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Background Yale

- Viscosity describes response of the stress tensor I1;

strain U;; = 5(8;7 =+ ax‘Z)

- (ILi;) = (Mij) o + Nijretine — Nijretine

; to an applied

- Dissipation described by symmetric part 77;93- Ly — % (Mijke + Nkeij)

of viscosity tensor

- Broken time reversal symmetry -> 77{;1@6 = % (mjkg — nkgij) # (0

in general

- How can we calculate 77;3 W



Background Yale

Answer: for systems with a gap, can use adiabatic response (Avron,
Seiler, Zograt, 1995, Levay)

Idea — Time varying strain <-> Time varying metric

Since I1;; = 2% , adiabatic theorem gives antisymmetric viscosity
ij

as the Berry Curvature associated with adiabatically deforming the
metric
In 2D: néke =" (0reic — dic€jk)
Specific Systems:
— IQH states: nt =%n
— FQH states: N =35 (5 +hy)n
— ¢-wave paired superfluids: n! = —30n
— General form (Read; Read & Rezayi): nt = %Eﬁ

Extensions to other systems (Hughes, Leigh, Fradkin ; Qi et. al.)



Motivation for this work

Viscosity 1s a linear transport coefticient

Even for non-dissipative viscosity, should be able to make contact with
traditional transport theory

=> There should be a Kubo formula for viscosity which can reproduce
the results above

- We can’t find it in the literature



Perturbed Hamiltonian for Viscosity

- Goal - find a linear response formula for viscosity

- Starting Point: Time-varying metric perturbation at B = 0

H=g"(t)) pf:f + % > VAT(H) (" —x"))

a a7#b
9ij(t) = ( JAji(t)
g (t) = ( )AL (1)

- Look for a unitary transformation that diagonalizes the metric, 1.e.

SHOHS(t) = 6, pzpf’ —va _x%) = H,
a a#b
- This 1s a strain transforrnation




Strain Generators

We can write S = exp (—iXij(t)Jij)

The condition ST(¢)H S(t) = Hy gives the following commutation
relations:

i [Jij, Pl = Okib§

i[Jij, 2y = —Opj]

These imply that

1 a a
Jij = 9 Z {f, 05}

Note that @ [J;;, Jxe] = 0ieJk; — Ok Jie

— These are the commutation relations of § [(d : R)

— The J;; operators generate deformations of shape - Strain generators

— To avoid boundary 1ssues, we will work in the infinite plane



The Transformed System

Since \;;(t) is time dependent, we must transform the time-
dependent Schrédinger Equation §-2- 1) = H (t) |¢))

- |ip) = S|Y’) implies the transformed Schrodinger equation is
a0
ot

- Linear response -> keep only first order terms -> the Hamiltonian 1s
H=Hy+ H,
8)\2 j

Hy = -4 .
! ot Y

- We have transformed the metric perturbation into a “potential”
perturbation

(

0S5
_ AN <) It PN

— Analogous to the case of an electric field, where a gauge transformation takes us
from E = —%—‘? to E=—-V¢



Stress and Strain Yale

- Can gain some insight by looking at the continuity equation for
momentum density g(r) = > {p?,d(r — x?)}

8g; t
géir) + (‘LHZ] (I‘) — ffx (I‘) =0

— £¥!(r) is the external force density, which is zero for the Hamiltonian H,

- Fourier transforming, and expanding to leading order in q,,

0

E; (p:f -~ {pf.at }> +1¢:llij(¢ = 0) = 0

- We notice that p
Jf,;j — —/d rrigj(r)

0y
HZ] — HZ] (q — O) atzj
+ Observation - the perturbation H; = — %% J;; is a position-dependent

velocity field - c.f. classical viscosity



Linear Response Theory

Can now use standard linear response theory to find response of the

stress I1;; to the strain perturbation ff; = _&;j Jij

0
Recall the Kubo Formula:
— Response of an operator A to a perturbation U(t) = f(¢)B can be written

) = (4, - v | Tt x(t - ) ()

