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General aims for quantum integrable models:

• Algebraic tools to construct integrable models, i.e., having enough commuting
conserved charges (Yang-Baxter algebra, Quantum groups,...)

• Methods to solve their spectrum (Bethe ansatz, Algebraic Bethe ansatz, ...., SoV, ...)

• Methods to compute their form factors, correlation functions, spectral functions,...

Let’s go!
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The basic ingredient: a complete set of commuting conserved charges

• In classical case: complete set of independent conserved charges in involution >
Liouville-Arnold theorem > action-angle variables with the intermediate fundamental
simplifying step of separation of variables (in practice, soluble cases are those where
we know separation of variables (SoV))

• In quantum case: no analogue of Liouville-Arnold theorem, but SoV scheme initiated
by Sklyanin (separate variables from the Yang-Baxter algebra generators); works well
for rank one algebras but problems show up for higher rank cases

• Purpose of my seminar: present a new approach to quantum SoV based on the
knowledge of a complete set of conserved charges and the knowledge of their
commutative (Bethe) algebra, in particular the corresponding structure constants

Based on a series of works with Giuliano Niccoli and more recently Louis Vignoli
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Quantum separation of variables bases

• T(λ) a one-parameter family of commuting conserved charges acting in H of finite dimension dH

• A set 〈y1, ...., yN |, with yn = 0, 1, ..., dn − 1,
∏N

n=1 dn = dH , is a separation of variables basis for T(λ)
if it is a basis of H∗ and if all common eigenstates |t〉 of T(λ), with eigenvalues t(λ), have separate wave
functions in that basis:

〈y1, ...., yN |t〉 =
N∏

n=1

Q(n)
t (yn)

with Q(n)
t (λ) solutions of discrete difference equations of order dn in yn (with proper b.c.):

Fn[yn ,D±n , t(yn)] Q(n)
t (yn) = 0, for all n ∈ {1, ...,N},

with D±n the positive and negative shifts on the variable yn .

• Proof of completeness of the T(λ)-spectrum needs the action of T(λ) on the basis 〈y1, ...., yN | to be
determined through the above discrete difference equations.

• The N quantum separate relations are the natural quantum analogue of the classical ones in the
Hamilton-Jacobi’s approach.

⇒ Construct separate bases 〈y1, ...., yN | for transfer matrices of quantum integrable models



Sov for quantum integrable models

I A quantum version of SoV invented by E. Sklyanin (1985) in an impressive series of works and
applied to some important integrable quantum models, like Toda model and XXZ spin chain. The
key point is to construct a couple of commuting operator families, B(λ) and A(λ), the separate
basis being the eigenbasis of B(λ) while the shift operator acting on it is obtained from A(λ).

I Applied to various rank one models: Gutzwiller, Kharchev, Lebedev, Babelon, Smirnov (Toda
model), Babelon, Bernard and Smirnov (sine-Gordon model), Derkachov, Korchemsky and
Manashov (non-compact XXX chain), Lukyanov, Bytsko and Teschner (sinh-Gordon model), von
Gehlen, Iorgov, Pakuliak, and Shadura (tau-2 and Bazhanov-Stroganov model), Frahm, Grelik,
Seel and Wirth (SoV functional version for spin 1/2 XXX chain) etc.

I Generalization of Sklyanin approach to a large variety of compact integrable quantum models for
rank one in a series of works by Niccoli, Grosjean, Maillet, Faldella, Kitanine, Levy-Bencheton,
Terras, Pezelier.

I SoV for higher rank case more problematic: Introduced by Sklyanin for Y(gl3) (1996), see also
Smirnov for Uq(sln) (2001). But some problems already for fundamental representations (shift
operator, quantum spectral curve,...)

I Interesting conjectures on SoV spectrum for higher rank by Gromov et al (2016), see Liashyk and
Slavnov (2018) for NABA proof of Gromov et al conjecture on transfer matrix eigenvectors and by
Volin et al (2019) using the new framework we developed for SoV bases (M, Niccoli) in 2018.

