Gyroid
 Synthetisation
 Theory
 Dirac points
 Topology

 000000000
 000
 00000000
 000000000
 0000000000

Theory of Materials Formed as Complements of Triply Periodic CMC Surfaces

E. Birgit Kaufmann

Purdue University, Department of Mathematics and Department of Physics and Astronomy

The art of mathematical physics in honor of Hubert Saleur's 60th birthday Sep 20, 2021

Gyroid	Synthetisation	Theory	Dirac points	Topology
0000000000		000000000	0000000000	იიიიიიიიიიიიიიიიიიიიიიიიიიიიიიიი
Reference	S			

R. Kaufmann, S. Khlebnikov, and B. K.

- "The geometry of the Double Gyroid wire network: Quantum and Classical". J. Noncomm. Geom. 6 (2012) 623-664.
- 2 "The noncommutative geometry of wire networks from triply periodic surfaces" J. Phys.: Conf. Ser. 343 (2012), 012054.
- Singularities, swallowtails and Dirac points. An analysis for families of Hamiltonians and applications to wire networks, especially the Gyroid". Ann. Phys. 327 (2012) 2865-2884.
- "Projective representations from quantum enhanced graph symmetries". J. Phys.: Conf. Ser. 597 (2015), 012048.
- "Re-gauging groupoid, symmetries and degeneracies for Graph Hamiltonians and applications to the Gyroid wire network". Annales Henri Poincaré 17 (2016) 1383–1414

R. Kaufmann, S. Khlebnikov, and B. K.

- **6** "Singular geometry of the momentum space: From wire networks to quivers and monopoles". J. Sing. Theory 15 (2016) 53–80
- "Local models and global constraints for degeneracies and band crossings", J. Geom. and Phys. 158 (2020) 103892-103901

Initial question by Hugh Hillhouse (then: Chem. Eng. Purdue, now U. of Wash.)

What can mathematicians and physicists tell us about our novel material, which is in the form of a Double Gyroid? What follows from its wonderful mathematical structure?

Hope

original motivation: make solar cells more effective new prospect: discover special properties driven by topology

Note

We will concentrate on the channels, that is the complementary regions of a fat Gyroid surface.

Gvroid Synthetisation Theory Topology Outline The Double Gyroid The geometric setup 2 Synthetisation Fabrication Experimental measurements 3 Theoretical description and Results Quotient graphs Theoretical description **Our Specific Results** Oirac points and enhanced symmetries Dirac points Enhanced Symmetries 5 Topological charges and local models Topological charges and local models Setup and Chern classes Slicing イロト イポト イヨト イヨト

Results for the Gyroid

Gyroid	Synthetisation	Theory	Dirac points	Topology
●000000000	0000	000000000	0000000000	00000000000
Gyroid				

6 / 64

Gyroid	Synthetisation	Theory	Dirac points	Topology
o●oooooooo	0000	000000000	0000000000	೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦
The Gyro	id			

Single Gyroid

- It was discovered by Alan Schoen in 1970.
- It is a triply periodic minimal surface (i.e. surface of constant mean curvature zero)
- It is embedded in ℝ³.
- It appears in nature on wings of certain butterflies and beetles.

The Double Gyroid (DG)

- The DG interface actually consists of two mutually non-intersecting embedded Gyroids.
- The symmetry group is *la*3*d* where the extra symmetry comes from interchanging the two Gyroids.
- This is the geometry of a thick surface.

Gyroid	Synthetisation	Theory	Dirac points	Topology
oo●ooooooo		000000000	0000000000	೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦
The Doub	ole Gyroid			

Level Surface Approximation

• a level surface approximation for the double gyroid is given by the following formula:

$$L_t: \sin(x)\cos(y) + \sin(y)\cos(z) + \sin(z)\cos(x) = t$$

The double gyroid surface is then modeled by L_t and L_{-t} for $0 < t < \sqrt{2}$.

