Integrability of anyonic chains with competing interactions

Paata Kakashvili Eddy Ardonne

arXiv:1110.0719

CFT,T & I: 2011-11-02

Outline

- Motivation
- Anyonic quantum chains
- Competing interactions
- Construction of a new, integrable 2-d model
- The corner transfer matrix method
- Analyzing the model

Abelian anyons: braiding gives phase

Abelian anyons: braiding gives phase

Non-abelian anyons give macroscopic degeneracy d_{α}^{L} in the ideal case: $a \gg \xi$

Abelian anyons: braiding gives phase

Non-abelian anyons give macroscopic degeneracy d_{α}^{L} in the ideal case: $a \gg \xi$

Degeneracy is lifted by any on-anyon interactions when $a\ll\xi$

Abelian anyons: braiding gives phase

Non-abelian anyons give macroscopic degeneracy d_{α}^{L} in the ideal case: $a \gg \xi$

Degeneracy is lifted by any on-anyon interactions when $a\ll\xi$

Study the collective anyonic behaviour in quantum chains!

 $\mathbf{1} \times \mathbf{1} = \mathbf{1} \qquad \mathbf{1} \times \tau = \tau \qquad \tau \times \tau = \mathbf{1} + \tau$

 $\mathbf{1} \times \mathbf{1} = \mathbf{1} \qquad \mathbf{1} \times \tau = \tau \qquad \tau \times \tau = \mathbf{1} + \tau$

Heisenberg hamiltonian:

penalize τ fusion channel of neighbouring anyons

 $\mathbf{1} \times \mathbf{1} = \mathbf{1} \qquad \mathbf{1} \times \tau = \tau \qquad \tau \times \tau = \mathbf{1} + \tau$

Heisenberg hamiltonian: penalize τ fusion channel of neighbouring anyons

au au au au au au au au au au

 $\mathbf{1} \times \mathbf{1} = \mathbf{1} \qquad \mathbf{1} \times \tau = \tau \qquad \tau \times \tau = \mathbf{1} + \tau$

Heisenberg hamiltonian:

penalize τ fusion channel of neighbouring anyons

 $\mathbf{1} \times \mathbf{1} = \mathbf{1} \qquad \mathbf{1} \times \tau = \tau \qquad \tau \times \tau = \mathbf{1} + \tau$

Heisenberg hamiltonian:

penalize τ fusion channel of neighbouring anyons

 $\mathbf{1} \times \mathbf{1} = \mathbf{1} \qquad \mathbf{1} \times \tau = \tau \qquad \tau \times \tau = \mathbf{1} + \tau$

Heisenberg hamiltonian: penalize τ fusion channel of neighbouring anyons

au au au au au au au au au au

 $\mathbf{1} \times \mathbf{1} = \mathbf{1} \qquad \mathbf{1} \times \tau = \tau \qquad \tau \times \tau = \mathbf{1} + \tau$

Heisenberg hamiltonian:

penalize τ fusion channel of neighbouring anyons

Hilbert space: consistent labelings of the 'fusion tree':

 $\mathbf{1} \times \mathbf{1} = \mathbf{1} \qquad \mathbf{1} \times \tau = \tau \qquad \tau \times \tau = \mathbf{1} + \tau$

Heisenberg hamiltonian:

penalize τ fusion channel of neighbouring anyons

Hilbert space: consistent labelings of the 'fusion tree':

 $|x_1, x_2, \ldots, x_{L-1}\rangle$

 $\mathbf{1} \times \mathbf{1} = \mathbf{1} \qquad \mathbf{1} \times \tau = \tau \qquad \tau \times \tau = \mathbf{1} + \tau$

Heisenberg hamiltonian:

penalize τ fusion channel of neighbouring anyons

Hilbert space: consistent labelings of the 'fusion tree':

$$|x_1, x_2, \ldots, x_{L-1}\rangle$$

 $\mathbf{1} \times \mathbf{1} = \mathbf{1} \qquad \mathbf{1} \times \tau = \tau \qquad \tau \times \tau = \mathbf{1} + \tau$

