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“Geometry is the noblest branch of physics.”— W.Osgood (1864-1947)

Theory of integrable (exactly solvable) quantum systems

Algebraic structures: Yang-Baxter equation & quantum groups

3D-generalization: tetrahedron equation (Zamolodchikov)

Integrability: Zero-curvature representation (discovered in soliton theory)

Discrete differential geometry (combines ideas from geometry, topology, combinatorics, . . . )

Discretization principle: preserve as many features of the continuous theory as possible,
including transformation groups.

“Consistency as integrability” (Adler-Bobenko-Suris). A discrete analog of the
zero-curvature representation for classical evolution equations on a lattice

“Existence as integrability”. Zero curvature representation ⇔ Incidence theorems of
elementary geometry.

Quantum geometry

Z =
X

geometries

e−
S(geometry)

~

Classical geometry arises at ~→ 0 as a stationary configuration minimizing the action S.

Quantization of discrete orthogonal coordinate systems (3D circular lattices). Discrete
analog of triply-orthogonal co-ordinate systems (Lamé & Darboux)

Quantum Yang-Baxter equation ⇔ quantization of incidence theorem in geometry
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Solutions to the Yang-Baxter equation

YBE is an overdetermined system of algebraic equations. Its general solution is unknown even in

the simplest cases.

Known solutions (various methods):Onsager, McGuire, Yang, Baxter, . . . (over 50 different

authours)

Algorithmic recipes: Universal R-matrix for quantized affine Lie algebras (quantum

groups) (Drinfeld-Jimbo)

almost all known solutions have been included in the quantum group scheme (up to

elliptic deformations, vertex-face transformations, etc.).

3D-generalization: tetrahedron equation, Zamolodchikov (1980) followed by Baxter,

Bazhanov, Kashaev, Korepanov, Mangazeev, Maillet-Nijhoff, Sergeev, Stroganov,. . .

Question: Could one obtain all solutions of the YBE from solutions of the tetrahedron

equation? Plausibly the answer is affirmative. Confirmed for Uq(bsl(n)) and Uq(bsl(m|n)).

Strategy: obtain solutions of the tetrahedron equations from incidence theorems. Then

obtain solutions of the YBE by a projection from 3D
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What is an incidence theorem? (J.Richter-Gebert, 2007)

http://www.math.tu-berlin.de/geometrie/ps/ddg07/slides/Richter-Gebert.pdf
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Geometry of quadrilateral lattices (where all faces are planar quadrilateral)

tessellations of the flat 3-space with planar quad faces

quadrilateral lattices are integrable (Doliwa-Santini)

Elementary geometry Theorem

Consider four points x0, x1, x2, x3 in general position in RN , N ≥ 3. On each of the three planes
(x0, xi , xj ), 0 ≤ i < j ≤ 3 chose an extra point xij not lying on the lines (x0, xi ), (x0, xj ) and
(xi , xj ). Then there exist a unique point x123 which simultaneously belongs to the three planes
(x1, x12, x13), (x2, x12, x23) and (x3, x13, x23).
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Evolution, time=0

“Ruler-and-compass” geometric evolution system (only the 2D-ruler is actually required)
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Evolution, time=1

“Ruler-and-compass” geometric evolution system (only the 2D-ruler is actually required)
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Evolution, time=2

“Ruler-and-compass” geometric evolution system (only the 2D-ruler is actually required)
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Evolution, time=3

“Ruler-and-compass” geometric evolution system (only the 2D-ruler is actually required)
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Elementary Euclidean geometry in details

Suppose, RM is Euclidean space: metric, lengths, angles...

A quadrilateral is completely defined by five
parameters: e.g. by three independent angles and
by lengths of two sides:

α, β, γ, δ : α+ β + γ + δ = 2π

and
`q = |ag |, `p = |ae|

A hexahedron is completely defined by twelve
parameters: e.g. by nine angles and by lengths of
any three non-planar edges
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The angles

Given nine independent angles of the front faces, all the other angles of the cube may be
calculated. Cosine theorem produces the map

R123 : (αj , βj , γj , δj )j=1,2,3 → (α′j , β
′
j , γ
′
j , δ
′
j )j=1,2,3

R123 · F (A1,A2,A3) = F (A ′1 ,A
′

2 ,A
′

3 ) , Aj = (αj , βj , γj , δj )
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Evolution, time=0

“Ruler-and-compass” geometric evolution system (only the 2D-ruler is actually required)
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Evolution, time=1

“Ruler-and-compass” geometric evolution system (only the 2D-ruler is actually required)
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Evolution, time=2

“Ruler-and-compass” geometric evolution system (only the 2D-ruler is actually required)