Complement: two channel systems

- The voids in the picture are made up of two non-intersecting channel systems
- we will call these channels C_+ and C_-
- we will concentrate on one of these channels

(a)

Gyroid ooo●oooooo

Synthetisatic

Theory

Dirac points 000000000

The thick or fat surface F

Gyroid Synthetisation

Theory

Dirac points

The two channel systems C_+, C_-

■ ◆ ■ ▶ ■ ∽ ९ ↔ 10/64 Gyroid ooooo●oooo

nthetisation

Theory

Dirac points

Occurrences in Nature

Figure : Colored scales on a Papilionid (left hand side: Parides sesostris) butterfly wing

Gyroid 000000●000 Synthetisation

Theory 000000000 Dirac points DOOOOOOOOO

Butterfly Scales

Figure : (a) SEM of a fractured scale showing the structural composition of the scale. The approximately 5 mm thick single-network gyroid photonic crystal layer is covered by the approximately 5 mm honeycomb structure, acting as a pigment filter. (b) A single scale upside down observed through crossed polarizers. (c) A single scale upside polarizer of 12/64 Gyroid 0000000●00 Synthetisation

Theory 000000000 Dirac points 0000000000

Butterfly vs. Beetle

Figure : The cuticular microstructure in the wing scales of various butterfly (Papilionidae and Lycaenidae) and weevil species can be modelled by a gyroid and diamond structure, respectively.

The two channel systems C_+, C_- : one cell

Gyroid ooooooooo●

Synthetis

Theory 000000 Dirac points

The Channel C_+

Figure : One channel

Gyroid	Synthetisation	Theory	Dirac points	Topology
oooooooooo	●○○○	000000000	0000000000	occococococococococococococococo
Fabricatio	n			

Hugh Hillhouse et al., Purdue, now Univ. of Washington.

- The double-gyroid (DG) is a nanostructure formed by self-assembly in some carefully prepared surfactant or block copolymer systems;
- The cubic lattice constant is 18 nm for the materials of a self-assembled DG structure
- After the first synthesis step, the surfactant is removed yielding a nanoporous silica structure as the fat surface.
- The nanopores (channels) are then filled with a semiconductor (PbSe, PbS, or CdSe) and the silica structure is dissolved to yield the nanowire network.

Figure : (a) Photograph of DG nanoporous silica film on FTO after self-assembly and surfactant extraction. (b) GISAXS from film showing the high-degree of order and orientation. (c) TEM image of the (111) projection of the DG nanoporous silica film compared with a simulated TEM image for the DG structure. (d) Quantitatively accurate structure of the DG nanoporous silica films determined by GISAXS and TEM. (e) High resolution FESEM image of the cross section of a film. The patterns seen in the structure in panel (d) are easily seen. (f) DG platinum nanowire array obtained by electrodepositing Pt in the DG nanoporous film followed by etching in HF or KOH. Periodic y-junctions can be seen in the nanowires extending from top to bottom through the film.

18 / 64

3

Gyroid Synthetisation Theory Dirac points Topology

The skeletal graph Γ_+

Gyroid Synthetisation Theory Dirac points Topology Conservation Conser

Quotient by the translational group $\mathbb{Z}^3 \subset \mathbb{R}^3$

 Γ_+/\mathbb{Z}^3 is a cube. The eight vertices are the images of the vertices $v_0,\ldots,v_7.$

$\begin{array}{cccc} & & & & \\ \text{Gyroid} & & \\ \ \Gyroid & & \\ \text{Gyroid} & & \\ \ \Gyroid & & \\ \Gyroid & & \\ \ \Gyroid & & \\ \ \Gyroid & & \\ \ \Gyroid & & \\ \\Gyroid & & \\ \ \Gyroid & & \\ \ \Gyroid & & \\ \ \Gyroid & & \\ \\Gyroid & & \\ \\Gyroid & & \\ \\Gyroid & & \\ \\Gyroid & & \\ \\\ \\$

Quotient by the full translational symmetry group: bcc

The body centered cubic (bcc) lattice group is generated by $f_1 := (1,0,0), \quad f_2 = (0,1,0), \quad f_3 := \frac{1}{2}(1,1,1).$ $\overline{\Gamma}_+ := \Gamma_+ / bcc$ is a tetrahedron or full square. This is obtained from the cube by identifying opposite corners $v_0 \leftrightarrow v_6, v_1 \leftrightarrow v_7, v_2 \leftrightarrow v_4$ and $v_3 \leftrightarrow v_5$.