Heisenberg hamiltonian:

penalize τ fusion channel of neighbouring anyons

Hilbert space: consistent labelings of the 'fusion tree':

$$|x_1, x_2, \ldots, x_{L-1}\rangle$$

No tensor product decomposition: $\dim \mathcal{H}_L = \operatorname{Fib}_{L+1} \propto \varphi^L$

$$\varphi = \frac{1 + \sqrt{5}}{2}$$

Hamiltonian: sum of local projectors: $H = \sum_{i} P_{2-\text{body},i}^{(\tau)}$

Hamiltonian: sum of local projectors: $H = \sum_{i} P_{2-body,i}^{(\tau)}$

Hamiltonian: sum of local projectors: $H = \sum P_{2-\text{body,i}}^{(\tau)}$

Hamiltonian: sum of local projectors: $H = \sum P_{2-\text{body},i}^{(\tau)}$

F-matrix is the anyon version of the Wigner 6j-symbol

Hamiltonian: sum of local projectors: $H = \sum P_{2-\text{body},i}^{(\tau)}$

F-matrix is the anyon version of the Wigner 6j-symbol

The projectors can be written as: $P_i^{(\tau)} = F_i^{-1} \Pi_i^{(\tau)} F_i$

Feiguin et.al., PRL (2007)

Hamiltonian: sum of local projectors: $H = \sum P_{2-\text{body},i}^{(\tau)}$

Explicit form of the local projectors:

$$P_{2-\text{body}}^{(\tau)} = \mathcal{P}_{1\tau\tau} + \mathcal{P}_{\tau\tau1} + \varphi^{-2}\mathcal{P}_{\tau1\tau} + \varphi^{-1}\mathcal{P}_{\tau\tau\tau} + \varphi^{-3/2} \left(|\tau 1\tau\rangle \langle \tau\tau\tau| + \text{h.c.}\right)$$

Feiguin et.al., PRL (2007)

The 3-body interaction

We need to transform twice to find the fusion channel of three neighbouring anyons:

$$= \sum F \qquad = \sum FF \qquad = \sum FF$$

The 3-body interaction

We need to transform twice to find the fusion channel of three neighbouring anyons:

$$= \sum F \qquad = \sum FF \qquad = \sum FF$$

Explicitly, we find (please forget!):

$$P_{3-\text{body}}^{(\tau)} = \mathcal{P}_{\tau 1\tau 1} + \mathcal{P}_{1\tau 1\tau} + \mathcal{P}_{\tau\tau\tau 1} + \mathcal{P}_{1\tau\tau\tau} + 2\varphi^{-2}\mathcal{P}_{\tau\tau\tau\tau} + \varphi^{-1}\left(\mathcal{P}_{\tau 1\tau\tau} + \mathcal{P}_{\tau\tau 1\tau}\right) - \varphi^{-2}\left(|\tau\tau 1\tau\rangle \langle \tau 1\tau\tau| + \text{h.c.}\right) + \varphi^{-5/2}\left(|\tau 1\tau\tau\rangle \langle \tau\tau\tau\tau| + |\tau\tau 1\tau\rangle \langle \tau\tau\tau\tau| + \text{h.c.}\right)$$

Trebst et.al., PRL (2008)

Integrability of the Golden chain

The operators $e_i = \varphi (1 - P_{2-\text{body},i}^{(\tau)})$ form a representation of the Temperly-Lieb algebra:

$$e_i^2 = de_i$$
 $e_i e_{i\pm 1} e_i = e_i$ Pasquier (1987)
 $[e_i, e_j] = 0$ for $|i - j| \ge 2$

 $d=\varphi~$ is the isotopy parameter

Integrability of the Golden chain

The operators $e_i = \varphi (1 - P_{2-\text{body},i}^{(\tau)})$ form a representation of the Temperly-Lieb algebra:

$$e_i^2 = de_i$$
 $e_i e_{i\pm 1} e_i = e_i$ Pasquier (1987)
 $[e_i, e_j] = 0$ for $|i - j| \ge 2$

$$d=\varphi~$$
 is the isotopy parameter

With the e's, we can construct an R-matrix (plaquette weights) which satisfies the Yang-Baxter equation!

