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Ising spin glasses

Ising version of Edwards-Anderson model:

denotes          are nearest neighbors on hypercubic lattice,     dimensions

are independent, identically distributed, mean zero (e.g. Gaussian);
[ . . . ] or            will denote expectation over       .
Can allow ints beyond nearest neighbors.

EA found that in mean field theory there is a phase transition, below which

--- i.e. spins order (spontaneously break spin flip symmetry), 
but randomly: “spin glass”



Sherrington and Kirkpatrick proposed an “exactly soluble” infinite-range model

Study of SK model led to Parisi’s “mean field solution”, with “breaking 
of replica symmetry” (RSB) below transition --- a surprisingly complex structure 

Various aspects of the Parisi solution have by now been rigorously proved correct
---Guerra, Talagrand, Panchenko

For the original EA model---short-range, finite-dimensional---the Parisi school
expects similar behavior as in SK.

But others (McMillan, Bray-Moore, D. Fisher-Huse) proposed a scenario with 
a much simpler structure --- albeit capable of e.g. complex dynamical behavior
(i.e. glassy dynamics) --- known as the scaling-droplet picture

The controversy is still not resolved. 

The goal of this work is to shed a little light on it. 



A feature of the Parisi RSB picture is the claim that there are many ordered 
or “pure” states [or “free-energy valleys”] (and further that somehow they are 
arranged hierarchically or ultrametrically).

In the scaling-droplet picture, it is assumed (implicitly or explicitly) that 
(in zero magnetic field) there is only one pure (ordered) state and its spin flip 
--- as in an Ising ferromagnet.

This difference is the central point, but is subtle: the notion of a pure state, 
or of spontaneously breaking spin flip symmetry, only makes sense in 
an infinite system. (We will later see a further distinction between pictures.)

In a finite system, the Gibbs probability distribution for the spins (in canonical 
ensemble, for fixed      s) is uniquely determined by the usual formulas 

and there can be no phase transitions. 

These formulas don’t make sense in an infinite system (the sums don’t converge).



Infinite-size Gibbs states and pure (or extremal) states at T>0:

A Gibbs (DLR) state is defined by specifying its conditional distributions
for the spins        in any finite region    , conditioned on the spins outside:

where       is finite (with probability one) for all s if 

(for all i, by trans invariance)          
(short-range case).
This does not determine the behavior “at infinity”; there could be many Gibbs 
states for same H. 

Convex combinations or mixtures of Gibbs states are still Gibbs.
Define pure states to be extremal Gibbs states, i.e. those that cannot be expressed
as a convex combo (most generally, an integral) of other Gibbs states.

Any Gibbs state has a unique decomposition as a convex combo of pure states:

where       are non-negative weights, and            are pure states. 



Why not just take the limit of the state in a sequence of finite size systems?

The problem is that the                limit of the finite-size Gibbs states---hence of 
correlation functions---may not exist.
(Here                    for all edges fixed once and for all; bc’s can be free, periodic, etc;
as size increases, new spins and new bonds are added at the edge.) 

--- Chaotic size dependence (CSD)
--- associated with the existence of many pure states (Newman-Stein 1992)
--- NS proposed the concept of a metastate to handle this issue (NS 1996, 1997);

a related construction was given earlier by Aizenman-Wehr (1990).

A state is a probability distribution on the spins (for fixed      s).  A metastate
is a probability distribution on (infinite-size) Gibbs states, also for fixed      s.

Essentially, constructed by first taking the limit of the joint probability distribution
of bonds and states in finite size. (Can show such a limit in distribution exists,
but it may be necessary to use a subsequence, and then limit may not be unique.)  
Then the conditional distribution on (infinite-size) states for given      is the 
metastate ; it can be shown the states are Gibbs (so Gibbs states exist!).
This (AW) metastate contains info on dependence of state on bonds asymptotically far away; the NS metastate instead
records the dependence on system size, in the limit.



Alternate view:

Aizenman-Wehr (AW) metastate:  Let                                  

First, find prob dist on Gibbs states in window        , induced 
by disorder (i.e. bonds with at least one end) in “outer region’’                  for fixed disorder 
in        .  Then take limits                                                 (possibly need a 

subsequence). Result is an AW (ground state) metastate .

Thus an AW metastate tells us, for a large system, how the state observed 
in a window depends on the set of bonds in the outer region far away.

Likewise a NS metastate tells us how the state in the window depends
on the system size chosen, at asymptotically large sizes.

--- under some conditions, NS and AW metastates can be shown to be the same

Characterizing the metastate in SG phase is a second key question about EA model
--- is it trivial (supported on a single Gibbs state), or not?



In scaling-droplet picture, it is assumed the metastate is trivial and unique, and the 
unique Gibbs state contains single pair of pure states, or single pure state for non-zero 
magnetic field.

According to RSB, at             the Gibbs state contains many pure states, hierarchically.
Then a metastate must be non-trivial (NS 1996)---there is CSD---and is responsible 
for so-called non-self-averaging. 

