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Background 

•  Viscosity describes response of the stress tensor         to an applied 
strain   

–    

•  Dissipation described by symmetric part                                                              
of viscosity tensor 

•  Broken time reversal symmetry ->                                                                   
in general 

•  How can we calculate          ? 
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Background 

•  Answer: for systems with a gap, can use adiabatic response (Avron, 
Seiler, Zograf, 1995, Levay) 

•  Idea – Time varying strain <-> Time varying metric 
•  Since                         ,  adiabatic theorem gives antisymmetric viscosity 

as  the Berry Curvature associated with adiabatically deforming the 
metric 

•  In 2D: 
•  Specific Systems: 

–  IQH states: 
–  FQH states: 
–    -wave paired superfluids: 
–  General form (Read; Read & Rezayi): 

•  Extensions to other systems (Hughes, Leigh, Fradkin ; Qi et. al.) 
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Motivation for this work 

•  Viscosity is a linear transport coefficient 

•  Even for non-dissipative viscosity, should be able to make contact with 
traditional transport theory 

•  => There should be a Kubo formula for viscosity which can reproduce 
the results above 

•  We can’t find it in the literature 



Perturbed Hamiltonian for Viscosity 

•  Goal – find a linear response formula for viscosity 
•  Starting Point:  Time-varying metric perturbation at  
 
 
 
 
 
 
•  Look for a unitary transformation that diagonalizes the metric, i.e. 
 
 
•  This is a strain transformation 
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Strain Generators 

•  We can write                                             
•  The condition                                     gives the following commutation 

relations:    

•  These imply that 

•  Note that 
–  These are the commutation relations of 
–  The        operators generate deformations of shape - Strain generators 
–  To avoid boundary issues, we will work in the infinite plane  
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The Transformed System 

•  Since              is time dependent, we must transform the time-
dependent Schrödinger Equation 

•                           implies the transformed  Schrödinger equation is 

•  Linear response -> keep only first order terms -> the Hamiltonian is 

•  We have transformed the metric perturbation into a “potential” 
perturbation 

–  Analogous to the case of an electric field, where a gauge transformation takes us 
from                      to  
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Stress  and Strain 

•  Can gain some insight by looking at the continuity equation for 
momentum density  

–               is the external force density, which is zero for the Hamiltonian 

•  Fourier transforming, and expanding to leading order in     ,   

•  We notice that 

•  Observation - the perturbation                            is a position-dependent 
velocity field - c.f. classical viscosity  
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Linear Response Theory 

•  Can now use standard linear response theory to find response of the 
stress         to the strain perturbation 

•  Recall the Kubo Formula: 
–  Response of an operator      to a perturbation                              can be written  

–  where the response function                    is  

–  with time-evolution and averages taken w.r.t. the unperturbed hamiltonian 
–  Can write this in frequency space as  
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Kubo Formula for Viscosity 

•  Adapting this to the stress-strain response, we find that at 

•  Using time-translation invariance and                          , can write   

•  Three equivalent expressions for the viscosity 
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Simple Example: Free Electron Gas 

•                              , so the stress tensor is                                and it is 
constant in time 

•  State of interest - N electrons in a large box 
•   Can use stress-stress form of viscosity, and only the contact term 

contributes. Thus, 

•  Real part 
–  Interpretation: infinite response of free electrons to static perturbation because 

of acceleration. C.f. diamagnetic conductivity 
–  For non-trivial systems, we will see that these divergences cancel with terms in 

the correlators 
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More Interesting Example: Paired States in 2D 

•     
–  pair-potential                    transforms as an   -pole under rotations 
–  Energies    

•  Second-quantized strain operator 

•  Calculation is easiest using strain-strain form of viscosity 
–  Work in the ground state at zero temperature 
–  focus only on the                limit  
–  Need to evaluate 

•  Strategy - Use Bogoliubov transformation to evaluate time 
dependence of         , carefully take the limit      
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Paired State Viscosity II 

•  Fourier modes of 
•  So modes of                                                                             with F linear 

in  
•  => This term vanishes in the static limit, leaving  

•   Rotational covariance =>                              and 
•  Thus,   

        
                                                                as expected!                                                                              
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Strain in a Nonzero Magnetic Field 

•  Switching on a magnetic field, we have for a general 2D system 

•  We may think that, just as before, the strain could be defined as  

•  Unfortunately, this breaks all the nice commutation relations derived 
earlier:                                                      ,                                                   

–  Why? - Lorentz Force 
–  Changes the continuity equation:  
–  Equivalently,  
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Strain in a Nonzero Magnetic Field II 

•  Additional difficulty - dilations/compressions (trace part of strain) 
change the total flux through the system 

•  Work around - consider only traceless deformations 

•  Gives the traceless part of the strain transformations, restores               
commutation relations 

–  Interpretation: For             traceless,                                                implements a 
strain transformation combined with a gauge transformation. Extra term undoes 
this gauge transformation 

–  Subtracts out Lorentz force contribution to the traceless part of the first moment 
of    
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(Traceless) Viscosity of the Landau Level System 

•  Now we specialize to  

•  Traceless part of stress tensor given by  

•  Can calculate the (traceless) viscosity from any of the 3 forms of the 
Kubo formula presented earlier 

–  Particularly instructive in stress-stress and strain-strain forms. 
–  Will work at zero temperature 
–  State of interest: very large system with     filled LLs  
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Reminder: Some Useful Operators 

•  Recall that we can diagonalize the LL Hamiltonian by introducing 
raising and lowering operators: 

•  In these terms, 
 
•  Expressing the stress and strain in terms of raising and lowering 

operators, we find 

•  Time dependence is now trivial, Kubo formulas easy to evaluate  
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(Traceless) Viscosity from Stress-Stress Formula 

•  Contact term gives 
–  divergent as  

•  Time integral gives  

•  Combining terms, we get for the traceless viscosity 

–  no divergence as 

•  In the static limit, we recover the Hall viscosity  
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(Traceless) Viscosity from Strain-Strain Formula 

•  Strain-Strain Kubo formula must give the same result, but it’s 
interesting to see how 

•  Contact term gives 
–  Ill-defined due to infinite LL degeneracy 

•  Time integral gives 

•  As required, after combining terms we recover the result from the 
previous slide, and in particular  

•  Intra-LL terms cancel exactly! 
–  In the static limit, corresponds to adiabatic transport of degenerate subspaces 

(Read & Rezayi) 
–  Ensures independence of final result from boundary conditions 
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Conclusions & Outlook 

•  At zero magnetic field, we have derived a general Kubo formula for the 
viscosity 

•  At finite magnetic field, we have a Kubo formula for the traceless part 
of the viscosity tensor 

•  For IQH systems and 2D paired superfluids, we have derived the Hall-
viscosity from elementary linear response theory 

•  What remains to be done: 
–  Bulk viscosity of systems in finite magnetic fields 
–  Frequency-dependent viscosity of paired states 
–  Relationship between (Hall) viscosity and conductivity (c.f. Hoyos & Son) 