21 / 64

	0000	. •	0000000000	
Gyroid 0000000000	Synthetisation	Theory ○○●O○○○○○	Dirac points 0000000000	Topology 000000000000000000000000000000000000

Mathematical formulation

- Define an abstract C*-algebra \mathscr{B} consisting of the Hamiltonian and the symmetries of the system
- The Hamiltonian is the Harper Hamiltonian (tight-binding model)

Definition

Let *E* be the edges of $\overline{\Gamma}_+$. Notice that each directed edge defines a unique vector $\overrightarrow{e} \in \mathbb{R}^n$. Each edge *e* defines a set of directed edges and hence two vectors $\overrightarrow{e}, -\overrightarrow{e}$. The Harper Hamiltonian is $H = \sum_{e \in E} \hat{T}_{\overrightarrow{e}} + \hat{T}_{-\overrightarrow{e}}$ In the presence of a magnetic field, these translations do not commute any more. Gyroid Synthetisation Theory Dirac points Topology accossion acco

Theoretical description

Mathematical formulation II

- In the presence of a constant magnetic field: algebra becomes non-commutative
- Strategy: study this algebra in both cases, non-commutative and commutative
- Commutative case gives the geometry of the Brillouin zone
- Aim: understand spectrum and physical properties

Gyroid Synthetisation Theory Dirac points Topology

Our specific results for the Gyroid with magnetic field

Gap-labelling theorem (with magnetic field)

- If entries of magnetic field are rational, there are only finitely many gaps in the spectrum of *H* (analogue of Hofstadter butterfly).
- If entries of magnetic field are irrational, there may potentially be infinitely many gaps

New measurements

Analogue of Hofstadter butterfly should be measurable in this 3-d system: large lattice constant (18 nm) makes *B*-field reasonable

▲□→ ▲ □→ ▲ □→

Classification of the algebra ${\mathscr B}$

- The abstract algebra \mathscr{B} is a subalgebra of a matrix algebra with coefficients in the non-commutative torus.
- At all but finitely many values of the magnetic field, the non-commutative geometry is given by the non-commutative torus
- At special values of the magnetic field (which we can give) the algebra is a proper subalgebra of the non-commutative torus
- At zero magnetic field the commutative geometry is that of a ramified cover of the 3-dimensional torus.
- In this case, we know the level crossing and splittings. Geometrically this is the ramification locus.

00000	00000	0	000	on	I heory	Dirac points 0000000000	
C	• • •		1.				

Specific Results without magnetic field

Dirac points

- In the commutative case (no magnetic field) we found **new Dirac points** for the Gyroid. (Repeating the same analysis for the honeycomb lattice we recover the known Dirac points.)
 - We discovered Dirac points in a 3d material, the Gyroid wire network.
 - 2 Linear dispersion relation (energy-momentum relation) as for relativistic particles.
- Question: are they topologically stable? Numerical study: yes. Explanation via Chern classes and topological invariants

Measurements in 3-d material

Dirac points have been measured in similar photonic crystals and other 3-d materials - is it possible to measure them in this structure?

Data

- With magnetic field: translations along the edges become magnetic translations, i.e. non-commuting operators U_i with the relations U_iU_j = e^{2πiθ_{ij}}U_jU_i; i = 1, 2, 3
- In Hilbert space decomposition the Graph Harper Operator H becomes the 4 × 4 matrix

$$H = \begin{pmatrix} 0 & U_1^* & U_2^* & U_3^* \\ U_1 & 0 & U_6^* & U_5 \\ U_2 & U_6 & 0 & U_4 \\ U_3 & U_5^* & U_4^* & 0 \end{pmatrix}$$

• Magnetic Field Parameters:

$$heta_{12} = rac{1}{2\pi}B \cdot (g_1 imes g_2), heta_{13} = rac{1}{2\pi}B \cdot (g_1 imes g_3), heta_{23} = rac{1}{2\pi}B \cdot (g_2 imes g_3)$$

Gyroid Synthetisation Theory Dirac points Topology

The matrix Harper Operator

$$H = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & U_1^* U_6^* U_2 & U_1^* U_5 U_3 \\ 1 & U_2^* U_6 U_1 & 0 & U_2^* U_4 U_3 \\ 1 & U_3^* U_5^* U_1 & U_3^* U_4^* U_2 & 0 \end{pmatrix} =: \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & A & B^* \\ 1 & A^* & 0 & C \\ 1 & B & C^* & 0 \end{pmatrix}$$

In the absence of a magnetic field, A, B, C are commutative and can be written as $A \mapsto \exp(ia), B \mapsto \exp(ib), C \mapsto \exp(ic)$

28 / 64

Gyroid	Synthetisation	Theory	Dirac points	Topology	
0000000000	0000	000000000		೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	
Commutative case					

Basic questions

- Classify the points on the base over which the Hamiltonian has degenerate Eigenvalues and give the multiplicities.
- If possible identify symmetries, which can correspond to these Eigenspaces

Answer to Question 1

We answered Question 1 in terms of singularity theory.

