

Periodic spin-chains, affine Temperley-Lieb, and bulk Logarithmic CFT

AM Gainutdinov

Institute de Physique Théorique, CEA-Saclay

in collaboration with H. Saleur, N. Read, R. Vasseur, and J. Jacobsen

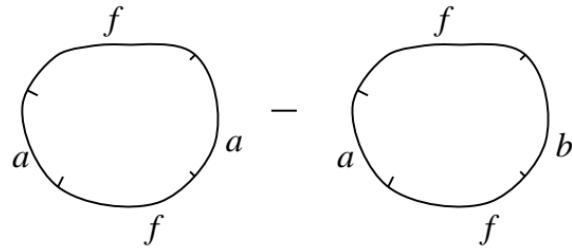
IHP, Paris, October 3, 2011.

Some physical motivation

Why we need **logarithmic** models of CFT?

2D percolation

Cardy, 1992



Crossing probability $P = Z_{aa} - Z_{ab}$ of percolation cluster formation between two boundaries (horizontal crossing)

$$Z_{aa} \sim \langle \phi_{f|a}(z_1) \phi_{a|f}(z_2) \phi_{f|a}(z_3) \phi_{a|f}(z_4) \rangle$$

$$Z_{ab} \sim \langle \phi_{f|a}(z_1) \phi_{a|f}(z_2) \phi_{f|b}(z_3) \phi_{b|f}(z_4) \rangle$$

2D percolation and field $\phi_{1,2}(z)$

Cardy, 1992

Crossing probability $P = Z_{aa} - Z_{ab}$ of percolation

$$Z_{aa} \sim \langle \phi_{f|a}(z_1) \phi_{a|f}(z_2) \phi_{f|a}(z_3) \phi_{a|f}(z_4) \rangle$$

$$Z_{ab} \sim \langle \phi_{f|a}(z_1) \phi_{a|f}(z_2) \phi_{f|b}(z_3) \phi_{b|f}(z_4) \rangle$$

Conformal dimension of the boundary field $\phi_{f|a}(z)$ should be zero:

$$L_0 \phi_{f|a}(z) = 0 \quad \& \quad c = 0 \quad \longrightarrow \quad \phi_{f|a}(z) = \phi_{1,2}(z)$$

$$(L_{-2} - \frac{3}{2}L_{-1}^2) \phi_{1,2}(z) = 0 \quad \longrightarrow \quad \text{Cardy formula}$$

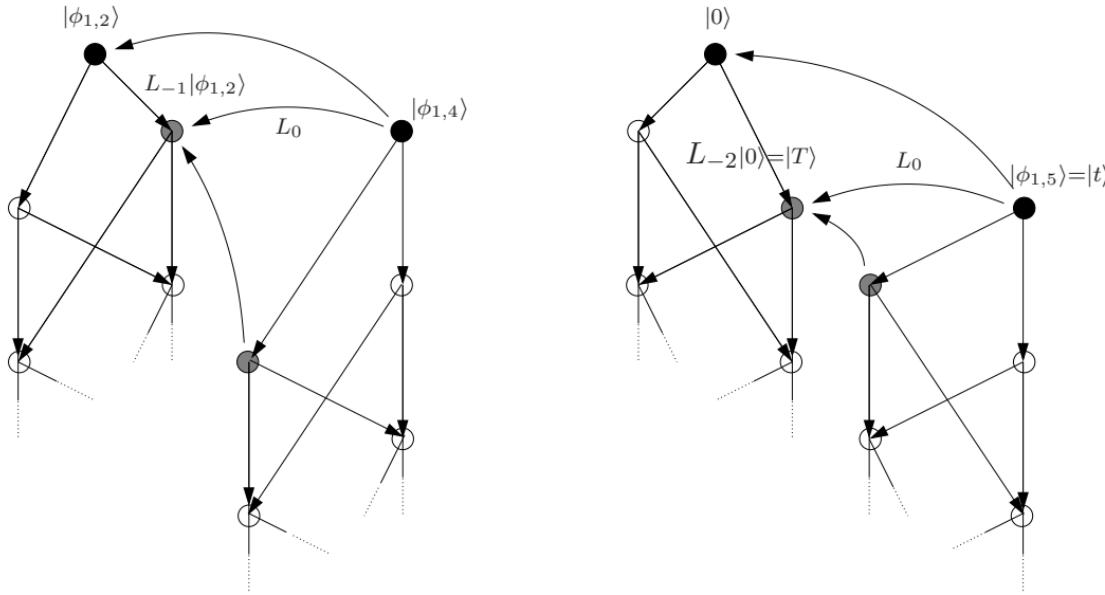
2D percolation and Staggered modules

Mathieu–Ridout, 2007

Boundary fields $\phi_{1,2}(z)$ + operator algebra to be closed

\implies appearance of nontrivial Jordan cells in spectrum of the hamiltonian L_0

characterized by indecomposibility parameter b : $\langle t|T\rangle = b$ ($= -5/8$)



In a log CFT model, we encounter (at least) two **problems**:

- (1) The space of states (indefinite inner-product space) is decomposed into complicated **indecomposables** over Virasoro but their structure is not known apriori – a problem in constructing even a consistent chiral theory.
- (2) a problem in combining chiral and antichiral parts to construct the full space of states of a local theory (**non-chiral** theory) in order to describe, say, 2D percolation on a torus.