I New quantum SoV method based on conserved charges only (M, Niccoli-2018)



SoV bases from transfer matrices - I

Definition: a family of commuting conserved charges T(λ), λ ∈ C, acting on the Hilbert space H of finite
dimension d =

∏N
n=1 dn is "basis generating" if there exist 〈L | ∈ H∗ and sets of conserved charges T (i)

hi
constructed from T(λ), i = 1, . . . ,N and hi = 0, . . . , di − 1, such that the following set is a basis of H∗:

〈h1, ..., hN | ≡ 〈L |
N∏

a=1

T (a)
ha

⇒ In all known quantum integrable lattice models we have been considering so far the above set is
provided by the transfer matrix itself or by the hierarchy of fused transfer matrices. The spectrum is then
determined by the complete set of fusion relations for the hierarchy of transfer matrices.

In particular for gln quasi-periodic higher rank models in fundamental representations the set:

〈h1, ..., hN | ≡ 〈L |
N∏

a=1

T(ξa )ha , {h1, ..., hN } ∈ {0, ..., n − 1}⊗N

is a basis ofH∗ for almost any choice of 〈L | and of the inhomogeneity parameters {ξ1, ..., ξN } if the matrix
K ∈ End(Cn) has simple spectrum. In particular, the covector 〈L | can be chosen as a pure tensor
product 〈L | ≡

⊗N
a=1〈La |.



SoV bases from transfer matrices - II

〈h1, ..., hN | ≡ 〈L |
N∏

a=1

T (a)
ha

, {h1, ..., hN} ∈ {0, ..., n − 1}⊗N

I The wave function Ψt (h1, ..., hN) of any common eigenvector | t 〉 of the commuting family T(λ)

factorizes in terms of one variable wave functions given by eigenvalues t(a)
ha

:

Ψt (h1, ..., hN) ≡ 〈h1, ..., hN |t〉 = 〈L |t〉
N∏

a=1

t(a)
ha

I As eigenvector’s coordinates in the basis 〈h1, ..., hN | are given in terms of eigenvalues, there is (up
to normalization) a unique eigenvector corresponding to an eigenvalue t(λ), hence, the common
spectrum of the family of conserved charges T(λ) is simple.



Matrices having simple spectrum....
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Matrices having simple spectrum-I

I If a d × d matrix X has simple spectrum then to any eigenvalue, root of its characteristic polynomial
PX (t) = a0 + ta1 + t2a2 + · · ·+ td−1ad−1 + td corresponds a unique eigenvector array.

I Such a matrix is similar to its companion matrix C:

VX XV−1
X = C =



0 1 0 · · · 0

0 0 1
. . .

.

.

.

.

.

.
.
.
.

. . .
. . . 0

0 0 · · · 0 1

−a0 −a1 · · · −ad−2 −ad−1


I In the canonical basis 〈ej |, j = 1, . . . , d, 〈ej |C = 〈ej+1 | for any j = 1, . . . , d − 1, making the set
〈e1 |Ck , k = 0, 1, . . . , d − 1 a basis.

I Hence defining 〈fj | = 〈ej |VX , the set 〈f1 |Xk , , k = 0, 1, . . . , d − 1, forms a basis. 〈f1 | is called a cyclic
vector.



Matrices having simple spectrum-II

I For any eigenvalue λ, the unique (up to trivial scalar multiplication) eigenvector |Λ〉 has coordinates:

〈fn |Λ〉 = λn−1

To prove this, the set 〈fn | being a basis, we need to show that 〈fn |X |Λ〉 = λ〈fn |Λ〉, 1 ≤ n ≤ d.

I If n ≤ d − 1, 〈fn |X |Λ〉 = 〈fn+1 |Λ〉 = λn〈f1 |Λ〉 = λ〈fn |Λ〉.

I For n = d, 〈fd |X = 〈f1 |Xd is not a vector of the basis, but we know that PX (X) = 0, hence Xd

decomposes on lower powers of X :

〈fd |X |Λ〉 = 〈f1 |Xd |Λ〉 = −〈f1 |
d−1∑
n=0

anXn |Λ〉 = −〈f1 |Λ〉
d−1∑
n=0

anλ
n = 〈f1 |Λ〉λd = λ〈fd |Λ〉

using PX (X) = 0 and PX (λ) = 0, PX (t) = a0 + ta1 + t2a2 + · · ·+ td−1ad−1 + td .

