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Some physical motivation




Why we need logarithmic models of CFT?



2D percolation Cardy, 1992

Crossing probability P = Z,, — Z,;, of percolation cluster

formation between two boundaries (horizontal crossing)

Zaa ~ (Dfa(21)0q r(22) P f1a(23) Da(24))
Zay ~ (Df1a(21)@a|f(22) D p1p(23) Py £ (24))



2D percolation and field ¢, 5(z) Cardy, 1992

Crossing probability P = Z,, — Z,;, of percolation

Zaa ~ {Pf1a(21)@a)r(22) @ f1a(23) Doy p(24))

Zay ~ (Pf1a(21)@a|f(22) D p1p(23) D) £ (24))
Conformal dimension of the boundary field ¢|,(2) should be zero:
Logpa(2) =0 & c=0  —  ¢pulz) = ¢12(2)
(L_g — 2L |)¢12(2) =0 —  Cardy formula
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2D percolation and Staggered modules Mathieu—Ridout, 2007

Boundary fields ¢, 2(2) + operator algebra to be closed
= appearance of nontrivial Jordan cells in spectrum of the hamiltonian L,
characterized by indecomposibility parameter b:  (¢|T) =b (= —5/8)

|1,2)

L_1]|é1,2)
a0 |p1,4)




In a log CFT model, we encounter (at least) two problems:

(1) The space of states (indefinite inner-product space) is decomposed into com-
plicated indecomposables over Virasoro but their structure is not known

apriori — a problem in constructing even a consistent chiral theory.

(2) a problem in combining chiral and antichiral parts to construct the full space
of states of a local theory (non-chiral theory) in order to describe, say, 2D

percolation on a torus.



It might be better to begin studying logarithmic behaviour on
a finite lattice model where algebraic part is under better
control and to get then some intuition

for the continuum (LCFT) in the scaling limit.




Logarithmic lattice models
There are few different approaches:
e 1+1D (super-symmetric) spin-chain models =

= non-degenerate indef. inner product spaces Read—-Saleur 2001

e 2D (integrable) loop models Pearce—Rasmussen—Zuber 2006,
Dubail-Jacobsen—Saleur 2006-2009

Both approaches show presence of Jordan cells for

the hamiltonian H = ) . e; and
are based on “hamiltonian densities”, e;, algebra
— the Temperley—Lieb (TL) algebra —

(the hamiltonian densities are representations of TL algebra)




Logarithmic lattice models
There are few different approaches:
e 1+1D (super-symmetric) spin-chain models =
= non-degenerate indef. inner product spaces Read—-Saleur 2001

e 2D (integrable) loop models Pearce—Rasmussen—Zuber 2006,
Dubail-Jacobsen—Saleur 2006-2009

Morally,
e the lattice models are discretizations of LCFTs and
e TL algebra gives a regularization of the energy—momentum tensor 1T'(z):

its modes L, are obtained in a scaling limit from the hamiltonian

densities e; keeping “higher” hamiltonians H(n) = > . exp(imnj/N)e; —

— due to somehow underestimated old result of Koo—Saleur, 1994




Logarithmic lattice models (SUSY spin-chains)
We consider gl(1|1) and sl(2]1) SUSY spin-chains
with open and closed boundary conditions (b.c.)
e open b.c. give in the scaling limit
chiral (or boundary) LCFTs with ¢ = —2 and ¢ = 0, resp.
e closed b.c. give in the scaling limit
non-chiral (or bulk) LCFTs with ¢ = —2 and ¢ = 0, resp.

The space of states is the tensor product space H = (V @ V*)®t of N = 2L

tensorands labelled j = 1, ..., 2L with the fundamental representation V = C!/!
for gl(1|1) and V' = C?" for sI(2|1) on even sites and the dual V* on odd sites.

Nearest-neighbour interaction is given by e;'s — projectors on the gl(1|1)-

or sl(2|1)-invariant in the product V' ® V* of two neighbour tensorands.




Logarithmic lattice models (open SUSY spin-chain)

e The open gl(1|1) spin-chain has a free fermion representation based on op-

erators f; and f]-T acting non-trivially only on jth tensorand and obeying

{Fi fry =0, {f5, 1} = (=176,
where the ‘—' sign for an odd j is due to the dual representations of gl(1[1).

e Nearest-neighbour interaction is then
€j:(fj+fj+1)(f;+f;+1)7 1<j<2L -1,

e The critical hamiltonian H = Z?ifl e; is hermitian but acts on an indefinite

inner product space H = (V ® V*)®! because of the sign factor.



