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Outline

e Spin-1/2 Heisenberg chain with off-diagonal (non parallel) boundary fields

boundary field case <+ periodic boundary case
e parallel field case: Alcaraz et al. 1987

e Nno conservation of magnetization, but still infinitely many conserved charges
integrability, various eigenvalue equations
— fusion, T-system, Y -system

— T Q relations

e derivation of finite set of non-linear integral equations

3 versus 2 equations
e numerics: ground-state with “kinks”

Work in collaboration with H. Frahm, D. Wagner
within DFG-Forschergruppe 2316 “Correlations in Integrable Quantum Many-Body Systems”

and with X. Zhanc.; iAvH feIIowi




Periodic boundary
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e Yang-Baxter: infinite number of conserved charges O, = % logT (x), H= Q)

e magnetization ) ; G§. commutes with H and Q,,.

Off-diagonal boundary System with arbitrary boundary fields h;, hy can be written as
Z G;jGjt1+hi -0 +hy -0y +/hy Oy

parameters of later use: p :=1/hj, g :=1/hy, and & := Iy, / Iy,
Curious situation: we have Yang-Baxter, reflection matrix/equation
e infinite number of conserved charges for any p,q,&: O, = % logT (x), H= Q)

o for & # 0 the magnetization . ; 6; does not commute with H and Q.
—




Spin-1/2 XXX chain: integrable boundary conditions II

Integrability is proven by the Yang-Baxter equation and Sklyanin’s reflection algebra

Several methods of solution have been applied
e T Q relations in case of roots of unity, special boundary terms (Nepomechie 2002/04)
e Fusion (Frahm, Grelik, Seel, Wirth 2008)

e Separation of variables (Frahm, Seel, Wirth 2008; Nicolli 2012; Faldella, Kitanine, Niccoli
2013)

e Off-diagonal Bethe ansatz: Commuting transfer matrices + inversion identities (J. Cao, W.-L.
Yang, K. Shi, Y. Wang 2013, R.l. Nepomechie 2013)

e Modified Bethe ansatz (Belliard 2015; Belliard, Pimenta 2015; Crampé N; Avan, Belliard,
Grosjean, Pimenta 2015)

e parallel field case: Alcaraz, Barber, Batchelor, Baxter, Quispel 1987
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Periodic boundary

T
InY;(v) = Nlog tanhZV—|—s xIn(1+Y>)

InYs(v) =0 +sx[In(1+Y;) +1In(1+13)],
In¥3(v) =0 +s*[In(1+Y2) +In(1 +Yy)],

Off-diagonal boundary
InY;(v)

InY;(v)
In¥3(v)

di(v)+s*In(1+Y,)
dy(v)+sx*[In(14+Y;) +1n(1+Y3)],
dz(v) +sx*[In(1+Y2) +1In(1+Yy)],

with non-trivial driving terms in each line: not so useful.
Large deal of the work by Frahm et al. 2008 spent on coping with this situation:

e infinitely many non-linear integral equations (for non-hermitian field, i.e. imaginary &)

e truncation, numerics for relatively short chains (with applications to stochastic systems)




J. Cao, W.-L. Yang, K. Shi, Y. Wang derived the following ansatz for a polynomial 7' (u) that
satisfies a couple of discrete functional equations:

4+ 1)2N+ 1 y—
) =2 148 g 2
2u*N+H1 Q>(u+1)

D0+ ) - B
[t(u+ 1))V

— N— 2%
+2[(=1)" = (1+¢7)2] Q1 (u)Q2(u)

where Q1 and Q, are polynomials

N

N
Q1 (u) = J(u—u) O (u) = (—DN[J(uw+m+1)

=1 =1

with zeros u; to be determined by analyticity conditions. There are N of them, they are complex

valued...




Characteristic properties of ansatz: eigenvalue T (u) is analytic and satisfies at u = 0 the

inversion identities

(uz . 1)2N—|—1
ur—1/4

T(u—1)T(u) = (u® — p?) [(1—|—§2)u2—q2] —|—O(u2N+1),

This property can be established on the lattice (standard initial condition, crossing).
Also:

e eigenvalue T (u) is polynomial of degree 2N + 2 with highest coefficient 2

e T(—1)=T(0) =2pgq

o symmetry T(—u—1) =T (u)

(To my mind this derivation is as exact/rigorous as Takahashi’s thermodynamics in 2000/2001.)