I The vector space CX of matrices commuting with X has dimension d with basis Xk , 0 ≤ k ≤ d − 1.
Hence any matrix commuting with X can be decomposed linearly on that basis. The commutative
algebra CX has structure constants given by the coefficients of the characteristic polynomial.
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SoV bases from transfer matrices - III

I If the set 〈h1, ..., hN | ≡ 〈L |
∏N

a=1 T (a)
ha

is a basis of H∗ then the set Th ≡
∏N

a=1 T (a)
ha

with
h = (h1, ..., hN) is a basis of the Bethe algebra CT(λ) considered as a vector space.

I Therefore there exist sets Chh′ (λ) and Ch′′
hh′ depending sets of parameters h, h′, h′′ and on λ

giving the closure relations:
Th · T(λ) =

∑
h′

Chh′ (λ) Th′

and the CT(λ) commutative algebra structure constants:

Th · Th′ =
∑
h′′

Ch′′
hh′ Th′′

I These relations hold also for the transfer matrix eigenvalues and enable to compute the action of
the transfer matrix on the SoV basis. They characterize the complete transfer matrix spectrum.

I These relations are in general direct consequences of the fusion relations satisfied by the transfer
matrices, which therefore also fully characterize the spectrum. In all considered cases they are
equivalent to a quantum spectral curve equation.

I Link to the N. Reshetikhin very nice idea of analytic Bethe ansatz. But here it’s no longer an ansatz.

I Key question: what is the optimal choice for the set of conserved charges to construct the
above bases? For the gl2 case it is given by Baxter Q operator. Higher rank cases seem
more involved.

I Related recent works by D. Volin and collaborators (2020, 2021).



SoV bases...



SoV bases for quasi-periodic Y(gln) fundamental models

We consider the gln invariant R-matrix: Rab (λa − λb ) = (λa − λb )Iab + ηPab . Then any matrix K ∈ (Cn)
satisfies:

Rab (λa − λb )Ka Kb = Kb Ka Rab (λa − λb )

The K -twisted monodromy matrix of an integrable models in H ≡ ⊗N
l=1Vl of dimension d = nN :

M(K)
a (λ, {ξ1, ..., ξN }) ≡ Ka RaN(λ − ξN) · · ·Ra1(λ − ξ1)

satisfies the Yang-Baxter algebra and defines a commuting family of transfer matrices:

T (K)(λ, {ξ}) ≡ trVa M(K)
a (λ, {ξ})

The gln SoV basis:

〈h1, ..., hN | ≡ 〈L |
N∏

a=1

(T (K)(ξa , {ξ}))ha ∀{h1, ..., hN } ∈ {0, ..., n − 1}⊗N

is a covector basis of H∗ for almost any choice of the covector 〈L | and of the inhomogeneity parameters
{ξ1, ..., ξN } if K ∈ End(Cn) has simple spectrum. In particular we can chose:

〈L | ≡
N⊗

a=1

〈La |

with 〈La | a local covector in V∗a such that

〈La |Kh
a with h ∈ {0, ..., n − 1}

is a covector basis for Va for any a ∈ {1, ...,N}. Moreover if K is diagonalizable with simple spectrum then
T (K)(λ, {ξ}) has the same property. The proofs use the polynomial properties of all the objects involved.



SoV basis for quasi-periodic Y(gl2) models - I

The basis writes for chain with arbitrary spin-sn representation in different lattice sites n = 1, . . . ,N.

〈h1, ..., hN | ≡ 〈O |
N∏

n=1

T(K |hn )(ξ
(hn−1)
n )

khn
1

∏hn−1
k=0 a(ξ

(k)
n )

∀ha ∈ {0, ..., 2sa }, a ∈ {1, ...,N}

a(λ) =
N∏

n=1

(
λ − ξ

(2sn )
n

)
and d(λ) =

N∏
n=1

(
λ − ξ

(0)
n

)
k1 and k2 the eigenvalues of the 2 × 2 twist matrix K , k1 , k2 and k1.k2 , 0, so K , αI and
ξ

(kn )
n ≡ ξn − η/2 + (sn − kn)η.