The R-matrix

R-matrix satisfies the Yang-Baxter equation:

$$R_{j}(u)R_{j+1}(u+v)R_{j}(v) = R_{j+1}(v)R_{j}(u+v)R_{j+1}(u)$$

The different transfer matrices commute, because R satisfies the Yang-Baxter equation.

The different transfer matrices commute, because R satisfies the Yang-Baxter equation.

Constructing a hamiltonian: $T(u) = e^{-uH + o(u^2)}$

The different transfer matrices commute, because R satisfies the Yang-Baxter equation.

Constructing a hamiltonian: $T(u) = e^{-uH + o(u^2)}$

$$\frac{d\ln T(u)}{du}\Big|_{u=0} = c_1 H_{2-\text{body}} + c_2$$

Composite R-matrix

The 3-body term requires a composite R-matrix:

$$\tilde{R}_{j}(u,\phi) = R_{2j+1}(u-\phi)R_{2j}(u)R_{2j+2}(u)R_{2j+1}(u+\phi)$$

 $\tilde{R}_j(u,\phi)$ satisfies Yang-Baxter, because $R_j(u)$ does!

Composite R-matrix

The 3-body term requires a composite R-matrix:

$$\tilde{R}_{j}(u,\phi) = R_{2j+1}(u-\phi)R_{2j}(u)R_{2j+2}(u)R_{2j+1}(u+\phi)$$

 $\tilde{R}_j(u,\phi)$ satisfies Yang-Baxter, because $R_j(u)$ does!

The Hamiltonian indeed contains 2 and 3-body terms:

$$H = c_4 + \sum_i c_1 (e_i + e_{i+1})/2 + c_2 (e_i e_{i+1} + e_{i+1} e_i)$$
$$+ c_3 (-1)^i (e_i e_{i+1} - e_{i+1} e_i)$$

See Iklhef et.al., JPA (2009)

Composite R-matrix

Andrews-Baxter-Forrester model

Solvable height model on square lattice.

Heights take the values l = 1, 2, ..., r - 1Neighbouring heights differ by one!

Andrews-Baxter-Forrester model

Solvable height model on square lattice.

Heights take the values l = 1, 2, ..., r - 1Neighbouring heights differ by one!

 $Z = \sum_{\text{configurations plaquettes}} W(l_{j_1}, l_{j_2}, l_{j_3}, l_{j_4})$

$$\begin{bmatrix} l_1 & l_2 \\ & \\ l_4 & l_3 \end{bmatrix} \leftrightarrow W(l_1, l_2, l_3, l_4)$$

ABF, Nucl.Phys B (1984)
Parameters & phase diagram

Two important parameters in the model: ABF, Huse (1984)

- $-1 \le p \le 1$ drives a phase transition at p = 0
- u is related to the anisotropy of the lattice

Parameters & phase diagram

Two important parameters in the model: ABF, Huse (1984) $-1 \le p \le 1$ drives a phase transition at p = 0u is related to the anisotropy of the lattice

The critical behaviour of this model describes the 2-body golden chain, for both signs of the interaction