It might be better to begin studying logarithmic behaviour on a finite **lattice** model where algebraic part is under better control and to get then some intuition for the **continuum** (LCFT) in the scaling limit.

Logarithmic lattice models

There are few different approaches:

- 1+1D (super-symmetric) spin-chain models =

= non-degenerate indef. inner product spaces

Read–Saleur 2001

- 2D (integrable) loop models

Pearce–Rasmussen–Zuber 2006,

Dubail–Jacobsen–Saleur 2006-2009

Both approaches show presence of Jordan cells for

the hamiltonian $H = \sum_j e_j$ and

are based on “hamiltonian densities”, e_j , algebra

— the Temperley–Lieb (TL) algebra —

(the hamiltonian densities are representations of TL algebra)

Logarithmic lattice models

There are few different approaches:

- 1+1D (super-symmetric) spin-chain models =
= non-degenerate indef. inner product spaces Read–Saleur 2001
- 2D (integrable) loop models Pearce–Rasmussen–Zuber 2006,
Dubail–Jacobsen–Saleur 2006–2009

Morally,

- the lattice models are discretizations of LCFTs and
- TL algebra gives a regularization of the energy–momentum tensor $T(z)$:
its modes L_n are obtained in a scaling limit from the hamiltonian densities e_j keeping “higher” hamiltonians $H(n) = \sum_j \exp(i\pi n j/N) e_j$ —
— due to somehow underestimated old result of Koo–Saleur, 1994

Logarithmic lattice models (SUSY spin-chains)

We consider $gl(1|1)$ and $sl(2|1)$ SUSY spin-chains

with open and closed boundary conditions (b.c.)

- open b.c. give in the scaling limit
chiral (or boundary) LCFTs with $c = -2$ and $c = 0$, resp.
- closed b.c. give in the scaling limit
non-chiral (or bulk) LCFTs with $c = -2$ and $c = 0$, resp.

The space of states is the tensor product space $\mathcal{H} = (V \otimes V^*)^{\otimes L}$ of $N = 2L$ tensorands labelled $j = 1, \dots, 2L$ with the fundamental representation $V = \mathbb{C}^{1|1}$ for $gl(1|1)$ and $V = \mathbb{C}^{2|1}$ for $sl(2|1)$ on even sites and the dual V^* on odd sites.

Nearest-neighbour interaction is given by e_j 's – projectors on the $gl(1|1)$ - or $sl(2|1)$ -invariant in the product $V \otimes V^*$ of two neighbour tensorands.

Logarithmic lattice models (open SUSY spin-chain)

- The open $gl(1|1)$ spin-chain has a free fermion representation based on operators f_j and f_j^\dagger acting non-trivially only on j th tensorand and obeying

$$\{f_j, f_{j'}\} = 0, \quad \{f_j, f_{j'}^\dagger\} = (-1)^j \delta_{jj'},$$

where the ‘ $-$ ’ sign for an odd j is due to the dual representations of $gl(1|1)$.

- Nearest-neighbour interaction is then

$$e_j = (f_j + f_{j+1})(f_j^\dagger + f_{j+1}^\dagger), \quad 1 \leq j \leq 2L-1,$$

- The critical hamiltonian $H = \sum_{j=1}^{2L-1} e_j$ is hermitian but acts on an indefinite inner product space $\mathcal{H} = (V \otimes V^*)^{\otimes L}$ because of the sign factor.

Logarithmic lattice models (open SUSY spin-chain)

Nearest-neighbour interaction e_j for $sl(2|1)$ spin-chains is quartic in bosonic and fermionic operators ‘sitting’ at sites j and $j + 1$.

- in both cases, they satisfy TL algebra $TL_N(m)$ relations:

$$e_j^2 = me_j, \quad e_j e_{j \pm 1} e_j = e_j,$$

$$e_j e_k = e_k e_j, \quad (j \neq k, k \pm 1),$$

- with $m = 0$ for $gl(1|1)$ and with $m = 1$ for $sl(2|1)$ SUSY spin-chains –
 - the algebra is **non semi-simple**
- These open chains provide a **faithful** representation of $TL_N(m)$.

How to get a decomposition or (indecomposable)
module structure over $TL_N(m)$?