Fused transfer matrices

T(K |l+1)(λ) = T(K)(λ + lη)T(K |l)(λ) −∆
(K)
η (λ + lη)T(K |l−1)(λ)

Quantum determinant
∆

(K)
η (λ) = k1k2a(λ)d(λ − η)

It coincides with Sklyanin’s SoV basis (when it exists) for a special choice of the co-vector 〈O |

Action of the transfer matrix on the basis

〈h1, ..., hN |T(K)(ξ
(hn )
n ) = k1a(ξ

(hn )
n )〈h1, ..., hn + 1, ..., hN |+ k2d(ξ

(hn )
n )〈h1, ..., hn − 1, ..., hN |



SoV basis for quasi-periodic Y(gl2) models - II

Spectrum of T(K)(λ) coincides with the set of polynomials:

Σ
T(K) =

t(λ) : t(λ) = (k1 + k2)
N∏

a=1

(λ − ξ
(0)
n ) +

N∑
a=1

ga (λ)xa , ∀{x1, ..., xN} ∈ D
T(K)

 ,
ga (λ) =

∏N
b,a,b=1

λ−ξb
ξa−ξb

and D
T(K) is the set of N-tuples {x1, ..., xN} solutions to :

t(K |2sn+1)(ξ
(2sn )
n ) = 0, ∀n ∈ {1, ...,N},

each of which is a degree 2sn + 1 polynomial equation in the N unknowns. Existence of Q-operator with

degree less than N satisfying T − Q equation is equivalent to the tower of fusion relations:

T(K)(λ)Q(λ) = k1a(λ)Q(λ − η) + k2d(λ)Q(λ + η)

Basis from Q-operator:

〈h1, ..., hN | = 〈L |
N∏

a=1

Q(ξ
(ha )
a )

Gives a clear understanding of the linear action of T(K)(λ) on the basis: the spectrum characterization in
terms of T − Q equation also serves as closure relation for the action of T(K)(λ) on our SoV basis

T(K)(ξ
(ha )
a )Q(ξ

(ha )
a ) = k1a(ξ

(ha )
a )Q(ξ

(ha +1)
a ) + k2d(ξ

(ha )
a )Q(ξ

(ha−1)
a ) .



Properties of transfer matrices for Y(gl3)

The commuting fused transfer matrices:

T (K)
1 (λ) ≡ tra M(K)

a (λ) T (K)
2 (λ + η) ≡ 3trabc P−abc M(K)

a (λ)M(K)
b (λ + η)

The quantum determinant is central:

q-detM(K)(λ) ≡ tr123(P−123M(K)
1 (λ)M(K)

2 (λ + η)M(K)
3 (λ + 2η))

The quantum spectral invariants have the following polynomial form:
i) T (K)

1 (λ) is a degree N polynomial in λ with trK as leading coefficient.

ii) T (K)
2 (λ) is a degree 2N polynomial in λ with the following N central zeros and asymptotic:

T (K)
2 (ξa + η) = 0, lim

λ→∞
λ−2NT (K)

2 (λ) =
(trK)2

− trK2

2

iii) the quantum determinant q-detM(K)(λ) = detK
∏N

b=1(λ − ξb )(λ + η − ξb )(λ + 3η − ξb )

Fusion identities:

T (K)
1 (ξa )T (K)

2 (ξa − η) = q-detM(K)(ξa − 2η)

T (K)
1 (ξa − η)T (K)

1 (ξa ) = T (K)
2 (ξa )

Then, defining fa,h(λ) = ga,h(λ)
∏N

b=1
λ−ξb

ξ
(ha )
a −ξb

and ga,h(λ) =
∏N

b,a,b=1
λ−ξ

(h)
b

ξ
(h)
a −ξ

(h)
b

, ξ(h)
b = ξb − hη:

T (K)
2 (λ + η) = T (K ,∞)

2,h=1 (λ + η) +
N∑

a=1

fa,h=1(λ)T (K)
1 (ξa − η)T (K)

1 (ξa )



The transfer matrix spectrum for Y(gl3)

The spectrum of T (K)
1 (λ) is characterized by:

Σ
T(K) =

t1(λ) : t1(λ) = tr K
N∏

a=1

(λ − ξa ) +
N∑

a=1

ga,h=0(λ)xa , ∀{x1, ..., xN} ∈ ΣT

 ,
ΣT is the set of solutions to the following inhomogeneous system of N cubic equations:

xa [T (K ,∞)
2,h=1 (ξa − η) +

N∑
n=1

fn,h=1(ξa − 2η)t1(ξn − η)xn] = q-detM(K)(ξa − 2η),

in N unknown {x1, ..., xN }. Moreover, T (K)
1 (λ, {ξ}) has simple spectrum and for any t1(λ) ∈ Σ

T(K) the
associated unique (up-to normalization) eigenvector |t〉 has the following wave-function in the left SoV
basis:

〈h1, ..., hN |t〉 =
N∏

n=1

thn
1 (ξn)

Action of the transfer matrix using the fusion relations until we get the quantum determinant which acts
trivially on any covector. We use interpolation formulae for the transfer matrix and the fact that the same
fusion relations and interpolation formulae are true for the eigenvalues of the transfer matrices, hence
giving the possibility to reverse the process and to reconstruct it in the necessary points (very much like
the use of the characteristic polynomial in standard matrix case).



Quantum spectral curve

Let us assume that the twist matrix K has at least one nonzero eigenvalue γ0 then the entire functions
t1(λ) is a T (K)

1 (λ) transfer matrix eigenvalue if and only if there exists a unique polynomial:

Qt (λ) =
M∏

a=1

(λ − λa ) with M ≤ N and λa , ξn ∀(a, n) ∈ {1, ...,M} × {1, ...,N}

satisfying with

t2(λ + η) = T (K ,∞)
2,h=1 (λ + η) +

N∑
n=1

fn,h=1(λ)t1(ξn − η)t1(ξn),

the following quantum spectral curve equation:

α(λ)Qt (λ − 3η) − β(λ)t1(λ − 2η)Qt (λ − 2η)

+γ(λ)t2(λ − η)Qt (λ − η) − q-detM(K)
a (λ − 2η)Qt (λ) = 0

α(λ) = γ(λ)γ(λ − η)γ(λ − 2η)

β(λ) = γ(λ)γ(λ − η)

γ(λ) = γ0

N∏
a=1

(λ + η − ξa )

with γ3
0 − γ

2
0 tr K + γ0

(trK)2−trK2

2 = det K . Moreover, up to a normalization the common transfer matrix
eigenstate |t〉 admits the following separate representation:

〈h1, ..., hN |t〉 =
N∏

a=1

γha (ξa )Qha
t (ξa − η)Q2−ha

t (ξa )



Scalar products - I

Choice of left and right SoV bases ({h1, ..., hN} ∈ {0, 1, 2}N)

〈h| = 〈1|
N∏

n=1

T
(K)δhn ,0
2 (ξ

(1)
n )T

(K)δhn ,2
1 (ξn) and |h〉 ≡

N∏
n=1

T
(K)δhn ,1
2 (ξn)T

(K)δhn ,2
1 (ξn)|0〉

chosen (in tensor product form for Jordan form of K ) such that 〈k|0〉 =
∏N

a=1 δ0,ka

Scalar products

Nh,k = 〈h|k〉 = 〈k|k〉

δh,k + Ck
h

nk∑
r=1

(det K)r
∑

α∪β∪γ=1k ,
α,β,γ disjoint,#α=#β=r

δ
h,k

(0,2)
α,β

 ,
Ck

h non-zero constants defined recursively and independent w.r.t. det K , nk = [(
∑N

a=1 δka ,1)/2].

Nh = 〈h|h〉 =

 N∏
a=1

d
(
ξ

(1)
a

)
d
(
ξ

(1+δha ,1+δha ,2)

a

)
 V2(ξ1, ..., ξN)

V
(
ξ

(δh1 ,2
+δh1 ,1

)

1 , ..., ξ
(δhN ,1

+δhN ,2
)

N

)
V
(
ξ

(δh1 ,2
)

1 , ..., ξ
(δhN ,2

)

N

)
See also related results by A. Cavaglia, N. Gromov, F. Levkovich-Maslyuk, P. Ryan, D. Volin.



Non-orthogonal SoV bases.....