Answer to Question 2

We defined a quasi-classical lift of the classical symmetries of $\overline{\Gamma}$ on the base space. This also gives rise to a representation of a group extension on \mathbb{C}^k where $k = |\overline{\Lambda}|$.

Dirac points

- In the commutative case we get a family of Hamiltonians parameterized over a base torus T^n .
- Consider $det(z \ Id H(t))$ as smooth function $P: T^n \times \mathbb{R} \to \mathbb{R}$.
- Determine the critical points of P, viz. singularities.
- The singularity is conical/Dirac if P has an isolated critical point and the signature of the Hessian is (-···-+)
- Notice we use the embedding of the possibly singular spectrum P⁻¹(0) into the smooth ambient space Tⁿ × ℝ.

Characteristic map

Actually $P^{-1}(0)$ is the pull-back of the miniversal unfolding of the A_{k-1} singularity along the map given by the coefficients of P considered as a polynomial in z. We call that map the characteristic map^a.

- The characteristic map lets one read off the type of singularities. They are determined by the image and the fiber.
- Singular points are inverse images of the discriminant locus.
- The type of singularity pulled back to the fiber is given by the respective stratum of the unfolding which were determined by Grothendieck.

^aThere is a rescaling involved if H(t) is not traceless.

Honeycomb

In the case of B = 0 there are two degenerate points in the spectrum, which are cone–like/viz. Dirac. These correspond to enhanced classical symmetries.

Gyroid

In the case of B = 0 there are four degenerate points in the spectrum. Two of them are triple degeneracies and two of them are two double degeneracies, the latter are cone–like/viz. Dirac. These correspond to enhanced classical symmetries.

The eigenvalues of *H* are given by the roots of the characteristic polynomial: $P(a, b, c, z) = z^4 - 6z^2 + a_1(a, b, c)z + a_0(a, b, c)$ $a_1 = -2\cos(a) - 2\cos(b) - 2\cos(c) - 2\cos(a + b + c)$ $a_0 = 3 - 2\cos(a + b) - 2\cos(b + c) - 2\cos(a + c)$ where $A \mapsto \exp(ia), B \mapsto \exp(ib), C \mapsto \exp(ic)$

Figure : Discriminant locus (Swallowtail) and region occupied by Gyroid 33/64

- Characteristic region contained in the slice of the A_3 singularity with $a_2 = -6$, intersects discriminant locus in three isolated points
- two cusps: in stratum of type A₂
- double point: in stratum of type (A_1, A_1)
- fibers over all points are discrete; for A₂ singularities: one point each; for (A₁, A₁): two points each; explains crossings in spectrum

Figure : Spectrum of Harper Gyroid Hamiltonian for a = b = c

・ロ ・ < 回 ト < 三 ト < 三 ト ミ の へ ()
35 / 64

Enhanced	Symmetr	ies		
Gyroid	Synthetisation	Theory	Dirac points	Topology
0000000000	0000	000000000	○○○○○○●○○	იიიიიიიიიიიიიიიიიიიიიიიიიიიიიიი

Re-gauging symmetries

- The graph $\overline{\Gamma}$ has symmetry group \mathbb{S}_4 .
- This action lifts as regaugings on the Hamiltonians by conjugation of matrices.
- The action can be also be lifted to an action on the torus.
- At points with non-trivial stabilizer groups the matrices above give a projective representation of the stabilizer groups.
- The action of S₄ on T³ is fixed once we know the action of the generators (12), (23) and (34).
- Both actions can be presented and read off graphically.