Notation:                 = thermal average in a Gibbs state          

= expectation over metastate at fixed       

= expectation over dist of        (e.g. Gaussian) 

Useful definition:  let                                  be the “metastate averaged state” (MAS).
--- it too is a Gibbs state

Thus a thermal average in the MAS is given by   



In AW metastate, the averages have simple meanings in terms of finite size: 

(i.e. finite-size thermal average)

(disorder average in outer region)

(disorder average in inner region)

after which limits should be taken.

Following correlation function should reveal non-trivial AW metastate:

In SG phase,                    constant at large distances. If metastate is trivial,
same will be true for                    . 

But for nontrivial metastate, average over outer disorder will produce decay of
--- even at T = 0! --- to a smaller value, or zero.



Expect power-law (even at zero temp):                                          

as

Clearly            .

Can interpret      for T=0 as something like the fractal dimension of each “cluster” 
that flips when ground state changes due to change in disorder far away.

Further, expect that the number of distinct pure states that can be distinguished 
by observing the window of size W would be 

and I also argued that            . 
(Hence (NS) expect lower bound            in the EA model --- return to this later.)

Thus, if           , the total number of pure states in the MAS is uncountable
(NS 2007), but subextensive in EA model.

(Much larger than the number of pure states contributing to a single     drawn 
from the metastate, which is countable according to RSB.) 



For AW metastate, can use RSB field theory to calculate correlator above, making 
use of results from De Dominicis et al, 1998.

Find 

as

so according to RSB (in zero magnetic field) (NR, 2014)

for                   ,

where loop corrections can be neglected.

For            , replica calculations are difficult; we expect     decreases 
and reaches               just at the lower critical dimension              (only a guess!);
it is believed that                 .

Studying various correlations or overlap distributions similarly, find that RSB
is consistent with all rigorous requirements from NS metastate analysis.
Can also find overlap distribution in MAS.



Recent numerical study (Billoire, . . . , Parisi, . . ., PRL 119, 037203 (2017) 
[arXiv:1704.01390]) studies precisely these quantities in d=3 EA model!
Scaling form: 

They find asymptopia reached when                                 ; L up to 24. 
Scaling plots give 



They also studied finite size version of overlap distribution in MAS,              
(different quantity from Parisi ; nonetheless consistent with RSB):

Difference from usual          , and difference of    from 4, are evidence for
non-trivial metastate in d=3 EA model.  Trends:

(Red points from earlier work on quantity I expect to be the same.)

³



These results are evidence of CSD, and some form of replica symmetry breaking,
in three dimensions.

Another earlier study by Wittman and Young, arXiv:1504.07709, used
the 1D long-range model with                                     , and chose                ,
which should correspond to             in the EA model.

In this regime                               the RSB calculation predicts                      .  

They studied correlations after a quench from high temp, arguing that this
“dynamic metastate” simulates the equilibrium MAS correlation function. 

The results are in excellent agreement with the (static) RSB prediction at                .

Extended to more values of       in Jensen, N.R., and Young (2021).



Complexity of states and metastates as information

Palmer (1982) suggested name “complexity” for the entropy
of the weights       in the pure state decomposition

and that it might be extensive (proportional to volume) for some     .

But pure states are defined only in infinite size, so this is problematic.

Recently, Holler and N.R. (2020) proposed instead using the mutual information
between the spin configuration      in    , taking values                , and the
pure state    , taking values           , to define complexity relative to 
the window    :

which is well-defined and finite. Then one can study the limit              .

This mutual information represents the info gained about which pure state one
is in from an observation of the random variable      (inc due to spont. symm. breaking).



In the metastate construction, we can define the random variable    that takes 
values             with distribution         , take the expectation over     , and call it 

(all for given    ), the complexity of a typical Gibbs state. 

Similarly, we can define the complexity of the metastate to be the mutual
information of spins with     ,

,

the info about the Gibbs state gained from an observation. (Zero for trivial metastate.)

Finally, we can also define the complexity of the MAS to be the mutual information
in      rather than a    ,

.

One can show that                                         .

N.R., 2021

N.R., 2021



Bounds on (expected) complexities:

All three obey same upper bounds (window a hypercube        of side W):

1) For Ising spins, nearest neighbor interactions, 

for all            (counting boundary conditions, essentially).
(Holler, N.R., 2020)

2) Ising or vector spins, arbitrary interactions

for all           . Again                    for short-range interactions,
but also gives interesting forms for long-range, e.g. power-law.    

These give bounds on     ;              for short-range. (N.R., 2021)



Conclusion:

--- The metastate is an additional layer of structure in spin glass theory:
a probability distribution on Gibbs states, derived from finite size

--- The metastate concept translates into measurable correlations, with
quantitative predictions for an exponent in finite size

--- This is a basic, direct, way to assess existence of many pure states in MAS.
More direct than trying to establish properties of overlap distributions,
ultrametricity, etc. Works at T=0 also.

--- “Complexity”, i.e. multiplicity of pure states, can be defined more precisely
as mutual information, and bounds on the growth exponent can be proved.

--- Widely believed (not proved) that RSB is correct in EA at least for d > 6

--- Still needed is proof of triviality or nontriviality in lower dimensions 
--- hard problem!
--- some results in one dimension, long-range N.R., 2018

(also partial results in EA in 2D: Arguin, Damron, Newman, Stein, 2010)
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