

Thank you for the nice conference

XXZ at root of unity

COMMON STRUCTURES BETWEEN FINITE SYSTEMS AND CONFORMAL FIELD THEORIES THROUGH QUANTUM GROUPS

V. PASQUIER and H. SALEUR

Service de Physique Théorique* de Saclay, F-91191 Gif-sur-Yvette Cedex, France

Received 15 March 1989

Open XXZ Chain

Closed XXZ Chain

• With q a root of unity :

$$H = \sum_{j=1}^{L} \sigma_{j}^{x} \sigma_{j+1}^{x} + \sigma_{j}^{y} \sigma_{j+1}^{y} + \left(\frac{q+q^{-1}}{2}\right) \sigma_{j}^{z} \sigma_{j+1}^{z}$$

$$\Delta = \frac{q+q^{-1}}{2} = \cosh \eta, \qquad q = e^{\eta}.$$

J.Lamers, Y.Miao VP 2012.10224

Fabricius McCoy

- Symmetry is now loop algebra
- Finite dimensional representations are tensor product of evaluation representations
- Tensor product of N spin 1/2 are Caracterized by Drinfeld polynomial :

$$P(z) = \prod_{1}^{N} (z - a_i)$$

• Roots of P(z) are evaluation parameters

$$\frac{a^2 + b^2 - c^2}{2ab} = \Delta$$

L Matrix

$$L_s(u) = \begin{pmatrix} q^u K - q^{-u} K^{-1} & (q - q^{-1}) S^- \\ (q - q^{-1}) S^+ & q^u K^{-1} - q^{-u} K \end{pmatrix}$$

$$KS^{\pm} = q^{\pm}S^{\pm}K$$

[S⁺, S⁻] = (K² - K⁻²)/(q - q⁻¹)

Quantum SI2

Bethe equations

$$\left(\frac{\sinh(u_m+\eta/2)}{\sinh(u_m-\eta/2)}\right)^N \prod_{m'(\neq m)}^M \frac{\sinh(u_m-u_{m'}-\eta)}{\sinh(u_m-u_{m'}+\eta)} = e^{-\mathrm{i}\phi}, \qquad 1 \le m \le M.$$

If $l\eta$ is a multiple of π

$$\sinh(u-\alpha)\sinh(u-\alpha-\eta)\cdots\sinh(u-\alpha-(l-1)\eta)$$

For such polynomial, the numerator and denomintor cancel

Moreover it does not change the spectrum.

Questions ?

When such a factor occurs there are degenerate states with magnetization differing by I

Does the eigenstate depend on α no

Does α has any physical meaning ? Center of the string

YB

RLL' = L'LR

2 black and one red lines, R 4x4 6-Vertex matrix

Root of unity reps

Physical motivation

Prosen, Pereira Sirker Affleck P

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t \mathrm{d}t' \langle A(0)A(t') \rangle_\beta \ge \sum_k \frac{\langle AQ_k \rangle_\beta^2}{\langle Q_k^2 \rangle_\beta}.$$

Mazur bound A the integrated current

Q= Z charge associated to auxiliary transfer matrix

Fractal Drude Weight

Mathematical motivation

 $V_{1/2}(z_i)^N$

Interpretation of z_i?

Takahashi

$$\frac{13}{16} = \frac{1}{1 + \frac{1}{4 + \frac{1}{3}}}$$

8 strings

• (11,+) (5,-)

2 last strings

Takahashi strings= FM strings ?

$$\eta = i\pi \frac{p}{l}$$

$$\alpha_k = \alpha_{FM} + \frac{i\pi}{l}(\frac{l+1}{2} - k)$$

$$\begin{array}{rcl} \alpha_{FM} &=& i \frac{\pi p}{l} \hspace{0.2cm} p \hspace{0.2cm} odd \\ &=& 0 \hspace{0.2cm} p \hspace{0.2cm} even \end{array}$$

Physical=Mathematical ? Degeneracy only for commensurate twist

$$q^{lN}\mu^l = 1$$

Changing the twist away from commensurate, FM strings split into 2 last strings which carry the charge (conjecture)