 $\begin{array}{cccc} & & & & \\ \text{Gyroid} & & \\ \ \Gyroid & & \\ \text{Gyroid} & & \\ \ \Gyroid & & \\ \\\ \Gyroid & & \\ \\\ \Gyroid & & \\ \G$

Figure : Calculation of the action of (12) on T^3

 $(A, B, C) \rightarrow (A^{\star}, B^{\star}, ACB)$

Gyroid Synthetisation Theory October Dirac points Topology Conservation Conservation Conservation Theory Conservation Cons

Symmetries at the degenerate points

- The point (0,0,0). The re-gaugeing matrices give the usual representation of \mathbb{S}_4 on \mathbb{C}^4 , decomposing into the trivial representation and an irreducible 3-dim rep. This leads to one three-fold degenerate eigenvalue.
- The point (π, π, π) . The re-gaugeing matrices only give a projective representation. We can scale by a 1-cocycle and find again the one-dimensional trivial representation and the 3-dim standard representation.
- The points $(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2})$ and $(\frac{3\pi}{2}, \frac{3\pi}{2}, \frac{3\pi}{2})$. We have a projective representation of A_4 . After scaling by a 1-cocycle, we find a representation of $2A_4$ or binary tetrahedral group. This leads to two eigenvalues with degeneracy 2 (two 2-dim irreps).

Summary: we explained stability of level sticking analytically with the help of topological invariants/charges and explicit models

Figure : A) Topological charges as functions of the height of a 2-torus slice of the Brillouin zone. The jumps are step functions and the sloped transition is merely a guide. B) The Brillouin torus as a cube with periodic boundaries, the position of the Dirac points and triple crossings along the diagonal and three 2-torus slices.

Gyroid	Synthetisation	Theory	Dirac points	Topology
0000000000	0000	000000000	0000000000	○● ○ ○○○○○○○○○○○○○○○○○○○○○○
Bundle ø	eometry			

Bundle geometry

- Trivial vector bundle T × C^k → C^k; (T = T^d is the d-dimensional torus or Brillouin zone)
- T_{deg} be the locus of points s.t. H(t) has multiple Eigenvalues. $T_0 := T \setminus T_{deg}$.

 c₁(L_i) are the charges corresponding to the Berry phases. Integral over Berry curvature ω [Berry, Simon].

くほう く ヨ と く ヨ と

Gyroid	Synthetisation	Theory	Dirac points	Topology
0000000000	0000	000000000	0000000000	○● ○ ○○○○○○○○○○○○○○○○○○○○○○
Bundle ø	eometry			

Bundle geometry

- Trivial vector bundle T × C^k → C^k; (T = T^d is the d-dimensional torus or Brillouin zone)
- T_{deg} be the locus of points s.t. H(t) has multiple Eigenvalues. $T_0 := T \setminus T_{deg}$.
- c₁(ℒ_i) are the charges corresponding to the Berry phases. Integral over Berry curvature ω [Berry, Simon].
- There are versions for higher degeneracies involving higher Chern-classes. Not today.

Gyroid	Synthetisation	Theory	Dirac points	Topology
0000000000		000000000	0000000000	○O●○○○○○○○○○○○○○○○○○○○○○○○
Chern clas	ses			

2d

If T is two-dimensional compact. Then the Chern classes are given by $\int_T \omega$. This is what happens in the quantum Hall effect. Here $T = T_0 = T^2$. Notice that if $T = T^2$ but $T_{deg} \neq \emptyset$, then all $c_1(\mathscr{L}_i) = 0$. This is the case for graphene \rightsquigarrow Dirac points not topologically protected.

3d

The Chern classes are determined by their pairing with $H_2(T_0, \mathbb{Z})$. If $T = T^3$ there is nice method to encode this using slicing.

Gyroid	Synthetisation	Theory	Dirac points	Topology
000000000		000000000	0000000000	○○○●○○○○○○○○○○○○○○○○○○○○○○
Slicing				

Setup

- $\pi_i: T^3 = S^1 \times S^1 \times S^1 \to S^1$ the i-th projection.
- $\imath(t): T^2 = S^1 \times S^1 \rightarrow T^3 = S^1 \times S^1 \times S^1$ inclusion $(t_1, t_2) \mapsto (t_1, t_2, t).$
- $c_1^i(t) := \int_{\mathcal{T}^2} \imath(t)^* c_1(\mathscr{L}_i)$ for $t \notin \pi_3(\mathcal{T}_{deg})$.
- For t ∈ π₃(T_{deg}) set cⁱ(t) := 0. This is also the result of pulling back the Chern class to T² \ i(t)⁻¹(T^{deg}).
- There are of course similar definitions for the other two inclusions and higher dimensions.