SUSY spin-chain approach uses an important concept
— the full symmetry algebra Z_{TL} —

the centralizer of the “hamiltonian densities” algebra TL (the centralizer is a largest algebra that commutes with TL , i.e. technically is defined as $\text{End}_{TL}(\mathcal{H})$)

In the open $gl(1|1)$ spin-chain, Z_{TL} is generated by the identity and

$$\begin{aligned}
 F_{(1)} &= \sum_{1 \leq j \leq N} f_j, & F_{(1)}^\dagger &= \sum_{1 \leq j \leq N} f_j^\dagger, \\
 F_{(2)} &= \sum_{1 \leq j < j' \leq N} f_j f_{j'}, & F_{(2)}^\dagger &= \sum_{1 \leq j < j' \leq N} f_{j'}^\dagger f_j^\dagger, \\
 S^z &= \sum_{1 \leq j \leq N} (-1)^j f_j^\dagger f_j - L.
 \end{aligned}$$

Logarithmic lattice models (the centralizer for $gl(1|1)$ spin-chain)

- In the open $gl(1|1)$ spin-chain, Z_{TL} is generated by the identity and

$$F_{(1)} = \sum_{1 \leq j \leq N} f_j, \quad F_{(1)}^\dagger = \sum_{1 \leq j \leq N} f_j^\dagger,$$

$$F_{(2)} = \sum_{1 \leq j < j' \leq N} f_j f_{j'}, \quad F_{(2)}^\dagger = \sum_{1 \leq j < j' \leq N} f_{j'}^\dagger f_j^\dagger,$$

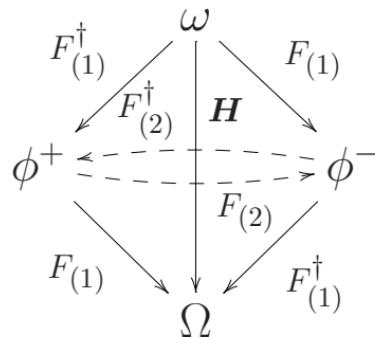
$$S^z = \sum_{1 \leq j \leq N} (-1)^j f_j^\dagger f_j - L.$$

Why this algebra generates the full symmetry algebra?

- Note that the formulas give a representation of the quantum group $U_q sl(2)$ with $q = i$. The fermionic generators $F_{(1)}$ and $F_{(1)}^\dagger$ are from the nilpotent part and the bosonic ones form the $sl(2)$ subalgebra in $U_q sl(2)$.

Logarithmic behaviour of the hamiltonian H and XX spin-chain

- Jordan–Wigner transformation gives an isomorphism between the open $gl(1|1)$ and XX spin-chains and between Z_{TL} and $U_i s\ell(2)$



$$q^{S^z} S^\pm q^{-S^z} = q S^\pm, \\ [S^+, S^-] = \frac{q^{S^z} - q^{-S^z}}{q - q^{-1}},$$

$$F_{(1)}^\dagger = S^+, \quad F_{(1)} = S^-,$$

$$F_{(2)}^\dagger = \frac{(S^+)^2}{[2]!}, \quad F_{(2)} = \frac{(S^-)^2}{[2]!}.$$

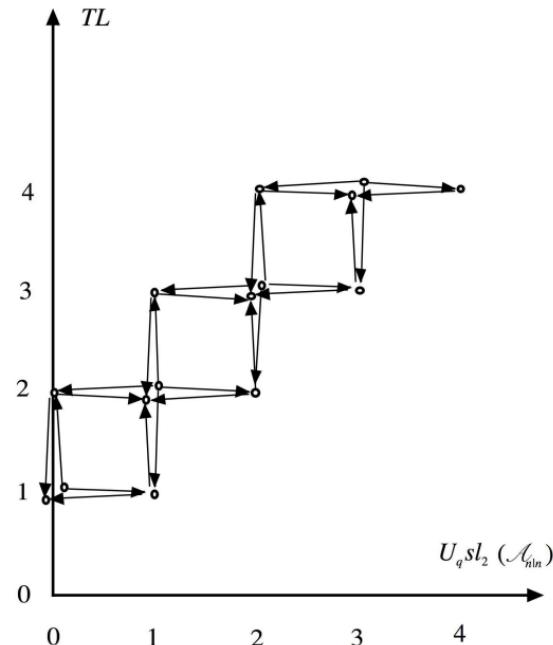
the vacuum Ω and the state ω form a 2-dim Jordan cell of the lowest eigenvalue for H

We have to exploit the symmetry algebra.

- Decomposition over the full symmetry algebra Z_{TL} is usually easier to study than for the “hamiltonian densities” algebra $TL_N(m)$.

Our strategy is then:

- (1) to start with a decomposition of spin-chains over Z_{TL} on indecomposable direct summands which are technically **tilting** modules;
- (2) then, studying all homomorphisms (intertw. operators) between the tilting modules gives module structure over the algebra TL (a direct sum of its projective modules).
- (3) multiplicities in front of tilting Z_{TL} -modules give dimensions of simple TL -modules.