Logarithmic lattice models (open SUSY spin-chain)
Nearest-neighbour interaction e; for sl(2|1) spin-chains is quartic in bosonic and
fermionic operators ‘sitting’ at sites 7 and j + 1.

e in both cases, they satisfy TL algebra T'L(m) relations:

2 _ : o — e

ejer = erej,  (J 7k, k1),

e with m =0 for gl(1|1) and with m = 1 for si(2|1) SUSY spin-shains —

— the algebra is non semi-simple

e These open chains provide a faithful representation of T'Ly(m).

How to get a decomposition or (indecomposable)

module structure over T'L(m)?




Logarithmic lattice models (SUSY spin-chains) Read—-Saleur, 2007

SUSY spin-chain approach uses an important concept
— the full symmetry algebra 7, —

the centralizer of the “hamiltonian densities” algebra TL (the centralizer is a

largest algebra that commutes with TL, i.e. technically is defined as Endy(H)

In the open gl(1|1) spin-chain, Z | is generated by the identity and

Iy = Z 15 F(J[l): Z fj)

1<j<N 1< <N
_ P f ot

Fop= > Bl Foy= 2. Hf)
1<j<j’<N 1<j<j’<N

7= ) (Vffi—L

1<j<N



Logarithmic lattice models (the centralizer for gl(1|1) spin-chain)

e In the open gl(1|1) spin-chain, Z is generated by the identity and

1<j<N 1< <N
_ - f ot
Foy= ) fifnn Fy= > hif)
1 <j<j' <N 1<j<j'<N
S = > (—Wfh-L
I<j<N

Why this algebra generates the full symmetry algebra?

e Note that the formulas give a representation of the quantum group U,s¢(2)
with g = 4. The fermionic generators F(;) and F(Tl) are from the nilpotent part

and the bosonic ones form the s¢(2) subalgebra in U;s¢(2).



Logarithmic behaviour of the hamiltonian H and XX spin-chain

e Jordan—Wigner transformation gives an isomorphism
between the open ¢l(1]|1) and XX spin-chains and between Zp; and U;s/{(2)

qszsiq—sz _ q5i7
S+, 5] = m
W q—q!
‘i’ _ o _
Fly T YH Fy =57 Fw=5"
+12 —\2
Fryy |H F(Tz) = (5[2]') o Ty = (SEQ]?
L Ry =
\ (2)
F, }
(1) F(l)
Q2

the vacuum €2 and the state w form a 2-dim

Jordan cell of the lowest eigenvalue for H




Logarithmic lattice models (the centralizer) Read—-Saleur, 2007
We have to exploit the symmetry algebra.

e Decomposition over the full symmetry algebra Zp; is usually easier to study

than for the "hamiltonian densities” algebra T'L y(m).

Our strategy is then:

(1) to start with a decomposition of spin-chains over Zp on indecomposable
direct summands which are technically tilting modules;

(2) then, studying all homomorphisms (intertw. operators) between the tilting
modules gives module structure over the algebra T'L (a direct sum of its
projective modules).

(3) multiplicities in front of tilting Z7-modules give dimensions of simple 7" L-

modules.



Read-Saleur, 2007
Open case for the gl(1]1) model (or XX model) — finite chain with N =8

A TL

UqSlz (-/ém )
0 »
0 1 2 3 4

T'Lg acts in the vertical direction,

U;sl(2) acts in the horizontal way.




The full space of states is a bimodule over T'Ly(0) ® U;s¢(2)

e the spin-states are organized into indecomposables for T'Lx(0) (or U;s¢(2))

e with nondiag. action of the hamiltonian H (or the Casimir operator)

What is going on with such a structure when the scaling

limit is taken?




Read-Saleur, 2007

Projective T'L-modules and staggered Vir-modules

/ \ L ) 11/ \
\m/ NS

J+1,1

T L-projectives go over to

staggered modules for chiral Virasoro




Read-Saleur, 2007
Open case for the gl(1]|1) model (q = i, ¢ = —2) — scaling limit N — oo

"
s

A Virasoro

U,sl, (A,)
0 > Symplectic fermions theory with ¢ = —2

S = [d?2],50,5°0" D"




Read-Saleur, 2007
Open case for the gl(1]|1) model (q = i, ¢ = —2) — scaling limit N — oo

"
s

A Virasoro

3 °
2
1 l °
UqSIZ (‘/énln)
0 > Virasoro Viry 5 acts in vertical direction,
0 1 2 3 ° o
U;sl(2) acts in the horizontal way.