Two last strings

• Kuniba Sakai Suzuki

$$\begin{split} Y_{j}(v+\mathrm{i})Y_{j}(v-\mathrm{i}) &= (1+Y_{j-1}(v))(1+Y_{j+1}(v)) \quad \text{for } 1 \leq j \leq \nu-3, \\ Y_{\nu-2}(v+\mathrm{i})Y_{\nu-2}(v-\mathrm{i}) &= (1+Y_{\nu-3}(v))(1+Y_{\nu-1}(v))(1+Y_{\nu}(v)) \quad \text{for } \nu \geq 3, \\ Y_{\nu-1}(v+\mathrm{i})Y_{\nu-1}(v-\mathrm{i}) &= \mathrm{e}^{-\mathrm{i}\nu\phi}(1+Y_{\nu-2}(v)), \\ Y_{\nu}(v+\mathrm{i})Y_{\nu}(v-\mathrm{i}) &= \mathrm{e}^{\mathrm{i}\nu\phi}(1+Y_{\nu-2}(v)). \end{split}$$

 $R_u = F_1^{-1}(u_2, v_1) H_{12}(u_1, u_2) F_1(u_1, v_1)$

P and Q matrices

 $T(\mathbf{u}, \mathbf{v})T(\mathbf{u_0}, \mathbf{v_0}) = T(\mathbf{u}, \mathbf{v_0})T(\mathbf{u_0}, \mathbf{v}) = Q(u)P(v)$

P and Q commute

$$T(u)Q(u) = T_0(u - \eta)Q(u + \eta) + \mu T_0(u + \eta)Q(u - \eta)$$

$$T(u)P(u) = \mu T_0(u - \eta)P(u + \eta) + T_0(u + \eta)P(u - \eta)$$

From which Bethe equations derive

Decomposition

 $(\mathbf{u},\mathbf{v})\equiv(u,s)$ u spectral parameter s spin

When s is half integer, one has

$$T(u,s) = \begin{pmatrix} \mathbf{T}(u,s) & * \\ 0 & T(u,-s-1) \end{pmatrix} \equiv \mathbf{T}(u,s) + T(u,-s-1)$$

$$(1 - q^{Nl}\mu^l)\mathbf{T_0}(u) = Q(u + 1/2)P(u - 1/2) - \mu^1 Q(u - 1/2)P(u + 1/2)$$

Wronskian vanishes for commensurate twist

Complete strings

Vanishing of Wronskian means P and Q differ by complete strings

$$P(u) = Q_r(u)P_s(u)$$
$$Q(u) = Q_r(u)Q_s(u)$$

Drinfeld Polynomial

Specialize at s=0 using periodicity

$$\frac{P}{Q}(u+l\eta) = q^{Nl}\frac{P}{Q}(u)$$

$$\frac{P}{Q}(u) = \sum_{0}^{l-1} \mu^k \frac{\mathbf{T}_0(u+k-1/2)}{Q(u+k\eta)Q(u+(k+1)\eta)}$$

Consequence for the spectrum

Since Wronskian vanishes at commensurate twists, P and Q differ only by the part Invariant under $u \rightarrow u + \eta$ polynomial in e^{lu}

$$Y(u) = P_s Q_s(u) = \sum_{0}^{l-1} \mu^k \frac{\mathbf{T}_0(u+k-1/2)}{Q_r(u+k\eta)Q_r(u+(k+1)\eta)}$$

Equal to the polynomial Y(u) introduced by Fabricius and McCoy. Explains degeneracy P 13 Center of FM strings are meaningless for 6Vertex but meaningfull for Q

Difference with Fabricius McCoy

- This Q matrix can only be constructed for $e^{2l\eta} = 1$ as a consequence center of FM strings are not the limit of root $e^{2l\eta} \rightarrow 1$ Center of FM strings coincide with roots of Y(u).
- The Q matrix itself is an interesting object related to so called τ_2 matrix of Bazanov Stroganov

Happy birthday

Hubert

Happy birthday Jesper !