Open case for the $gl(1|1)$ model (or XX model) — **finite chain with** $N = 8$ 

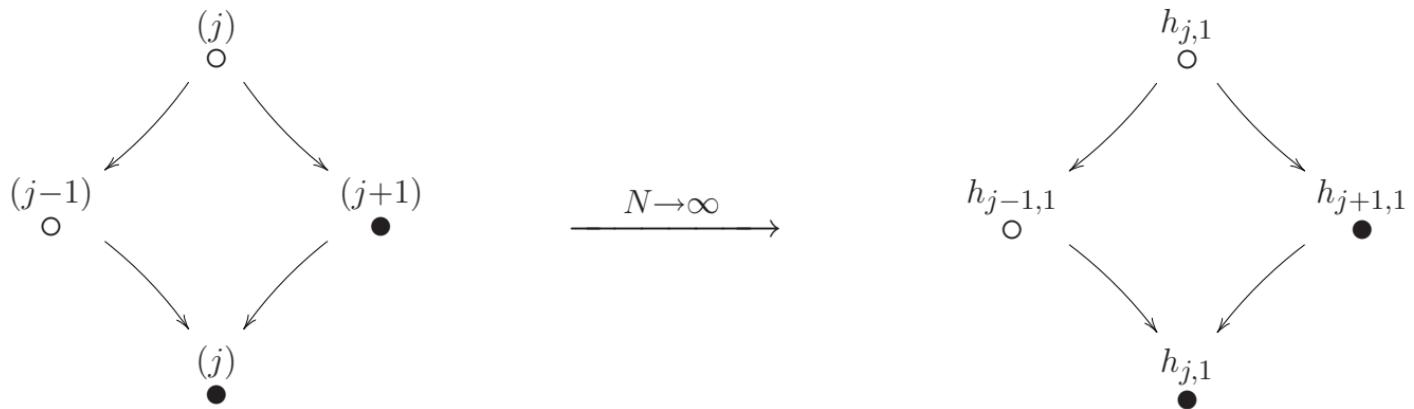
TL_8 acts in the vertical direction,
 $U_i sl(2)$ acts in the horizontal way.

The full space of states is a **bimodule** over $TL_N(0) \otimes U_i\mathfrak{sl}(2)$

- the spin-states are organized into indecomposables for $TL_N(0)$ (or $U_i\mathfrak{sl}(2)$)
 - with nondiag. action of the hamiltonian H (or the Casimir operator)

What is going on with such a structure when the scaling limit is taken?

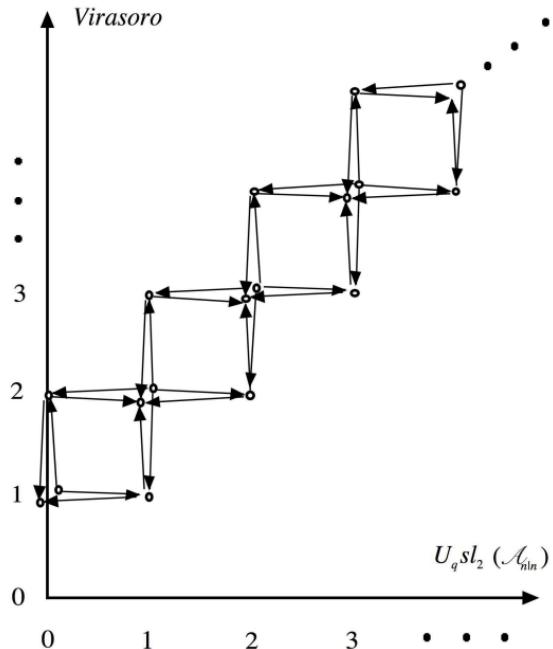
Projective TL -modules and staggered Vir-modules



TL -projectives go over to

staggered modules for chiral Virasoro

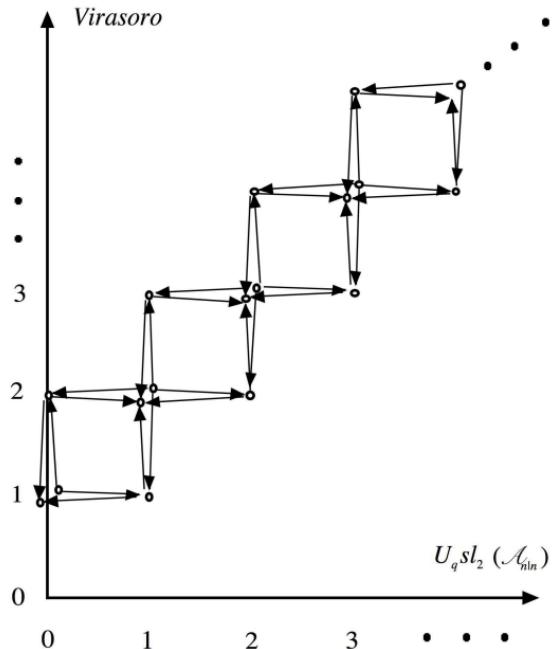
Open case for the $gl(1|1)$ model ($q = i$, $c = -2$) — **scaling limit** $N \rightarrow \infty$



