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Motivation

| want to understand conformal field theory...

rational ————— factorisable ————— non-rational
[lattice bosons]
[free fermions]
[free bosons]
[be-ghosts]
[Liouville]

[minimal models]
[non-compact WZW?7]

[compact WZW models]
[a few W-algebras]

[8-ghosts]
[supergroup WZW]
[Nappi-Witten]
[fractional-level WZW]
[most W-algebras]

I
I
I
I
I
I
|
|
I
:
discrete -~ - -------------- i --------------- continuous
[symplectic fermions] :
[triplet models] |
[polymers, percolation?] :
[log minimal models?] :
I
I
I

[SLE?]

[spin chains?]

log-rational ———  logarithmic ——————— generic
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Quantum hamiltonian reduction

There are many ways to construct new chiral algebras from old ones:

® Tensoring, eg. two free fermions = one compactified boson.
® Simple current extensions, eg. Ising — free fermion.

® Group orbifolds, eg. free fermion — Ising.

s0(2)k
® Cosets (commutants), eg. Z,-parafermions = (A)k.

b

® Quantum hamiltonian reduction, eg. 5A[(2)k — Vity,.

In conformal field theory, it's important to also be able to construct
representations of the new chiral algebra from those of the old!

Sometimes this is easy, sometimes it is hard...
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How to do it

Quantum hamiltonian reduction converts an affine chiral algebra g, into
a W-algebra 20, (g) by gauging the action of the positive root fields.

® First, tensor (the vacuum module of) g, with pairs of be-ghosts, one
for each positive root of g.

® Construct a fermionic field with conformal dimension 1 and ghost
number 1:

d(z) = Z[e“(z) - 5Q75imp|e]cu(z) + [cubic term in b, c™].

«

® Its zero mode d is a differential and the subspaces C"") of G, ® (be)#
with constant ghost number n define a differential complex:

ooy (=2) oy ~(=1) oy ~(0) do, (1) do, ~(2) do,

® The cohomology H,i") of this complex is 0 for all n # 0.
® The regular/principal W-algebra 20, (g) is H,io).
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Generalisations

This generalises: given any nllpotent f€g, therei |s a quantum
hamiltonian reduction taking g to a W-algebra QU ( ).
® Complete f to an sl(2)-triple {f, h,e}.

® Tensor g; with pairs of be-ghosts, as before, but now also tensor with
By-ghosts, one for each root with a(h) = 1.

® Construct a fermionic field with conformal dimension 1 and
(fermionic) ghost number 1:

d(z) = 37 [e(2) = (Fle)]e (2) +leems in v o, 57 571

03

® |ts zero mode dj is a differential, the ghost-number subspaces of
9r @ (be) @ (B7)72 define a differential complex, and the non-zero
cohomology vanishes (at least conjecturally).

® The W-algebra Qﬂz(g) associated to f is again HISO)

This also works for modules: replace g;, by a gi-module in the above and
the cohomology H,E,O) is a QU{ (g)-module!
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Examples

Taking f = 0 results in Qﬂi(g) = gr, ie. reduction does nothing.
Taking f =) f“ gives the regular W-algebra: 20,7 (g) = 20, (g).

a simple

Taking f = f9 gives the minimal W-algebra 207" (g).
7% (s1(2)) = W™ (s1(2)) is the Virasoro algebra Wity
20,°% (s1(3)) is the Zamolodchikov algebra 23 .
207" (5[(3)) is the Bershadsky—Polyakov algebra Qﬁgz

20,°% (sl(n)) is a Casimir algebra of type (2,3,4,...,n).
207 (s1(n)) is a W-algebra of type (17~2)7, (2)2(n=2) 2),
Qmin- (0513(1’2)) is the N = 1 superconformal algebra 91 = 1.
07" (51(2[1)) is the N = 2 superconformal algebra 91 = 2.
0™ (0sp(3[2)) is the (small) N = 3 superconformal algebra.
07" (psl(2]2)) is the (small) N = 4 superconformal algebra.
(

07" (0(2[1: ) is the (big) N = 4 superconformal algebra.
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But wait, there's more!

In higher ranks, there's more than just regular and minimal W-algebras.
For g = sl(n), the possibilities are classified by partitions of n.

reg. zero Zero
m—H Djj Hj @
5((2) sl(3)
s((4)

Sometimes these W-algebras are rational, but usually they're logarithmic.
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So many W-algebras...
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Inversion by example

For s1(2); — Vit take k& admissible but non-integral:

k+2:g7 ’LL,’UEZ)Q, ng{u7v}:1.
v

Then, 5?[(2);C is logarithmic but Uity is rational.

What can we learn about representations of ;[(2)k from those of Uit ?

[ordinary]
[highest-weight]
[conjugate highest-weight]
[ordinary] [relaxed highest-weight]
[staggered]
[spectral flows]
[Whittaker]

[others...]

Yiry-mod ;I(Z)k—mod

Outlook
(e}
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Free-field realisations suggest a path:

° Feigin—FuChS say Q]ltk — /h\ [Superscript k means “universal”.]

And Wakimoto says s[(2)F < h @ 3.

Now, Friedan—Martinec—Shenker bosonise the ghosts: v < II.
But, Semikhatov notices that one can trade FF for FMS:

sl(2)F — itk @ 11

~

® Finally, Adamovié¢ proves that sl[(2); < Uivy, @ IT iff & ¢ N.

Thus, every M € Uirg-mod and N € II-mod vyield a representation
M ® N € sl(2),-mod,
by restriction (for k ¢ N).

What sort of representations can we get?