Figure : Example from Gyroid geometry; degenerate points are at $(0,0,0), (\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2},), (\pi,\pi,\pi)$ and $(\frac{3\pi}{2},\frac{3\pi}{2},\frac{3\pi}{2})$

GyroidSynthetisationTheoryDirac points000000000000000000000000000000000

Topology

イロト 不得下 イヨト イヨト 二日

44 / 64

Chern jumps and local charges

Local charges/jumps

T three dimensional, *p* isolated point in T_{deg} . The local charges at *p* are $c_1^i(p) = \int_{S^2(p)} c_1(\mathscr{L}_i)$ where $S^2(p)$ is a little sphere centered at *p*.

A local model (Berry, Simons, ...) in 3d for an isolated 2k + 1-dimensional crossing

 $H(\mathbf{x}) := \mathbf{x} \cdot \mathbf{L} = xL_x + yL_y + zL_z$ where $L_{x,y,z}$ is a k dimensional representation of spin m. The local charges are $c_1^i \in \{-m, \dots, m\}$. Gyroid Synthetisation Theory Dirac point

Topology

Chern jumps and local charges

Local charges/jumps

T three dimensional, *p* isolated point in T_{deg} . The local charges at *p* are $c_1^i(p) = \int_{S^2(p)} c_1(\mathscr{L}_i)$ where $S^2(p)$ is a little sphere centered at *p*.

A local model (Berry, Simons, ...) in 3d for an isolated 2k + 1-dimensional crossing

 $H(\mathbf{x}) := \mathbf{x} \cdot \mathbf{L} = xL_x + yL_y + zL_z$ where $L_{x,y,z}$ is a k dimensional representation of spin m. The local charges are $c_1^i \in \{-m, \dots, m\}$.

Jumps for T^3

Assume for convenience that π_3 is locally bijective at p. By Stokes: $c_1^i(\pi_3(p) + \epsilon) - c_1^i(\pi_3(p) - \epsilon) = c_1^i(p)$

44 / 64

Gyroid	Synthetisation	Theory	Dirac points	Topology
000000000	0000	000000000	0000000000	○○○○○○○○○○○○○○○○○○○○○○○○○
Questions				

Local models

For a double crossing/Dirac point, the above model is the only model. What are the other local models for higher degeneracies? Phase diagram?

Global properties

- Depending on properties of H(t) can one say something directly about the L_i or the cⁱ?
- 2 How much does this determine them? Examples: $\sum_{i} c_{1}^{i}(t) \cong 0$ always. If there is time reversal symmetry $c_{1}^{i}(t) = -c_{1}^{i}(-t)$.
- **3** How much does knowing the local models determine the global structure?
- 4 What is the behavior under perturbations?

Spin type model						
0000000000	0000	000000000	0000000000	00000000000000000000000000000000000000		
Guroid	Synthetisation	Theory	Dirac points	Topology		

Definition of spin type model

We say that an isolated point $\mathbf{k}_0 \in T_{deg}$ is of spin type (s_1, \ldots, s_l) , if it is of singularity type $(A_{2s_1}, \ldots, A_{2s_l})$ and there is a linear isomorphism L_{ϕ_j} for each A_{k_j} singularity in the Eigenvalues to first order perturbation theory

$$P_j[H(\mathbf{k}_0 + \mathbf{x}) - H(\mathbf{k}_0)]P_j = \mathbf{a}_j \mathbf{x} \, id + L_{\phi_j}(\mathbf{x}) \cdot \mathbf{S} + O(\mathbf{x}^2)$$

where \mathbf{a}_j is a vector, $\mathbf{S} = (S_x, S_y, S_z)$ is a spin s_j representation of su(2) and P_j is the projector onto the degenerate Eigenspace of the $2s_j + 1$ fold crossing.

local charges and chirality

local charges: $2m \operatorname{sign}(det(L_{\phi_j}))$ where $m = -s_j, \ldots, s_j$ The sign $\operatorname{sign}(det(L_{\phi_j}))$ is independent of m and will be called the *chirality*.