Symplectic fermions theory with $c = -2$

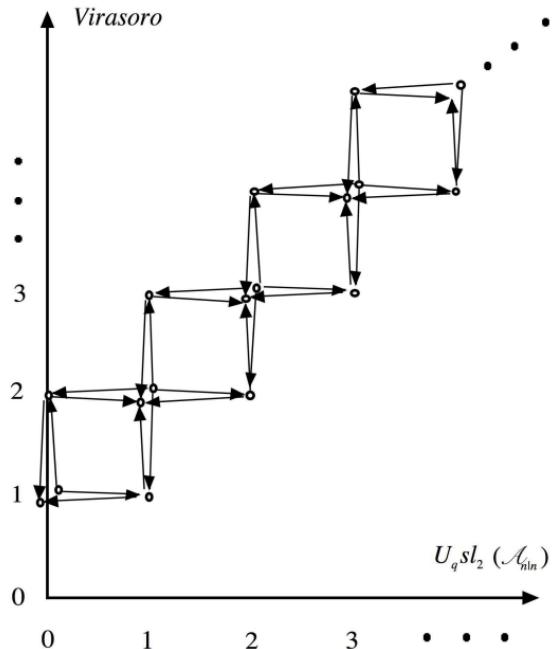
$$S = \int d^2z J_{\alpha\beta} \partial_\mu \Phi^\alpha \partial^\mu \Phi^\beta$$

Open case for the $gl(1|1)$ model ($q = i$, $c = -2$) — **scaling limit** $N \rightarrow \infty$



Virasoro $Vir_{1,2}$ acts in vertical direction,
 $U_i sl(2)$ acts in the horizontal way.

Open case for the $gl(1|1)$ model ($q = i$, $c = -2$) — **scaling limit** $N \rightarrow \infty$

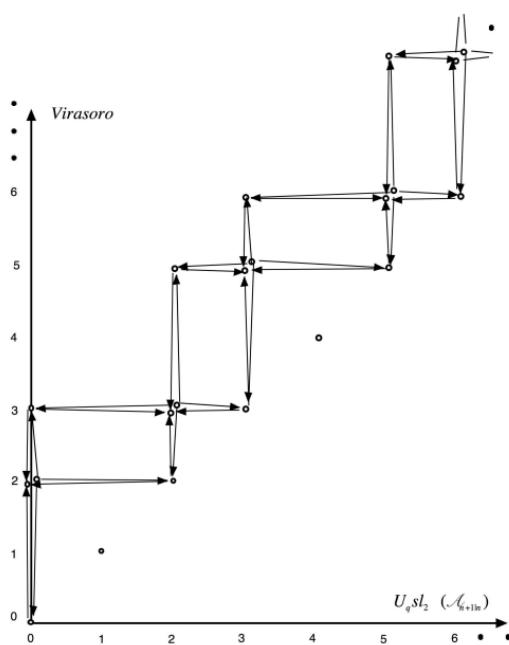


Screening construction gives
the **centralizer** for chiral Virasoro

$[\text{Vir}_{1,p}, U_q sl(2)] = 0$ (BFGT, 2009).

Open case for the $sl(2|1)$ model ($q = e^{i\pi/3}$, $c = 0$) — **scaling limit** $N \rightarrow \infty$

- The full symmetry algebra $Z_{TL(1)}$ is Morita-equivalent to $U_q sl(2)$ (the same module structure but different dimensions for simples)

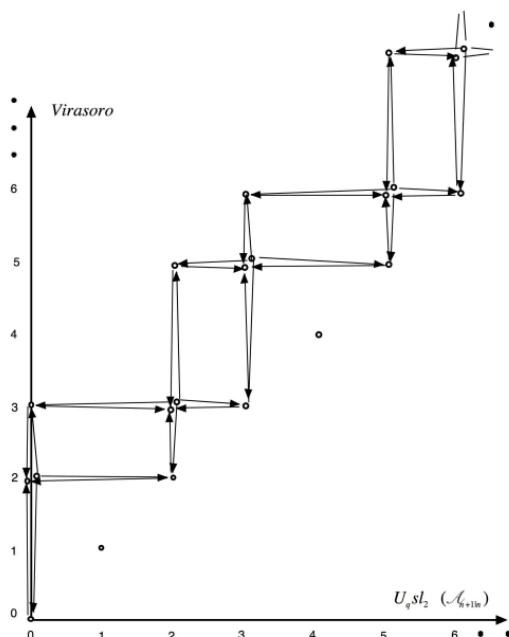


Virasoro $Vir_{2,3}$ acts in vertical direction,

$Z_{TL(1)}$ acts in the horizontal way.

Open case for the $sl(2|1)$ model ($q = e^{i\pi/3}$, $c = 0$) — scaling limit $N \rightarrow \infty$

- In a paper of Vasseur–Jacobsen–Saleur–2011, the indecomposability parameter $\langle T|t \rangle = b$ was measured in the $sl(2|1)$ chain using the Koo–Saleur formula with the result $b = -5/8$, as expected for boundary 2D percolation.



