nfo nfl n§2 n§3

configs

lo = # trivial loops

{1 = # loops encircling only r;
lo = # loops encircling only r»
U3 = # loops encircling only r3

» Numerics on the cylinder: Zp, 5, n, matches G, (a1, a2, a3)
on large range of b and q;'s.

Dense O(n) model

L:
L
L
L
L
L:
L:

VYT
LEELEHL

o
SO




3. Fusion on the lattice
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Background on the periodic Temperley-Lieb algebra (1/3)

Basic facts

» Generators of PTLy(n)

o= =12~ Q:W / Q_lzmgm \

1 Jj j+1 N
> Relations
2 . ..
€ =nej, ejejilej:ej, €iej = €& ’I—j’>1,

Qe l=¢_1, QQ'=Q71Q=1, ey_1...0e1 = Qe

» Loop weight n= —q — g1

» Braid operators b; :| | | | | | = q'/21 + g ?¢;
1 i gl N
» Central elements

F-Eeee © - EEEEEEER
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Link-state representations

» Vacuum module V(N): simple link states

[Ex; f\/f_\\f‘\]

» Standard module Wj ,(N): link states with 2k defects and a
twist line, all attached to a marked point

[Ex; ";-\ ------ T ’/;\--“m M ]

» Action of PTLy(n): graphical, weight n for closed loops,
preserves defects

{k =0: weight z+ z~! for loops encircling marked point

k > 0: twist factors z=1 when a defect crosses twist line

» Bilinear form (u, v) respecting graphical rules
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Background on the periodic Temperley-Lieb algebra (3/3)

Properties of standard modules

» Wi ,(N) is irreducible for “generic’ z  [Graham-Lehrer 98]

» There is a nonzero homomorphism: Wy 4 «(N) — Wy 4 e(N)
for £ > k.  [same for ¢ — g~ ']  [Graham-Lehrer 98]

> F =[zq"+ (2¢*) 7|1 and F = [z/q* + (2/q*)7!]1 on Wi,

» Action of connectivity op on vacuum:
PTLn(n).Ok-(j).V(N) = Wi -(N)

Orz0) = [} 42K | ]

» How to define the fusion W, x W, ?
[Gainutdinov-Jacobsen-Saleur 16-18]
[Belletéte—Saint-Aubin 18]
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Link states with two marked points
[Y1-Morin-Duchesne 21]

» Xk x,y,z(N): link states with 2k defects attached to a, and 2/
defects attached to b

> Twist parameters x, y, z for loop segments wrapped around
only a, only b, both a and b.

» Action of e can connect defects attached to distinct marked
points.

» Result 1: | The Xy ¢, ,(N)'s are PTLy(n) representations.

Result 2: For z generic [and g not a root of unity]:

N/2  2m—1

Xk,Z,X,y,z(N) = Wk*Z,Z(N) D @ @ Wm,z(kff)/mefﬂ/m(lv)
m=k—/¢+1 r=0

for k > ¢. [Proof based on the properties of F, F.]
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Correlation functions

» Example four-point function of connectivity operators on an
infinite cylinder of circumference N with k # ¢:

G = (O x(r1)Or,y(r2)Or,y (13) Ok x(2)) ex1

[Twist factors around {r, rn} or {r3, rs} are set to one in G].

» By construction: G = (O, (r)Ok x(r1)v, Oy (r3)Ok x(ra)v)
v : ground state of V(N)

» “PTL block” decomposition [from structure of Xj s, 1(N)]:

N/2 2m—1

G= G‘k_g|71 + E Z Gm7ei7rr/m

m=|k—¢|+1 r=0
Gm,w = Z<O€,y(r2)0k,x(rl)V7 Um,w,j><um,w,ja O€7y(r3)0k,x(r4)v>
J

{Um. j} 1 orthonormal basis of Wi, C Xk rxy.1.
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Summary and Perspectives

» Analytical solution of (non-diagonal) conformal bootstrap =
determined large family of OPE constants in the discrete
spectrum of O(n) model

» Numerical transfer-matrix diagonalisation = confirmed and
extended Delfino-Viti's proposal for OPE constants of
loop-weighting operators

» Definition of family of PTL modules Xj ¢ x,, -, decomposition
of Xk ¢ x,y,- over standard modules W, ., = described fusion
Wi x x W, inside correlation functions

> Complete set of fusion rules for O(n) CFT (especially defect
operators ®¢ 1) 7

» Generalise lattice fusion to any modules M x M’ ?
Associativity 7 Non-generic z 7



Thank you for your attention!
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