/ 64

Gyroid Synthetisation Theory Dirac points Topology Conservation Conser

local spin type models

Using perturbation theory, we can show that all level crossings are of spin type:

- **1** The point (0,0,0) is of spin type (1,0) with the chirality 1.
- 2 The point (π, π, π) is of spin type (0, 1) with chirality -1.
- **3** The point $(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2})$ is of spin type $(\frac{1}{2}, \frac{1}{2})$ with chirality (-1, 1).
- **4** The point $(\frac{3\pi}{2}, \frac{3\pi}{2}, \frac{3\pi}{2})$ is of spin type $(\frac{1}{2}, \frac{1}{2})$ with chirality (-1, 1).

Gyroid	Synthetisation	Theory	Dirac points	Topology
0000000000	0000	000000000	0000000000	000000000000000000000000000000000000
Global co	ontraints			

global constraints

There are three different types of global contraints:

- global constraints for the slicing charges c₁ⁱ(t). E.g. they are locally constant outside of the singular points and step functions with integer values.
- 2 global constraints from time reversal symmetry, e.g. $c_1^i(t) = -c_1^i(-t)$
- **3** The Gyroid exhibits an extra symmetry given by $H(\mathbf{k} + (\pi, \pi, \pi)) = U^{\dagger}(-H(\mathbf{k}))U$ with U = diag(-1, 1, 1, 1). This means singularities translated by (π, π, π) are related and of opposite chirality.

Figure : Schematic of the singularities for the *z* slicing. Single lines are of type A_0 , i.e. no crossing. Crosses indicate A_1 Dirac points. These are spin 1/2. The A_2 triple crossings are of spin 1 type. The chiralities are indicated by arrows. \uparrow means +1 and \downarrow means -1 chirality. The axes are the slicing parameter *t* and the energy *E*. The latter is only schematic, to indicate the relative positions of the level.

50 / 64

Gyroid	Synthetisation	Theory	Dirac points	Topology
0000000000	0000	000000000	0000000000	○○○○○○○○○○○○○○○○○○○○○○○○○
Results				

Gyroid: level crossings completely fixed up to one parameter

Due to TRS and the extra symmetry, the chiralities of the $(\frac{1}{2}, \frac{1}{2})$ spin type points are fixed by the chirality of one of the double crossings. Given this chirality, χ_1 and χ_4 , χ_2 and χ_3 are fixed up to a parameter.

Relevance

In this case everything can be calculated by perturbation theory, but the power of our method becomes evident if we deform the Hamiltonian.

Symmetry breaking deformations

Numerical study: introducing symmetry breaking deformations in the Hamiltonian; keeping time reversal symmetry

$$H_d = \begin{pmatrix} V_1 & 1 & 1 & 1 \\ 1 & V_2 & A & B^* \\ 1 & A^* & V_3 & C \\ 1 & B & C^* & V_4 \end{pmatrix}$$

with $A = r_a e^{ia}$, $B = r_b e^{ib}$, $C = r_c e^{ic}$, where V_i , r_a , r_b , r_c are real randomly generated numbers; distributed around their ideal values within a few percent.

Gyroid Synthetisation Theory Dirac points Topology

Stability of Dirac points

Symmetry breaking deformations

- Results: Dirac points are stable under these deformations; results from previous explanation via Chern classes
- triple crossings break up into four double crossings
- we see this numerically; we can explain it again by time-reversal symmetry and global constraints
- in fact, the numerical picture is the minimal resolution of the constraints worked out analytically

Figure : Slicing along z numerically near the old triple crossing at (π, π, π) . This breaks up into *four* A_1 points

54 / 64

Gyroid is most interesting of triply periodic structures (compared to P and D)

- Interesting topology at the singular points in the band structure
- topological properties can be explained analytically
- can be viewed as 3-d analogue of graphene: two Dirac points
- we developed local and global models to explain the level crossings
- stable under deformations, so they should be present in real material
- with sophisticated experimental techniques: they should be observable

Gyroid Synthetisation Theory Dirac points Topology

Other triply periodic wire networks

There are only three (families) of triply periodic minimal surfaces whose complements are given by symmetric and self-dual graphs (1) the P or primitive or cubic surface, (2) the D or diamond surface and (3) the G or gyroid surface.