Outlook
00
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Life of II

Take k admissible but non-integral, so Uit only has ordinary
representations .%). Any extraordinary ones must then come from II.

IT is a partial compactification of 2 free bosons of indefinite signature:
II= <a(z), b(z),e’m(z) i nE Z>,
1
G—w)

a(z)a(w) ~ b(z)b(w) ~ 0, a(z)b(w) ~

To make the embedding ;I(?)k — Yiry, ® II conformal, the dimension of
(%) must be linear in n:

charge
e~ 2a

1 dimension

a’ b e2a
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Inverse quantum hamiltonian reduction

IT is thus the spectral flow of a relaxed highest-weight module! In fact,
this is true for all the irreducibles TI,(u) (¢ € Z, p € C/7Z) of 1.

~

2 Ty () is then a relaxed highest-weight s[(2);-module.

® Amazingly, it is generically irreducible. [Adamovi¢]
[Proof: compare character with that computed by Creutzig-DR / Kawasetsu—DR.]
® This explains why relaxed s[(2); characters are « to Uity characters.

® Happily, this also gives all irreducible relaxed modules.
[Proof: compare with classification of Adamovi¢-Milas / DR-Wood.]

The functors R
Wiry-mod — 51(2),-mod,

Dy L@ (),

are what we call inverse quantum hamiltonian reduction (for s[(2)).
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Relaxed highest-weight modules might sound exotic, but their spectral

P

flows are the standard modules of s[(2)j. [Creutzig-DR, DR-Wood]

[Kac] [Saleur-Schomerus] [Creutzig-DR]
History: | Kac modules Kac modules standard modules
typical / atypical typical / atypical typical / atypical
[Lie superalgebras] [supergroup WZW] [log CFTs]

Being the standard modules means that:

® They are generically irreducible and projective.

® Every irreducible weight module can be obtained as a quotient.
= Irreducible weight modules can be resolved by standards.

® Their characters carry a representation of SL(2;Z).
= The Verlinde formula gives (Grothendieck) fusion coefficients.

Because inverse reduction constructs the standard modules, every
irreducible highest-weight module is accessible via quotients/resolutions.
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Beyond s((2)

Other examples have been / are being worked out:

® The inverse reduction embedding for 0sp(1|2) takes the form [Adamovid]
0sp(1[2), = (M =1), ©®F I/,

assuming that k is admissible but non-integral:

5 _ , —
k+§=%7 u,v € Lxa, LQUEZ ng{u2U

v =1.

The inverse reduction functors amount to tensoring an ordinary
N = 1-module with either NS ® Hé/z(u) or R® H;/Q(u).

The results reproduce the standard modules of [Creutzig-Kanade-Liu-DR]
and perfectly explain why 91 = 1 (super)characters appear in the
relaxed 0/53(1|2)k characters [Kawasetsu-DR].
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® 5[(3) is the first case with different regular and minimal W-algebras.
Which is relevant to inverse reduction?

The relaxed 5A[(3)k characters turn out to be proportional to the
minimal (Bershadsky—Polyakov) characters. [Kawasetsu]

Inverse reduction should take 207"™ (s[(3))-mod to ;[(S)k—mod.

But, Bershadsky—Polyakov has relaxed modules. [Fehily-Kawasetsu-DR] Are
their characters proportional to regular (Zamolodchikov W) ones?

Yes! An inverse reduction embedding exists, [Adamovié-Kawasetsu-DR]
W (s1(3)) — WeE (s1(3)) @ I,

iff &£ is admissible but non-degenerate:

u

k+3:73 u7”>3> ng{u7U}:1'
v

The inverse reduction functors are again tensoring with II,(1).
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® This generalises: there is an inverse reduction embedding, [Fehily]
WP (s1(n)) — WS (sl(n)) @ 11,
iff k£ is admissible but non-degenerate:
u
kE+n=—, u,v = n, ged{u,v} = 1.
v

The inverse reduction functors are still just tensoring with ITy(u).

® The story is similar for the regular and subregular W-algebras of sp(4).
® Work is progressing on connecting 207" (s((3)) and ;[(3)1<

There is clearly a lot still to do...
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The big picture

It seems that the right way to analyse W-algebra CFTs is:
® Start with the regular W-algebra at an admissible but non-degenerate
level. These are rational with known representation theories!

® Use inverse reduction to construct the standard modules of the
subregular W-algebra. Get the other irreducibles as quotients.

® Repeat, working your way up the lattice of nilpotents until the
representation theory of the desired W-algebra is known!

If the level is admissible but degenerate, don’t despair: start instead with
a rational exceptional W-algebra. [Arakawa-van Ekeren]

U .
® For k + hY = —, the degenerate denominator v = 1 means that the
v

exceptional W-algebra is g, (which is rational).

® For g = sl(3), u > 3 and v = 2 is degenerate-admissible and the
exceptional is Bershadsky—Polyakov (which is rational).

® For g =sl(n), u > n and v =n — 1, the subregular is rational.
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Outlook

Inverse quantum hamiltonian reduction is a very promising means to
analyse logarithmic CFTs with W-algebra symmetry.

It allows us to classify standard modules, hence irreducible weight
modules, compute modular transformations and (Gr) fusion rules.

There is also potential to explicitly construct projective covers.
We may also be able to determine the fusion rules themselves.

It is said that WZW models are the building blocks of rational CFT.
If the same is true for admissible-level WZW models and log CFT,
then we can expect these methods to generalise widely!

Either way, the future of these CFTs is looking good...
“Only those who attempt the absurd will achieve the impossible.”

— M C Escher
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