V. Bazhanov (ANU) Quantum Geometry IHP, Paris, 2011 20 / 58



Evolution, time=3

“Ruler-and-compass” geometric evolution system (only the 2D-ruler is actually required)
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Zamolodchikov tetrahedron eq. R123 ·R145 ·R246 ·R356 = R356 ·R246 ·R145 ·R123

Rhombic dodecahedron can be dissected into four hexhahedra in two non-equivalent ways

(Proof follows from the mere existence of 4D cube)
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Zamolodchikov tetrahedron eq. R123 ·R145 ·R246 ·R356 = R356 ·R246 ·R145 ·R123

Rhombic dodecahedron can be dissected into four hexhahedra in two non-equivalent ways. 3D
analog of the Yang-Baxter equation (3D tilings, space filling polyhedra, zonotopes)

(Proof follows from the mere existence of 4D cube)
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Lengths

Elementary relation for a quadrilateral:

0@ `′p

`′q

1A =

0B@ sin γ
sin δ

sin(δ+β)
sin δ

sin(δ+γ)
sin δ

sin β
sin δ

1CA
| {z }

Xpq

0@ `p

`q

1A

Here
Xpq = Xpq [A ] , A = (α, β, γ, δ)

Main algebraic property of 3-parameters matrix X :

Xpq =

„
A B
C D

«
: AD − BC =

AB − CD

DB − AC

Note: (~np ,~nq) = (~n′p ,~n
′
q) · Xpq , where ~n#

p,q are normal vectors for the sides.
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Zero curvature equation

I. Korepanov, 1992

»
`g,c
`c,e

–
= Xpq

»
`a,e
`g,a

–
,

»
`a,e
`e,d

–
= Xpr

»
`f ,d
`a,f

–
,

»
`g,a
`a,f

–
= Xqr

»
`b,f
`g,b

–
»
`c,e
`e,d

–
= X ′qr

»
`h,d
`c,h

–
,

»
`g,c
`c,h

–
= X ′pr

»
`b,h
`g,b

–
,

»
`b,h
`h,d

–
= X ′pq

»
`f ,d
`b,f

– ⇒

Xpq[A1]Xpr [A2]Xqr [A3] = Xqr [A ′3 ]Xpr [A ′2 ]Xpq [A ′1 ] ← all cosine theorems together
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Functional Tetrahedron equation

R. M. Kashaev, I. G. Korepanov and S. M. Sergeev, Theoretical and Mathematical Physics 117 (1998) 370-384

Using the map defined above for Aj = (αj , βj , γj , δj ),

R123 · F (A1,A2,A3) = F (A ′1 ,A
′

2 ,A
′

3 ) ,

one may rewrite the zero curvature relation in the Tetrahedral Zamolodchikov algebra form

Xpq [A1]Xpr [A2]Xqr [A3] = R123 · Xqr [A3]Xpr [A2]Xpq [A1]

Therefore, the map R123 satisfies the Functional Tetrahedron equation

R123 ·R145 ·R246 ·R356 · F = R356 ·R246 ·R145 ·R123 · F

Here the dot sign stands for the superposition of maps.
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Miquel theorem (1838)
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Miquel theorem (1838)
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Miquel theorem defines circular lattices.

Miquel theorem

If three adjacent quadrilaterals faces of a hexahedron can be inscribed into circles, then the
whole hexahedron can be inscribed into a sphere.
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Simplification of A for all quadrilaterals:

α+ δ = π , β + γ = π : A = (α, β)

k =
sinβ

sinα
, a =

sin(α+ β)

sinα
, a∗ =

sin(α− β)

sinα
, k2 = 1− aa∗

R123 :

8>>><>>>:
(k2a

∗
1 )′ = k3a

∗
1 − k1a

∗
2 a3, (k2a1)′ = k3a1 − k1a2a

∗
3 ,

(a∗2 )′ = a∗1 a∗3 + k1k3a
∗
2 , (a2)′ = a1a3 + k1k3a2,

(k2a
∗
3 )′ = k1a

∗
3 − k3a1a

∗
2 , (k2a3)′ = k1a3 − k3a

∗
1 a2,

Theorem (VB & Sergeev 2006)

The map R123 is a canonical transformation preserving the (ultra-local) Poisson algebra

{αi , βj} = δij , {αi , αj} = {βi , βj} = 0 .