Read-Saleur, 2007
Open case for the gl(1]|1) model (q = i, ¢ = —2) — scaling limit N — oo

"
s

3 °

A Virasoro

U,s, (A,) Screening construction gives
0 >
0 1 2 3 e e the centralizer for chiral Virasoro

Viry,, Ugst(2)] =0 (BFGT, 2009).




Open case for the s/(2|1) model (q = ¢™/3, ¢ = 0) — scaling limit N — oo
o The full symmetry algebra Z7;) is Morita-equivalent to Ugsf(2) (the same

module structure but different dimensions for simples)

\

Ugsl, (A)

B a— — " Virasoro Virg 3 acts in vertical direction,

©

Z771(1) acts in the horizontal way.



Open case for the s/(2|1) model (q = ¢™/3, ¢ = 0) — scaling limit N — oo
e In a paper of Vasseur—Jacobsen—Saleur-2011, the indecomposibility parameter (7'|t) = b was measured in the

sl(2|1) chain using the Koo—Saleur formula with the result b = —5/8, as expected for boundary 2D percolation.

| -

A Virasoro

S s s e s e Virasoro Virg 3 acts in vertical direction,
Zrr) acts in the horizontal way.



How to extend this approach for

description of bulk LCFTs?




How to extend this approach for

description of bulk LCFTs?

Consider periodic gl(1|1) and sl(2|1)

spin-chains and their scaling limit.




The periodic gl(1]1) spin-chain

The closed (periodic) spin-chain is obtained simply by adding a coupling between
the sites with 7 = 2L and 5 = 1, that is by adding a generator

ear = (for + 1) (fd, + 1),

which corresponds to the periodic boundary condition f2(P+1 = flm on the fermions.

The critical hamiltonian for our model is then expressed as
2L
H = Z 6j
j=1

We have now a translation symmetry for H given by operator v : 7 — j + 2.



The periodic gl(1]1) model and affine TL

The set of 2L generators ¢;,7 = 1,...,2L, with the translation operator w,
satisfy affine TL algebra ﬁN(m) relations:

2 _ . Py — e,

ejer = exej,  (J#k, k1),
ueju_l = €519
(with m = 0) where now the indices have to be interpreted cyclically.

e The periodic gl(1|1) spin chain provides a non-faithful representation of the
affine TL algbera ﬁN(O) =TLy.



The periodic g/(1]|1) and a twisted closed XX-model

The gl(1]|1) model is equivalent to a twisted XX spin chain. The expression of

the TL generators in this case is well known

1
XX _ -
e; " =3 lojoin il ilo) —oiy)], 1SN,
with twisted boundary conditions

N

+ S* z 1 z

Oy = —(=1) 017 S 252%
j=1

Then

e; = i(—l)jeXX



The periodic g/(1|1) model and the centralizer Z5%0) GRS, 2011

While the gl(1|1) symmetry remains, being generated by Fy, F(J&), and S*, the

‘bosonic’ s/(2) generators F{s) and F(TQ) do not commute with the action of

ﬁN(O). We have only an odd (or fermionic) subalgebra of Z7 ) generates the
centralizer of ﬁN(O), with n >0,

Flonsr) = j{: JinFia -+ Fionir:

1 <j1<j2<
. <Jani1 <2L

T _ Il 1
F(2n+1) - Z fhsz"'fj

2n+1’
1 <j1<j2<
- <Jont1 <2L

ST =Y (V-1

1<j<2L



Definition of U;’ddSE(Q) (with q = 1) GRS, 2011
US¥sl(2) is generated by SE (n>0) and S* with the def. relations

0> STq™ =qSE,  [S7, 8] = £(2n +1)SE,

min(n,m)
PT’ Sz Sn TS;; T
r=1
S5, 55] =0, (S5 =0

o U§ddsé(2) is a subalgebra in Uysf(2) and acts as

St = Flpy i = Fonn

Theorem. On the periodic gl(1|1) spin-chain, the associative algebra

US%s((2) is the centralizer of the affine Temperley-Lieb algebra TLy.