We shift the arguments of the functions

q1(x) == 01 <% X — %) q2(x) := Q2 (% x— %)

Y N D N L) . 2 —2i)
=7 (31-3) = o e e @am TP T am
() () ()
and find that the following auxiliary functions have useful properties:

_ Ma(x) +A3(x) ~ M (x) + A (x) +A3(x)

Q= 2 M(x)3 ’ l+a= ) :

__ M) +hx) _ M)+ Aa(x) +A3(x)

a::= }\,3()6) , l+a= }\,3(.76) )

oo M2 (0) [ () + A2 (x) + A3 ()] 4o MO+ Az (x) +As(x)]
' A (x)A3(x) ’ A (x)A3(x) ’

tJ model like ansatz of suitable auxiliary functions (Juttner, AK 97)
Factorization into “elementary factors” yields integral equations for logs.




3 non-linear integral equations take the compact form

loga log(1+a) K —-X &k .
i
al|l =d+K a K=|— * k(x) :=—
loga +Kx | log(1+7a) |, K kK k|, (x) s
logc log(1+¢) Kk 0

where k(x) was introduced before and

(2N +1)logth(x+1) +7vy(x —x0,1) +Y(x +x0,1) + ...
d:= [ (2N+1)logth(x —1i) +¥(x —x0,1) +¥(x +x0, 1) + ... | »
log[x*(x* — x3)] +10gCoo + ...

where y(x,a) and ... denote terms containing O(1) expressions of type

[(%(a+3—ix))T(5(a+1+ix))
[(3(a+3+ix))T(f(a+1—ix))

Y(x,a) := log

Warning: function ¢(x) may diverge like O(x*) instead of approaching c..!

Subsidiary condition a(xg +1) = a




Once solutions to NLIEs are found, the eigenvalue function A(x) and (ground-state) energy are

given by
log A(x) =(2N + 1)L(x,2) — L(x,1) + L(x, p1) + L(x, p2)
+log(x* —x3) — L(x —x0,1) — L(x +xg, 1)
+e* (logA +logA)
where
C(la+3+i0))T(La+3-] 3
L(x,a) :=log <‘1‘(a+ —|—1x)) <‘1‘(a+ 1x)) +log4, e(x) := 27: )
T(fa+1+ix)C({a+1-ix)) cosh 7x

cp. Yi Qiao, Junpeng Cao, Wen-Li Yang, et al. 2021




Solution for p = —0.6,g = —0.3,§ =0.1 and N = 10

Im log(1 + a)

Re log(1 + a)

/0

| Im log(1 + ¢)

Re log(1 + ¢)

(Functions are rather boring.)

40




Limit of parallel fields: ¢ — 0

Observations:
e For small § the “kinks” in log a(x) are far from the origin.

e The position of the kinks is difficult to understand “intuitively”. For large arguments all driving
terms take “flat values”. And somewhere the functions a and a encircle —1.

e For flat driving terms the following functions with suitable constants solve the NLIEs

X—y_ d

X— V4 _
c(x) = (x—x_ +1)(x —x4 —1)

)
X—X_

a(x) = oo

a\X) = dwo 9

(x) P

e The kinks disappear to infinity for & — 0 (parallel boundary fields) which also enforces ¢ — 0.
Then only two NLIEs for two functions are left.

CFT data for & = 0:
The finite size data for the ground-state energy can be obtained by the dilog-trick.

Two cases to distinguish:
(i) The left or right boundary field is zero (or both): parameter xj = oo
(ii) generic case: parameter x finite, but scales like %logN
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Parallel boundary fields
T
loga(v) = (2N +1)log tanhZ(V—|—i) +...+xx[log(1+a) —log(1+a)],

T
loga(v) = (2N + 1) log tanhZ(V —i)+...+xx[log(1+a) —log(1+ a)]

Consider functions in the scaling limit

L—o0 L—o0

2 2
a(x) := lim a (x—i—|— Elog4N) , dlx):=lima (x—|—i—|— Elog4N)