Form of the weights

The weights are given in terms of elliptic functions:

$$h(u) = \theta_1(\frac{u\pi}{2K}, p)\theta_4(\frac{u\pi}{2K}, p)$$

$$= 2p^{1/4}\sin(\frac{\pi u}{2K})\prod_{n=1}^{\infty}(1-2p^n\cos(\frac{\pi u}{K})+p^{2n})(1-p^{2n})^2$$

$$\alpha_l = \frac{h(2\eta-u)}{h(2\eta)},$$

$$\beta_l = \frac{h(u)}{h(2\eta)}\frac{h(w_{l-1})^{1/2}h(w_{l+1})^{1/2}}{h(w_l)}, \qquad \eta = \frac{K}{r}$$

$$\gamma_l = \frac{h(w_l+u)}{h(w_l)}, \qquad w_l = 2\pi\eta t$$

$$\delta_l = \frac{h(w_l-u)}{h(w_l)}.$$

Corner transfer matrices

Corner transfer matrices

B, C and D are defined analogously, by rotating successively over 90 degrees

Corner transfer matrix method

One can 'solve' the model by calculating the probability for the height of the center vertex.

In terms of corner transfermatrices, Z reads Z = Tr(ABCD)

The height probabilities are $P_a = \frac{Tr(S_a ABCD)}{Tr(ABCD)}$

 S_a is a diagonal matrix, with 1's on the diagonal for the block with $l_1 = a$

How the method works

Equate, in the large lattice limit, the following:

How the method works

Equate, in the large lattice limit, the following:

Diagonal form of the CTM's

It follows that one can write A,B,C,D in diagonal form

$$A(u) = Q_1 M_1 e^{-u\mathcal{H}} Q_2^{-1} ,$$

$$B(u) = Q_2 M_2 e^{u\mathcal{H}} Q_3^{-1} ,$$

$$C(u) = Q_3 M_3 e^{-u\mathcal{H}} Q_4^{-1} ,$$

$$D(u) = Q_4 M_4 e^{u\mathcal{H}} Q_1^{-1} ,$$

Baxter's book (1984)

 \mathcal{H} and the M_i are diagonal, dependence on anisotropy u is explicit

Diagonal form of the CTM's

It follows that one can write A,B,C,D in diagonal form

$$A(u) = Q_1 M_1 e^{-u\mathcal{H}} Q_2^{-1} ,$$

$$B(u) = Q_2 M_2 e^{u\mathcal{H}} Q_3^{-1} ,$$

$$C(u) = Q_3 M_3 e^{-u\mathcal{H}} Q_4^{-1} ,$$

$$D(u) = Q_4 M_4 e^{u\mathcal{H}} Q_1^{-1} ,$$

Baxter's book (1984)

 \mathcal{H} and the M_i are diagonal, dependence on anisotropy u is explicit

The height probabilities take the following form:

 $P_a = Tr(S_a M_1 M_2 M_3 M_4) / Tr(M_1 M_2 M_3 M_4)$

The final result follows from considering various limits, such as u = 0, $u = (2 \pm r)\eta$ and p = 1

New lattice model

We introduce the following new lattice model with the following plaquettes:

 $\tilde{W}(l_1, \dots, l_8) = \sum_l W(l_1, l_2, l, l_8; u) W(l_2, l_3, l_4, l; u + K) W(l, l_4, l_5, l_6; u) W(l_8, l, l_6, l_7; u - K)$

Not 6, but 66 different types of plaquettes!

Height probability

When the dust settles, the height probability is given by:

$$P_a = \frac{1}{\mathcal{N}} v_a X_m(a; b, c, d, e; x^t) \qquad \qquad x = e^{-4\pi\eta/K'}$$

$$X_m(a; b, c, d, e; q) = \sum_{l_2, \dots, l_m} q^{\phi(\mathbf{l})} \qquad \phi(\mathbf{l}): \text{next slide}$$

- \mathcal{N} normalization
- v_a depends only on the central height

t depends on the region:

$$t = \begin{cases} 2+r & \text{for } u > 0\\ 2-r & \text{for } u < 0 \end{cases}$$

Height probability

$$\phi(\mathbf{l}) = \sum_{j=1}^{(m+1)/2} j\left(\frac{|l_{2j+3} - l_{2j-1}|}{4} + \delta_{l_{2j-1}, l_{2j+1}}\delta_{l_{2j+1}, l_{2j+3}}\delta_{l_{2j}, l_{2j+2}}\right)$$