Virasoro $\text{Vir}_{2,3}$ acts in vertical direction,
 $Z_{TL(1)}$ acts in the horizontal way.

How to extend this approach for
description of **bulk** LCFTs?

How to extend this approach for
description of **bulk** LCFTs?

Consider **periodic** $gl(1|1)$ and $sl(2|1)$
spin-chains and their scaling limit.

The periodic $gl(1|1)$ spin-chain

The closed (periodic) spin-chain is obtained simply by adding a coupling between the sites with $j = 2L$ and $j = 1$, that is by adding a generator

$$e_{2L} = (f_{2L} + f_1)(f_{2L}^\dagger + f_1^\dagger),$$

which corresponds to the periodic boundary condition $f_{2L+1}^{(\dagger)} = f_1^{(\dagger)}$ on the fermions.

The critical hamiltonian for our model is then expressed as

$$H = \sum_{j=1}^{2L} e_j$$

We have now a translation symmetry for H given by operator $u : j \rightarrow j + 2$.

The periodic $gl(1|1)$ model and affine TL

The set of $2L$ generators $e_j, j = 1, \dots, 2L$, with the translation operator u , satisfy affine TL algebra $\widehat{TL}_N(m)$ relations:

$$e_j^2 = me_j, \quad e_j e_{j \pm 1} e_j = e_j$$

$$e_j e_k = e_k e_j, \quad (j \neq k, k \pm 1),$$

$$ue_j u^{-1} = e_{j+2}$$

(with $m = 0$) where now the indices have to be interpreted **cyclically**.

- The periodic $gl(1|1)$ spin chain provides a **non-faithful** representation of the affine TL algebra $\widehat{TL}_N(0) \equiv \widehat{TL}_N$.

The periodic $gl(1|1)$ and a twisted closed XX-model

The $gl(1|1)$ model is equivalent to a twisted XX spin chain. The expression of the TL generators in this case is well known

$$e_j^{XX} = \frac{1}{2} [\sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y + i(\sigma_j^z - \sigma_{j+1}^z)], \quad 1 \leq j \leq N,$$

with twisted boundary conditions

$$\sigma_{N+1}^{\pm} = -(-1)^{S^z} \sigma_1^{\pm}, \quad S^z = \frac{1}{2} \sum_{j=1}^N \sigma_j^z$$

Then

$$e_j = i(-1)^j e_j^{XX}$$

The periodic $gl(1|1)$ model and the centralizer $Z_{\widehat{TL}(0)}$

GRS, 2011

While the $gl(1|1)$ symmetry remains, being generated by $F_{(1)}$, $F_{(1)}^\dagger$, and S^z , the ‘bosonic’ $sl(2)$ generators $F_{(2)}$ and $F_{(2)}^\dagger$ **do not commute** with the action of $\widehat{TL}_N(0)$. We have only an **odd** (or fermionic) subalgebra of $Z_{TL(0)}$ generates the centralizer of $\widehat{TL}_N(0)$, with $n \geq 0$,

$$F_{(2n+1)} = \sum_{\substack{1 \leq j_1 < j_2 < \dots \\ \dots < j_{2n+1} \leq 2L}} f_{j_1} f_{j_2} \dots f_{j_{2n+1}},$$

$$F_{(2n+1)}^\dagger = \sum_{\substack{1 \leq j_1 < j_2 < \dots \\ \dots < j_{2n+1} \leq 2L}} f_{j_1}^\dagger f_{j_2}^\dagger \dots f_{j_{2n+1}}^\dagger,$$

$$S^z = \sum_{1 \leq j \leq 2L} (-1)^j f_j^\dagger f_j - L,$$

Definition of $U_{\mathfrak{q}}^{\text{odd}}\mathfrak{sl}(2)$ (with $\mathfrak{q} = i$)

GRS, 2011

$U_{\mathfrak{q}}^{\text{odd}}\mathfrak{sl}(2)$ is generated by S_n^{\pm} ($n \geq 0$) and S^z with the def. relations

$$\mathfrak{q}^{S^z} S_n^{\pm} \mathfrak{q}^{-S^z} = \mathfrak{q} S_n^{\pm}, \quad [S^z, S_n^{\pm}] = \pm(2n+1)S_n^{\pm},$$