They satisfy: loga(x) = —e~ 2 +kxlog(1+a) — k_ xlog(1+a) + mi
loga(x) = —e 2* — k. xlog(1 +a) + k*log(1+a) — T

The purely exponential form of the driving term and the symmetry of the kernel allow for an
analytical calculation of the integral as

g/_fodxe—%xmg[(l+a(x))(1+a(x))] = /O;dx(loga(x))’log(l+a(x))—|—(a<—>d)




Hence the finite size term in the energy is

1 (e}
Exy —Ney—fs = ~5N dx (loga(x)) log(1+a(x)) — (a + a)
1 1 log(1
— ——/ da Og( +a)—(a(—>d)
2N Jo a
Final result — for two different integration contours —
ya¥
En — —fs=———"1
N NeO fs 2N

reproducing/extending the results by

Alcaraz, Barber, Batchelor, Baxter, Quispel 1987; Asakawa, Suzuki 1995

Scaling limit and dilog trick for general off-diagonal case possible
e all three functions enter

e problematic: terminals of scaling functions not known




Solution for p = —0.6,g = —0.3,§ = 0.2 and N = 1000.
Shown are real and imaginary parts of log(1 4+ a), and the real valued log(1 + ¢)

6 =

Im log(1+a) 1

4 —

ol Re log(1 +a) |
ok O~ —— |
2 log(1 + ¢) N

Functions are still boring. However, for increasing N the two transitions move out to larger




Solution for p = —0.6,g = —0.3,§ = 0.2 and N = 1000.
Shown are real and imaginary parts of log(1 4 a), and the real valued log(1 + ¢) after every 10
steps of in total 100 iterations.

6 | =

Im log(1 4+ a) 1

40— —

Re log(1 + a)

0__ T~ _
_ —~ — N _
-2_— log(1 + ¢) ]

i 1 1 1 1
-20 -10 0 10 20




Solution for p = —0.6,g = —0.3,§ = 0.2 and N = 1000.
Shown are real and imaginary parts of log(1 4 a), and the real valued log(1 + ¢) after every 10
steps of in total 100 iterations.

Im log(1 + a)

Re log(1 +a) |

v

log(1 + ¢)

20




Solution for p = —0.6,g = —0.3,€ = 0.1 and N = 4,10,10%,10°, ..., 10°.
Shown are real and imaginary parts of log(1+ a),log(1+a),log(1+¢)

T | T | T | T
6 —~ =

777770 NS

\\7,.:@_ wss
0",
\'/"

0 ,

Functions are still boring. However, transitions move out to larger arguments for increasing L.
Also, log(1 + ¢) gets more pronounced.




Resulis:

e presentation of three (!) non-linear integral equations for the Heisenberg chain with broken
conservation of magnetization

e potentially much more powerful than usual numerics (direct Bethe ansatz, Lanczos)
e direct iterative treatment of NLIE suffers from instabilities

To do:
e numerics: modified update rules

e alternative integral equations by fusion + closure

e symmetry of integration kernel for N — o may allow for “dilog-trick”




	
	{darkgreen Contents}
	{darkgreen Spin-1/2 $XXX$ chain: integrable boundary conditions I}
	{darkgreen Spin-1/2 $XXX$ chain: integrable boundary conditions II}
	darkgreen Fusion: TBA-like non-linear integral equations - Comparison
	{darkgreen (Alternative)
Inhomogeneous $TQ$-relation I}
	{darkgreen (Alternative)
Inhomogeneous $TQ$-relation II}
	{darkgreen Functional equations: Definition of auxiliary functions}
	{darkgreen Non-linear integral equations I}
	{darkgreen Non-linear integral equations II}
	{darkgreen Numerical solution to NLIE: ground-state I}
	{darkgreen Limit of parallel fields: $xi 	o 0$}
	{darkgreen CFT from scaling limit and dilog trick I}
	{darkgreen CFT from scaling limit and dilog trick II}
	{darkgreen Numerical solution to NLIE: general case I}
	{darkgreen Numerical solution to NLIE: initial transition too low}
	{darkgreen Numerical solution to NLIE: initial transition too high}
	{darkgreen Numerical solution to NLIE: ground-state for large system sizes}
	{darkgreen Summary}