Calculated from the limit p = 1, in which only 'diagonal' plaquettes contribute

Ordered phases

The ordered phases at p > 0 are obtained by: minimizing $\phi(\mathbf{l})$ for u > 0

1	2	3	2	1	2	3	2	1
2		2		2		2		2
3	2	1	2	3	2	1	2	3
2		2		2		2		2
1	2	3	2	1	2	3	2	1

Ordered phases

The ordered phases at p > 0 are obtained by: minimizing $\phi(\mathbf{l})$ for u > 0

1	2	3	2	1	2	3	2	1
2		2		2		2		2
3	2	1	2	3	2	1	2	3
2		2		2		2		2
1	2	3	2	1	2	3	2	1

maximizing $\phi(\mathbf{l})$ for u < 0

1	2	1	2	1	2	1	2	1
2		2		2		2		2
1	2	1	2	1	2	1	2	1
2		2		2		2		2
1	2	1	2	1	2	1	2	1

meets

meets

Ising meets Fibonacci: Relation between characters of theories with Ising and Fibonacci particles

Grosfeld & Schoutens, PRL (2008)

Intermezzo: Fibonacci meets Leonardo Pisano

Intermezzo: Fibonacci meets Leonardo Pisano

meets

Intermezzo: Fibonacci meets Leonardo Pisano

meets

For the critical behaviour at p = 0, we need information about the whole function X_m

$$X_m(a; b, c, d, e; q) = \sum_{l_2, \dots, l_m} q^{\phi(\{l\})}$$

For the critical behaviour at p = 0, we need information about the whole function X_m

 $\begin{aligned} X_{43}(1;2,1,2,3;q) &= \\ 1 + 3q^2 + 4q^3 + 9q^4 + 12q^5 + 22q^6 + 30q^7 & u > 0 \\ + \ldots + 5875310q^{121} + \ldots + \\ + 8q^{235} + 7q^{236} + 4q^{237} + 3q^{238} + 2q^{239} + q^{240} + q^{242} & u < 0 \end{aligned}$

 $\begin{aligned} X_{43}(1;2,1,2,3;q) &= \\ 1 + 3q^2 + 4q^3 + 9q^4 + 12q^5 + 22q^6 + 30q^7 & u > 0 \\ + \ldots + 5875310q^{121} + \ldots + \\ + 8q^{235} + 7q^{236} + 4q^{237} + 3q^{238} + 2q^{239} + q^{240} + q^{242} & u < 0 \end{aligned}$

 $1 + 3q^2 + 4q^3 + 9q^4 + 12q^5 + 22q^6 + 30q^7 + \dots$

 $\begin{aligned} X_{43}(1;2,1,2,3;q) &= \\ 1 + 3q^2 + 4q^3 + 9q^4 + 12q^5 + 22q^6 + 30q^7 & u > 0 \\ + \ldots + 5875310q^{121} + \ldots + \\ + 8q^{235} + 7q^{236} + 4q^{237} + 3q^{238} + 2q^{239} + q^{240} + q^{242} & u < 0 \end{aligned}$

 $1 + 3q^2 + 4q^3 + 9q^4 + 12q^5 + 22q^6 + 30q^7 + ...$ is a character of (Gepner) $su(3)_2$ parafermions

 $\begin{aligned} X_{43}(1;2,1,2,3;q) &= \\ 1 + 3q^2 + 4q^3 + 9q^4 + 12q^5 + 22q^6 + 30q^7 & u > 0 \\ + \ldots + 5875310q^{121} + \ldots + \\ + 8q^{235} + 7q^{236} + 4q^{237} + 3q^{238} + 2q^{239} + q^{240} + q^{242} & u < 0 \end{aligned}$