Figure : One channel of the P surface and of the diamond surface and their skeletal graph. The red and green dots refer to the vertices of the two interlaced fcc lattices $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \equiv \langle \Box \rangle \langle \Box$

Gyroid	Synthetisation	Theory	Dirac points	Topology
oooooooooo	0000	000000000	0000000000	
The end				

Thank you!

Enhanced	Symmetri	es		
Gyroid	Synthetisation	Theory	Dirac points	Topology
000000000	0000	000000000	0000000000	○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

Re-gauging symmetries

- The Gyroid graph Γ_+ is a graph in \mathbb{R}^3 with bcc symmetry.
- Its quotient by bcc, $\bar{\Gamma}_+$, is the tetrahedron. This is the graph of interest for the present discussion.
- It has symmetry group \mathbb{S}_4 .
- This action lifts as regaugings on the Hamiltonians by conjugation of matrices.
- The action can be also be represented by an action on the base torus T^3 ($\widetilde{Arc} = C^*(T^3)$).
- At points with non-trivial stabilizer groups the matrices above give a projective representation of the stabilizer groups.
- The action of S₄ on T³ is fixed once we know the action of the generators (12), (23) and (34).
- Both actions can be presented and read off graphically.

Figure : Calculation of the action of (12) on T^3

 $(A, B, C) \rightarrow (A^{\star}, B^{\star}, ACB)$

Gyroid Synthetisation Theory Dirac points Topology Conservation Conservation Conservation Theory Conservation Conservation

The four degenerate points of the Gyroid

Symmetries at the degenerate points

- The point (0,0,0). The re-gaugeing matrices give the usual representation of \mathbb{S}_4 on \mathbb{C}^4 , decomposing into the trivial representation and an irreducible 3-dim rep. This leads to one three-fold degenerate eigenvalue.
- The point (π, π, π) . The re-gaugeing matrices only give a projective representation. We can scale by a 1-cocycle and find again the one-dimensional trivial representation and the 3-dim standard representation.
- The points $(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2})$ and $(\frac{3\pi}{2}, \frac{3\pi}{2}, \frac{3\pi}{2})$. We have a projective representation of A_4 . After scaling by a 1-cocycle, we find a representation of $2A_4$ or binary tetrahedral group. This leads to two eigenvalues with degeneracy 2 (two 2-dim irreps).

Gyroid Synthetisation oco Orden Synthetisation occ Orden Synthetisation

Other triply periodic wire networks

There are only three (families) of triply periodic minimal surfaces whose complements are given by symmetric and self-dual graphs (1) the P or primitive or cubic surface, (2) the D or diamond surface and (3) the G or gyroid surface.

Figure : One channel of the P surface and of the diamond surface andtheir skeletal graph. The red and green dots refer to the vertices of thetwo interlaced fcc lattices

 Gyroid
 Synthetisation
 Theory
 Dirac points
 Topology

 Occording
 Occording
 Occording
 Occording
 Occording

 The quotient graphs of the surfaces
 Occording
 Occording
 Occording

Figure : The quotient graphs for the cubic, diamond and gyroid lattices

P surface

This is just the case of \mathbb{Z}^3 . The abstract algebra is just the 3-torus. There is only one Eigenvalue and hence no degeneracies for B = 0. No Dirac points!

D surface

The locus where the algebra \mathscr{B}_{Θ} is not the full matrix algebra is given by three one dimensional families — again parameterized by the magnetic field parameters. And several special points corresponding to bosonic and fermionic cases. The locus of degenerate Eigenvalues in the case B = 0 is given by three circles which pairwise touch at a point given by the equations $\phi_i = \pi, \phi_j \equiv \phi_k + \pi \mod 2\pi$ with $\{i, j, k\} = \{1, 2, 3\}$. No Dirac points!

Gyroid	Synthetisation	Theory	Dirac points	Topology
000000000	0000	000000000	0000000000	
Conclusio	า			

Gyroid is most interesting of triply periodic structures (compared to P and D)

- Interesting topology at the singular points in the band structure
- topological properties can be explained analytically
- large lattice constant: B-field manageable
- can be viewed as 3-d analogue of graphene: two Dirac points
- stable under deformations, so they should be present in real material
- with sophisticated experimental techniques: they should be observable

Gyroid	Synthetisation	Theory	Dirac points	Topology
0000000000	0000	000000000	0000000000	○○○○○○○○○○○○○○○○○○○○○○○
The end				

Thank you!