Representation theory of U?s((2)

e All the irreps for U§dds€(2) which appear as subfactors in the spin-chain are

one-dimensional and parametrized by the weights with respect to S* and
N
5
e The indecomposable U§ddsf(2)—modu|es T, are restrictions of the tilting

depicted in diagrams by X,;, where —5- <n <

Uqsl(2)-modules Py, that appear in open spin-chains.

X1 Xfl
X1,2 . °
/ \ Ugtst2) X %x
PLQ = Xl’\ /X1,3 — .\ PR /.2 = Ty
Xi,2 M
[ ] o



Example. Decomposition over U;’ddsf(Q) for N =8

(d?)&xol\ /X.l @(@)&?\%3 @(dg)gxos\%\\ X1 @é §X.1 ><;1 g/x.s

e the multiplicities (d}) = (14), (d5) = (14), (d3) = (6), and (d) = (1) are

dimensions of simples for ﬁN(O).



Example. Decomposition over ﬁN for N =8

The decomposition of the full spin-chain on 8 sites with respect to T'L .
(1) (6) (1) (14) (14) (1)

NN I K

M @ 6 o 1 149 1) & (6 (6 14" & @ (14 (6) (6)

LN X N N X

(1) (6) (1) (14) 6) (14) (14) (1)
(6) (1)

/1N

e M (1) 1) o 6 @ (1)

i/

(6) (1)

where the black arrows represent the action of the open TL and the red ones —

of the last generator ey.



Decomposition over U2%s/((2) for N = 2L

Decomposition w.r.t. the odd quantum group U;dd(sﬁ(Q))

N/2
Hlygaonoy = D) BT,

n=1

the multiplicities (d°) are dimensions of irreducibles for TLy.



Decomposition over ﬁN GRS, 2011

We compute EndUC(I)ddsg(Q)(H) to decompose
the periodic gl(1|1) spin-chain over TLy for any even V.

e In particular, the subquotient structure for S* =0 is

(d9) dj_)

dOL 1)



Decomposition over f\LN GRS, 2011

For any sector with j = |S%| (with fixed number of fermions)

N

J+1) ( J+1

(d?+2 >< +2)
(d913) >< (d}43)
(dF14) (d}14) Dimensions of T'L  simples:

d(])',(—l)jH - (25——]2) - (L2—Lj_—22)




Decomposition over f\LN GRS, 2011

For any sector with j = |S%| (with fixed number of fermions)

\

(@) (@
><
(d712) (df5)
>
(df15) (df5)
>
(dF44) (dF14) The hamiltonian acts by Jordan

blocks of rank 2, horizontally




Spin-chain vs. Standard modules over ﬁN

/ \ /( dg)\
d9+1 d9+1 (d?H) (d?H)
(d?+2)><(d?+2) (d?f2)><(d?r)
(d9+3)><(d9+3) (d?f)><(d?f3)
(4].44) (5:4) (d5:4) (5:4)
structure of the cell (standard) structure of the spin-chain
modules at ¢ = 1 modules at ¢ = ¢

The arrows in red have been flipped w.r.t. the structure of the standard modules.



Bimodule over the pair (ﬁN, Ug¥sl(2)) GRS, 2011

TLy A

The action of ﬁN is depicted by vertical arrows

The action of U°%s/(2) is shown by dotted horizontal lines.



The full space of states is a bimodule over ﬁN(O) ® Ug¥s((2)

e the states are organized into indecomposables for Uc‘l’ddsé(Q) (or ﬁN(O))

e with nodiag. action of the Casimir operator (or the hamiltonian H)

What is going on with such a structure when the scaling

limit is taken?