— OO

— where the response function x (¢ —t) is
X(t =) = = lim Ot — ') {[A(1), B(t)])ge ")
V e—ot
— with time-evolution and averages taken w.r.t. the unperturbed hamiltonian

— Can write this in frequency space as
. ©)

(W)= —< lim [ dte™ t ([A(t), B(0)]),

wT = w +ie



Kubo Formula for Viscosity

- Adapting this to the stress-strain response, we find that at B = 0

> Ok
(M) (0) = (ihy ==V [ dtmalt — )52
1 . 3 >° iwT
) =~ Tim i [ e (M (0), (O
- Using time-translation invariance and II;; = — %sz , can write

— 1 1
Might (W) = 0+ TV

(<[H¢j<o>, T+ [ et ([0, Hkg<o>1>o)

Nijre(w) = %g% (—7; ([7:(0), T (O)]) + e /O it ([Ji; (1), Jkg(O)DOdt)

- Three equivalent expressions for the viscosity



Simple Example: Free Electron Gas

a _a
. _ P;P; . R Pir5 1t 1
Hqg = ), ==, so the stress tensor is I1;; = ) and 1t 1s

constant in time
- State of interest - N electrons in a large box

- Can use stress-stress form of viscosity, and only the contact term

contributes. Thus, 1
Z pzpjv{ajk pﬁ}]>

(E) (050i0 + 0520:1)

ij = i
) = lim o

’ 21
= 111m
e—0+ dVwT

+ Real part R [n;jx0(w)] oc 6(w)(95x0ie + 9jedik)
— Interpretation: infinite response of free electrons to static perturbation because

of acceleration. C.f. diamagnetic conductivity

— For non-trivial systems, we will see that these divergences cancel with terms in
the correlators



More Interesting Example: Paired States in 2D Yale

© Hy = [@rgt(r) (~ g V2 = u) b+ d [ [ drd (Al — )t ()t () + he)
— pair-potential A(T — T )transforms as an ¢-pole under rotations
— Energies F;, = \/(k—Q — )2 + A7
Second-quantized strain operator

Jij = _/d2fr rig;(r)
— %/d2rr¢ (@DT(T)ag—S) B %;ﬁ(r))

- Calculation 1s easiest using strain-strain form of viscosity
— Work in the ground state at zero temperature

— focus only on the w — 0 limit
— Need to evaluate nijre(w — 0) = % lim (—i ([Ji5(0), Jre(0)]) g + w*/o e (155 (1), Jee(0)]), dt)

w—0

Strategy - Use Bogoliubov transformation to evaluate time
dependence of J;; , carefully take the limit



Paired State Viscosity 11

+ Fourier modes of ([J;;(t), Jke(0)]), o f(k)e*Ert + g(k)e— 2wt

- So modes of w™ [ ([ (¢), Jre(0)]), et dt o ‘E’:fjgk_;";% with F linear
ot
n w

- => This term vanishes in the static limit, leaving

ighe(w = 0) = == ([735(0), ue (0)])
1
=7 (Okj (Jie)g — 0ie (Jhj)o)
Rotational covariance =>(Jpz)y = (Jyy)o and (Jzy)y = — (Jyz),
- Thus, 1
Nijke(0) = 57 (Jay = Jya)o (Onj€ie — diver;)
1 (L)
H _ + _ _ __ V720
T Ty oy = Tyl 2V
1
= 55N as expected!

(\)



Strain in a Nonzero Magnetic Field

Switching on a magnetic field, we have for a general 2D system

a a#b

1 a a
7(r) = 5 > {w"6(r — )}
™ =p"—A

- We may think that, just as before the strain could be defined as
J fdd’l”’l“]gj( ) Z {xvﬂﬂ-]}
» Unfortunately, this breaks all the nice commutation relations derived

carlier: i[J;;, w¢] = Oims + Bejpr Ji; & sl(2,R)
— Why? - Lorentz Force

— Changes the continuity equation: 895751‘) + 9;IL;(r) = Lejrgr(r)
— Equivalently, [7@?‘, 77?] = 1Bdgpeij # 0



Strain in a Nonzero Magnetic Field II

Additional difficulty - dilations/compressions (trace part of strain)
change the total flux through the system