$$1 + 3q^2 + 4q^3 + 9q^4 + 12q^5 + 22q^6 + 30q^7 + ...$$

is a character of (Gepner) $su(3)_2$ parafermions

 $1 + q^2 + 2q^3 + 3q^4 + 4q^5 + 7q^6 + 8q^7 + \dots$

 $\begin{aligned} X_{43}(1;2,1,2,3;q) &= \\ 1 + 3q^2 + 4q^3 + 9q^4 + 12q^5 + 22q^6 + 30q^7 & u > 0 \\ + \ldots + 5875310q^{121} + \ldots + \\ + 8q^{235} + 7q^{236} + 4q^{237} + 3q^{238} + 2q^{239} + q^{240} + q^{242} & u < 0 \end{aligned}$

$$1 + 3q^2 + 4q^3 + 9q^4 + 12q^5 + 22q^6 + 30q^7 + ...$$

is a character of (Gepner) $su(3)_2$ parafermions

 $1+q^2+2q^3+3q^4+4q^5+7q^6+8q^7+\dots$ is a character of Z_3 parafermions

 $\begin{aligned} X_{43}(1;2,1,2,3;q) &= \\ 1 + 3q^2 + 4q^3 + 9q^4 + 12q^5 + 22q^6 + 30q^7 & u > 0 \\ + \ldots + 5875310q^{121} + \ldots + \\ + 8q^{235} + 7q^{236} + 4q^{237} + 3q^{238} + 2q^{239} + q^{240} + q^{242} & u < 0 \end{aligned}$

$$1 + 3q^2 + 4q^3 + 9q^4 + 12q^5 + 22q^6 + 30q^7 + \dots$$

is a character of (Gepner) $su(3)_2$ parafermions

 $1+q^2+2q^3+3q^4+4q^5+7q^6+8q^7+\dots$ is a character of Z_3 parafermions

So, Fibonacci meets Fibonacci!

Connection with CFT

For r = 5 (k = 3), we have explicit formulas for the functions X_m

These reproduce all the characters of the Z_3 and $su(3)_2$ parafermions.

Connection with CFT

For r = 5 (k = 3), we have explicit formulas for the functions X_m

These reproduce all the characters of the Z_3 and $su(3)_2$ parafermions.

The critical behaviour for arbitrary k is given by:

$$\frac{su(2)_1 \times su(2)_1 \times su(2)_{k-2}}{su(2)_k} \quad \text{for} \quad u > 0$$

 Z_k parafermions for u < 0

Similar results on related models : Date, Jimbo... Saleur, Bauer

. . .

Connection with CFT

The scaling dimensions of the primary fields $\Phi_{s_2}^{t_1,s_1}$ of

$$\frac{su(2)_1 \times su(2)_1 \times su(2)_{k-2}}{su(2)_k}$$

can be obtained from the Coulomb gas results by Ikhlef et al.: Ikhlef et al.:

$$h(t, s_1, s_2) = \begin{cases} \frac{(s_1(k+2) - s_2k)^2 - 4}{8k(k+2)} + \frac{1}{2} - \frac{(s_1 - s_2 + 2t) \mod 4}{4} & s_1 + s_2 \mod 2 = 0\\ \frac{(s_1(k+2) - s_2k)^2 - 4}{8k(k+2)} + \frac{1}{8} & s_1 + s_2 \mod 2 = 1 \end{cases}$$

Explicit character formulas for k > 3 have not yet been found...

Updated phase diagram

Conclusions

- Studied an exactly solvable point in an anyonic chain with competing interactions.
- Introduced a new 2-d, solvable height model
- Obtained the critical behaviour, explaining an extended critical region in the chain.
- Connection with CFT was made

Outlook

- Connection with SU(2) Heisenberg chains
- Understanding of (topological) phase transitions
- Connection with related loop models
- Other types of anyonic chains
- Relation with Rogers-Ramanujan identities?
- Finitization of characters might have other (qHe) applications
Nordita program

July 30 - August 25, 2012:

Topological States of Matter: Insulators, Superconductors, and Hall Liquids

www.nordita.org/~ardonne/workshops.html