$$[S_m^+, S_n^-] = \sum_{r=1}^{\min(n,m)} P_r(S^z) S_{n-r}^- S_{m-r}^+,$$

$$[S_m^{\pm}, S_n^{\pm}] = 0, \quad (S_m^{\pm})^2 = 0.$$

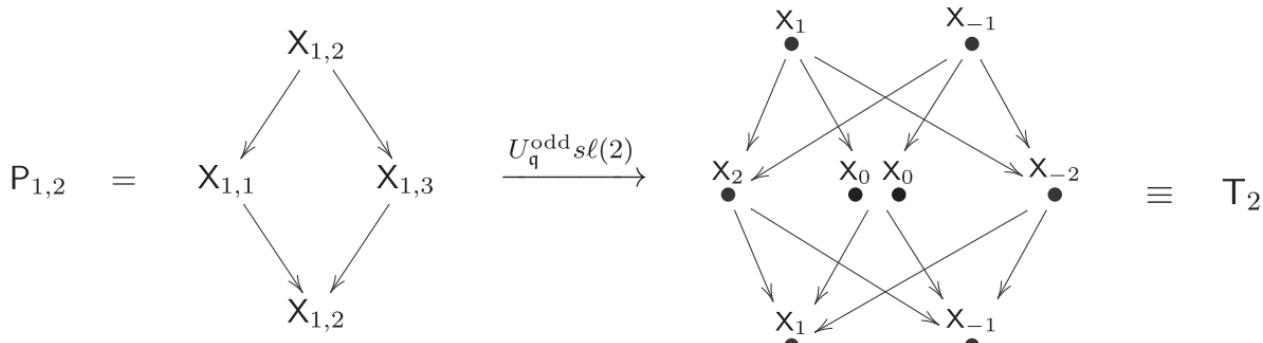
- $U_{\mathfrak{q}}^{\text{odd}}\mathfrak{sl}(2)$ is a subalgebra in $U_{\mathfrak{q}}\mathfrak{sl}(2)$ and acts as

$$S_n^+ = F_{(2n+1)}^\dagger, \quad S_n^- = F_{(2n+1)}.$$

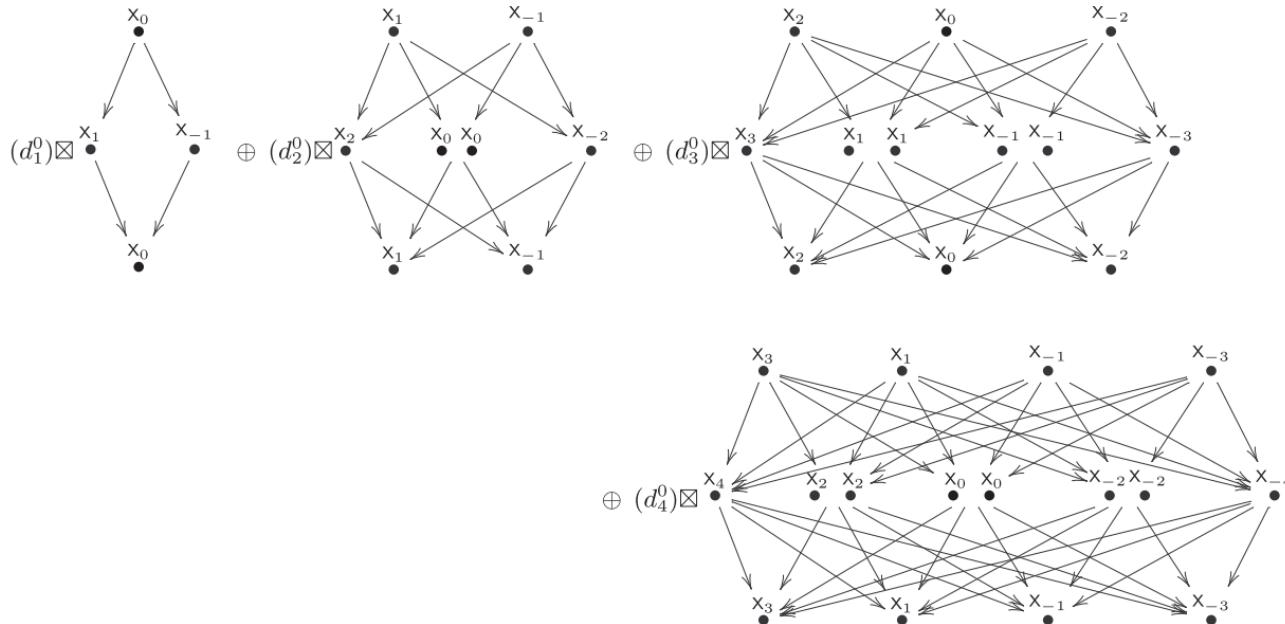
Theorem. *On the periodic $gl(1|1)$ spin-chain, the associative algebra $U_{\mathfrak{q}}^{\text{odd}}\mathfrak{sl}(2)$ is the **centralizer** of the affine Temperley–Lieb algebra \widehat{TL}_N .*

Representation theory of $U_q^{\text{odd}}\mathfrak{sl}(2)$

- All the irreps for $U_q^{\text{odd}}\mathfrak{sl}(2)$ which appear as subfactors in the spin-chain are **one**-dimensional and parametrized by the weights with respect to S^z and depicted in diagrams by X_n , where $-\frac{N}{2} \leq n \leq \frac{N}{2}$.
- The indecomposable $U_q^{\text{odd}}\mathfrak{sl}(2)$ -modules T_n are **restrictions** of the tilting $U_q\mathfrak{sl}(2)$ -modules $P_{1,n}$ that appear in open spin-chains.