Work around - consider only traceless deformations
~ 1 - B “ a
Jii = Jij — itr(J)(Sij + §€jg ;in Ty

1 1 b
= za: ~3 {x?,w?} T Z&:j {ok, Tt + 563'637?552

Gives the traceless part of the strain transformations, restores sl(d, R)
commutation relations
~ Interpretation: For )\, (¢) traceless, S(t) = exp(—i)i;(t)J;;) implements a
strain transformation combined with a gauge transformation. Extra term undoes
this gauge transformation

— Subtracts out Lorentz force contribution to the traceless part of the first moment
£ o8
Ob Bt



(Traceless) Viscosity of the Landau Level System Yale

Now we specialize to [, = E L

a

Traceless part of stress tensor given by

Il;; = —i |Ho, Jij]

1
LS (-t

Can calculate the (traceless) viscosity from any of the 3 forms of the
Kubo formula presented earlier

— Particularly instructive in stress-stress and strain-strain forms.

— Will work at zero temperature

— State of interest: very large system with v filled LLs



Reminder: Some Useful Operators

- Recall that we can diagonalize the LL. Hamiltonian by introducing

raising and lowering operators: ;, — 1 (7, in?)

V2B
| B
CLq = 5 (.’,Uq — Z’yq> —|— ’Lbl;

1
- In these terms, Ho = ch (b:;bq + 5)

- Expressing the stress and strain in terms of raising and lowering
operators, we find

My =325 (0 +03) o +i (0] —85) o)

q

Ji =y 7 (0 =0+ a2—al’) o 4(b2+bT +a? +a‘L)aw—|— (biby — alay) ei;

q
- Time dependence is now trivial, Kubo formulas easy to evaluate



1 1

- Contact term gives 11;;(0), Jke(0)]) =

|
—~
=
~
—~
=2
.
(S
QO’)
=
Q)
~
(S
M
<
=
~—

Vot |
— divergentas w — 0

- Time integral gives

1 it = (Ho) we e
Vot | ¢ (L5 (2), ke (0)]) dt = V(w+? — 402) (

(0i00k — €iv€jk) — 2 (k€0 — 513%3‘))

wT

- Combining terms, we get for the traceless viscosity

_ (Ho) o+
nijkg(w) — V(w+2 B 4wg) [zw ((57;g5jk — queéjk) — 26% (5jk€7;€ — 5%%]‘)}

— no divergence as w — 0

- In the static limit, we recover the Hall viscosity

(Ho)
2V w,

H (Ho) 4

(0jk€ie — Oiv€kj) = Wewn Zﬁ

77z'jk€<w —0) =



(Traceless) Viscosity from Strain-Strain Formula Yale

- Strain-Strain Kubo formula must give the same result, but it’s
interesting to see how

. ; 1 H. T 1
° COIltaCt term gIVCS —% <[‘]’LJ (O), Jk@(O)D — V <<2w0> . <CL CL;‘ 2>> (5jk:€i£ . 5i£€kj)
— Ill-defined due to infinite LL degeneracy
. . . wt [ afa+ L AR
+ Time integral gives % [~ e~ (). e = (< ta)_ » Ef; +4wg)) (Byneie = sery)
iw+ <H0>

V(o d?) (0001 — €iv€jk)

- As required, after combining terms we recover the result from the
previous slide, and in particular ! = Y7
- Intra-LL terms cancel exactly!

— In the static limit, corresponds to adiabatic transport of degenerate subspaces
(Read & Rezayi)

— Ensures independence of final result from boundary conditions



Conclusions & Outlook

At zero magnetic field, we have derived a general Kubo formula for the
VISCOSItY

At finite magnetic field, we have a Kubo formula for the traceless part
of the viscosity tensor

For IQH systems and 2D paired supertluids, we have derived the Hall-
viscosity from elementary linear response theory

What remains to be done:
— Bulk viscosity of systems in finite magnetic fields
— Frequency-dependent viscosity of paired states

— Relationship between (Hall) viscosity and conductivity (c.t. Hoyos & Son)