Local Poisson algebra for k, a, a∗ is given by

{a, a∗} = 2k2, {k, a} = −ka, {k, a∗} = ka∗

Quantization: the automorphism of tensor cube of quantum q-oscillator algebra

Hq : q−1aa∗ − qa∗a = 2, aa∗ = 1− qk2, a∗a = 1− q−1k2

is given exactly by the same map.
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3D quantum R-matrix (solution to tetrahedron equation)

Fock representation
|n >= (a∗)n |0 >, a|0 >= 0,

X ′ = R123 ◦ X , X ′ = R123 X R−1
123, X ∈ H⊗3

q

〈n1, n2, n3|R |n′1, n′2, n3〉 = δn1+n2,n
′
1+n′

2
δn2+n3,n

′
2+n′

3

s
(q2; q2)n′

1
(q2; q2)n′

2
(q2; q2)n′

3

(q2; q2)n1 (q2; q2)n2 (q2; q2)n3

×
(−1)n2 q(n′

1−n2)(n′
3−n2)

(q2; q2)n′
2

(q2(1−n′
2+n3); q2)∞

(q2(1+n3); q2)∞
2φ1(q−2n′

2 , q2(1+n′
3), q2(1−n′

2+n3); q2, q2(1+n1)) ,

(1)
where

(x ; q2)n = (1− x)(1− q2x) · · · (1− q2(n−1)x) , (2)

and

2φ1(a, b, c; q2, z) =
∞X
n=0

(a; q2)n(b; q2)n

(q2; q2)n(c; q2)n
zn (3)

is the q-deformed Gauss hypergeometric series. In the quasi-classical limit q = e~, ~→ 0

〈n1, n2, n3|R |n′1, n′2, n3〉 = e−L(k′
1,k

′
2,k

′
3|k1,k2,k3)/~, kj = qnj

gives Lagrangian density and variational principle for circular lattices.
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The classical action

The action is a sum of Lagrangian density over all hexahedrons of the lattice,

S =
X

lattice

L (k, k ′)

Another choice of variables corresponds to the Legendre transform of the Lagrangian,

L (k, k ′) ≡
X

j

log kj log vj + L(v , v ′)−
X

j

log k ′j log v ′j , vj =
a∗j

aj

The answer:

L (v , v ′) =
3X

i=0

Λh(Ωi ) + Λh(Ω′i ),

where

Λh(Ω) = −
Z Ω

0
log |2 sinh x | dx

is the hyperbolic Lobachevski function and

v2

v1v3
= e−2Ω′

2 ,
v ′2

v ′1v3
= e−2Ω′

1 ,
v2

v ′1v
′
3

= e−2Ω′
0 ,

v ′2
v1v ′3

= e−2Ω′
3 ,

v ′2
v ′1v
′
3

= e2Ω2 ,
v2

v1v ′3
= e2Ω1 ,

v ′2
v1v3

= e2Ω0 ,
v2

v ′1v3
= e2Ω3 .
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“Geometry is the noblest branch of physics.”— W.Osgood (1864-1947)

V. Bazhanov (ANU) Quantum Geometry IHP, Paris, 2011 47 / 58



V. Bazhanov (ANU) Quantum Geometry IHP, Paris, 2011 48 / 58



V. Bazhanov (ANU) Quantum Geometry IHP, Paris, 2011 49 / 58



V. Bazhanov (ANU) Quantum Geometry IHP, Paris, 2011 50 / 58



V. Bazhanov (ANU) Quantum Geometry IHP, Paris, 2011 51 / 58



V. Bazhanov (ANU) Quantum Geometry IHP, Paris, 2011 52 / 58



V. Bazhanov (ANU) Quantum Geometry IHP, Paris, 2011 53 / 58



V. Bazhanov (ANU) Quantum Geometry IHP, Paris, 2011 54 / 58



Circular nets are exactly solvable both in classical and quantum theory
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Conclusion and outlook

3D circular lattices describe discrete analogs of orthogonal coordinate systems (Bobenko,
Doliwa-Santini, Konopelchenko-Schief). Continuous case (Lamé, Egorov, Darboux,
Dubrovin, Kaup, Zaknarov-Manakov, Krichiver, Novikov, . . . )

Quantization leads to 3D integrable models (VB, Mangazeev & Sergeev (2008)):

compact case: generates all solutions of the Yang-Baxter equations associated with
Uq(bsl(n)), n — number of layers of the 3D lattice (VB & Sergeev (2006)), and for

Uq(bsl(m|n)) (Sergeev 2009)
non-compact analog of the N-state generalized Zamolodchikov model
(Zamolodchikov (1979), VB & Baxter (1992))
3D integrable models with POSITIVE Boltzmann weights

Question: Are there non-trivial solutions of 4-simplex equation? (e.g., related to N = 4
Yang-Mills and AdS/CFT)

Is molecular geometry integrable? (see the last slide)
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The algebraic structures of the theory of integrable quantum system
in statistical mechanics and quantum field theory, such as the
Yang-Baxter equations and quantum groups naturally arise from
quantization of the simplest models of the discrete geometry.

Angle of circular quadrilaterals are canonically conjugated variables!
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C60 fullerene molecule as a circular lattice
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