Scalar products - II

⇒ Changing the set of conserved charges to get orthogonal bases

Let {|t(K)
a 〉, a ∈ {1, .., 3N}} be the eigenvector basis and let {〈t(K)

a |, a ∈ {1, .., 3N}} be the eigenco-vector
basis associated to the transfer matrix T (K)

1 (λ) (that has simple spectrum).

I The SoV measure becomes diagonal if det K = 0 while keeping simple spectrum for K

I Define T(K)
j (λ) =

∑3N
a=1 t(K̂)

j,a (λ)
|t

(K)
a 〉〈t

(K)
a |

〈t
(K)
a |t

(K)
a 〉

, j ∈ {1, 2}, with simple spectrum K̂ and det K̂ = 0

[
T

(K)
l (λ),T

(K)
m (λ)

]
=

[
T (K)

l (λ),T
(K)
m (λ)

]
= 0 l,m ∈ {1, 2}

T
(K)
2 (ξ

(1)
a )T

(K)
1 (ξa ) = T

(K)
2 (ξ

(1)
a )T

(K)
2 (ξa ) = 0

T
(K)
1 (ξ

(1)
a )T

(K)
1 (ξa ) = T

(K)
2 (ξa )

Orthogonal SoV bases

〈̂h| ≡ 〈1|
N∏

n=1

T
(K)δhn ,0
2 (ξ

(1)
n )T

(K)δhn ,2
1 (ξn), ∀ hn ∈ {0, 1, 2},

|̂h〉 ≡
N∏

n=1

T
(K)δhn ,1
2 (ξn)T

(K)δhn ,2
1 (ξn)|0〉, ∀ hn ∈ {0, 1, 2}.

〈̂k|̂h〉 = Nh

N∏
a=1

δha ,ka



Scalar products - III

⇒ Determinant representations of the scalar products of separate states

We have the following representation of the vector of the original transfer matrix T (K)
1 (λ):

|t(K)
a 〉 =

∑
h

N∏
n=1

t
(K̂)δhn ,0
2,a (ξ

(1)
n )t

(K̂)δhn ,2
1,a (ξn)

|̂h〉
Nh

Separate states have the form

〈α| =
∑

h

N∏
a=1

α
(ha )
a

〈̂h|
Nh

,

there exists a permutation πn of the set {1, ...,N} such that:

t(K̂)
1,n (ξπn (b)) = t(K̂)

2,n (ξπn (a) − η) = 0, ∀(a, b) ∈ A × B ,

t(K̂)
1,n (ξπn (a)) , 0, t(K̂)

2,n (ξπn (b) − η) , 0, ∀(a, b) ∈ A × B ,

where we have defined:
A ≡ {1, ...,Mn}, B ≡ {Mn + 1, ...,N}.

〈α|t(K)
n 〉 =

N∏
a=1

d(ξ
(2)
a )

d(ξ
(1)
a )

V
(
ξ

(1)

πn (1)
, ..., ξ

(1)

πn (Mn )

)
V
(
ξπn (1), ..., ξπn (Mn )

) ×
detN−Mn M

(α|xA t2,n)
+,N−Mn

V
(
ξπn (Mn+1), ..., ξπn (N)

) detMn M
(α|xB t1,n)
−,Mn

V
(
ξπn (1), ..., ξπn (Mn )

)



Other models

I Fundamental quasi-periodic Y(gln) models

I Fundamental quasi-periodic Uq(gln) models

I Higher-spin Y(gl2) models

I Y(gln) models with integrable boundaries

I Y(gl(m,n)) and Hubbard models (SoV bases, conjectures for the closure relations)

Some general features in these models:

I The transfer matrix indeed provides SoV bases

I There are several choices for the SoV bases

I The full spectrum can be characterized (needs closure relations)

I Quantum spectral curve equations from fusion relations

I Equivalent SoV basis from the Q-operator

I A construction of the Q-operator



Results

" SoV bases from complete sets of commuting conserved charges

" Complete spectrum with eigenvectors determined from eigenvalues

" SoV for higher rank models

Questions

~ Algebraic construction of "optimal" SoV bases having also orthogonality property

~ Extension of the notion of Q-operators in general models

~ Form factors and correlation function in this new SoV scheme
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