Scaling limit N — ¢

e ground state < |0);

GRS, 2011

e low-lying excitations <= many-particles states in Fock spaces;

e correspondence between generating spectrum algebras:

(periodic) Temperley—-Lieb < Virasoro (+ Virasoro)

T asymptotic

— non-chiral Virasoro with the central charge ¢ = —2

in the symplectic-fermions representation

Fourier modes (1) 257, "N ey, —2" , Virasoro (Ln+ L_n)

(2) L3N [ex, exa] — (Lo — L_n)




Scaling limit N — ¢ GRS, 2011

e Decomposition of bulk sympl. ferm. over Vir and Vir

is consistent with the limit of ﬁ(O) spin-chain modules

(0) * —
Fj’(_l)j+1 = Zjl,j2>0 Xji11Xj,1, Where the

sum is done with the constraints:

(0)
L= Gl +1<4.  j+ja—13],
A B . -
it — 1l = e
i >< 7
F2(0)1><\F2(0)1
Fy) )




Scaling limit N — oo

® Scaling limit of first irrdeucible subquotients F((

GRS, 2011

0)

j7 _1)j+1

0
F()(,—)l -

0 00 _
Fl(,l) - Z’]":l Xr1Xrl

0 00 _ _
FQ(—)l — Zrzl Xrl (Xr—1,1 + Xr—l—l,l)

Fg(g) = X21 (X21 + X41)
+ > a1 (Xr—21 + X1 + Xrt2.1)




Symmetry algebra for non-chiral Virasoro

It turns out that centralizer for the non-chiral Virasoro is bigger than U§dds€(2):

e a lattice analogue of Kausch's global s£(2) does not commute with ﬁN(O).

This sl(2) symmetry ‘splits’ the block F; _;; into sectors with isospins k > J

How are the indecomposable spin-chain modules

decomposed (splitted) onto modules for Vir @ Vir?




Splitting of TL-modules into left-right Virasoro

(0] (0]
| >< b
(0] 0
B, Y,

0
Fyf)

It is decomposed over Vir @ Vir into the direct sum (over all integer isospins)

X1 XX X1 XX Xo1 X X4 Xo1 X Xa 4
l >< _ @ \><L ~ 5>
X1 WAL, Aoy KA Xo1 X Xa 1D Xl 1 Xl 1@ As, 1) X X1

S \\4\

Ao X ')22»1 X1 2?3,1 @ X311 X (-;?1,1 & -)23,1) @ Xo1 X )E4,1



Vacuum sector for left and right Virasoro GRS, 2011

A
V(2)

V(2)

Module structure over Vir @ Vir for the vacuum sector

(with zero s€(2)-isospin) on the left diagram

while the right one is for the doublet-sector 1/2-isospin.




Isospin-1 sector for left and right Virasoro GRS, 2011

A
V(2)

<
~

S
=

...... Node (n,n') = (A1, An1).

=i
N
w
W~
ot




Conclusion for periodic gl(1|1) spin-chain and the limit of T'L(0)

In the scaling limit, an indecomposable module for the ﬁ(O) algebra splits

into an infinite sum of indecomposable representations under the product of

the left and right Virasoro algebra.

The (full) scaling limit of the ﬁ(()) algebra is thus should be bigger than the
product Vir ® Vir. Indeed, there exist additional fields in the bulk that generate
the limit of ﬁ(O)! These bulk fields ‘link’ infinitely many indecomposables for
Vir @ Vir into one indecomposable of the same structure as we found from
the lattice analysis. The theory is still non-rational in the sense we have
infinitely-many primaries but the limit of ﬁ(()) gives a good organinzing

principle for bulk fields.




sl(2|1) periodic spin-chain (q = ¢™/?)
Adding a coupling ey, between 5 = 2L and 7 = 1 tensorands and introducing the
translational operator u : j — j + 2, as we did for the gl(1|1) case, we obtain a

faithful representation of the ﬁN(m = 1) and the decomposition

Hy =To,p ®8T11 ©22T51 © 24751 ® 11273, @ T5T3 42 D . . ..

where the weights (7, P) of indecomposable direct summands correspond to 2j

strings and the pseudomomentum P = ¢*™/! 1 <1< j, of u on the strings.

The vacuum sector: the model has unique vacuum living in (0, %),
the ‘energy-momentum’ state |T") and its logarithmic partner |t)

(2,1)  rank-2 living in (2,1) subquotients.

In a paper of VGJS-2011, the indecomposibility parameter (T'|t) = b

was measured with the result b = —5




sl(2|1) periodic spin-chain (q = ¢™/?)

There are Jordan cells for H of rank 3

rank-3

/\

(3,972

/\/\
\/\/

(3,972)

\/



sl(2|1) periodic spin-chain (q = ¢™/?)

There are Jordan cells for H of rank 4!

(7,1) rank-4

/N

(6,9%) (6,972)

IS
/)</ \ / M\
\5&\ / \ W
S
N



Thank You!