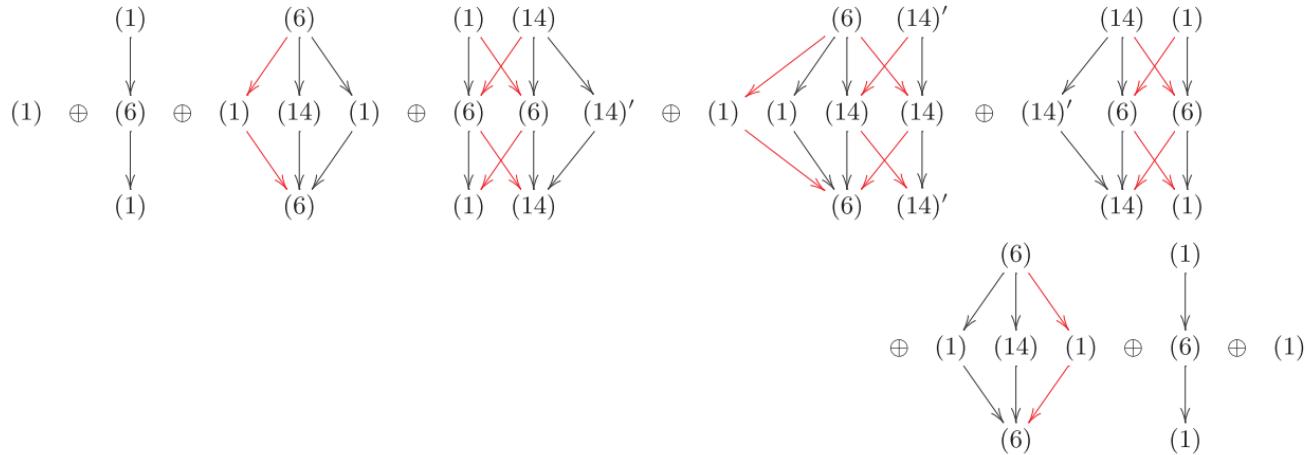
Example. Decomposition over $U_q^{\text{odd}}\mathfrak{sl}(2)$ for $N = 8$



- the multiplicities $(d_1^0) = (14)', (d_2^0) = (14), (d_3^0) = (6)$, and $(d_4^0) = (1)$ are dimensions of simples for $\widehat{TL}_N(0)$.

Example. Decomposition over \widehat{TL}_N for $N = 8$

The decomposition of the full spin-chain on 8 sites with respect to \widehat{TL}_N .



where the **black** arrows represent the action of the open TL and the **red** ones – of the last generator e_N .

Decomposition over $U_q^{\text{odd}}\mathfrak{sl}(2)$ for $N = 2L$

Decomposition w.r.t. the odd quantum group $U_q^{\text{odd}}(\mathfrak{sl}(2))$

$$\mathcal{H}|_{U_q^{\text{odd}}\mathfrak{sl}(2)} = \bigoplus_{n=1}^{N/2} (d_n^0) \boxtimes \mathsf{T}_n$$

the multiplicities (d_n^0) are dimensions of irreducibles for \widehat{TL}_N .

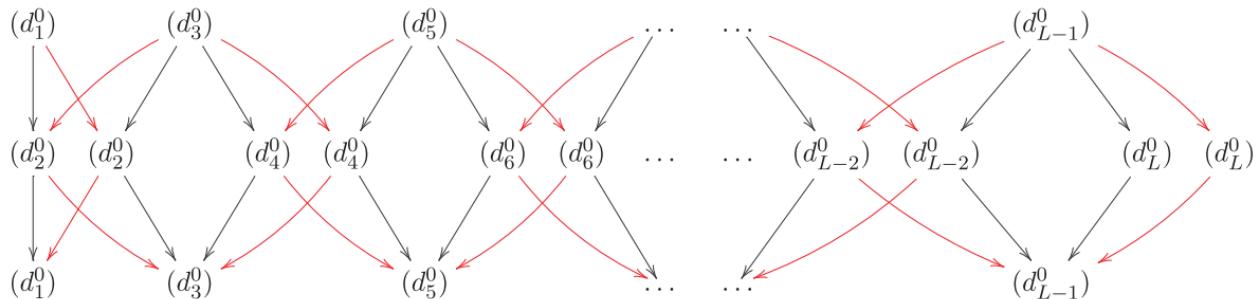
Decomposition over \widehat{TL}_N

GRS, 2011

We compute $\text{End}_{U_{\mathfrak{q}}^{\text{odd}} sl(2)}(\mathcal{H})$ to decompose

the periodic $gl(1|1)$ spin-chain over \widehat{TL}_N for any even N .

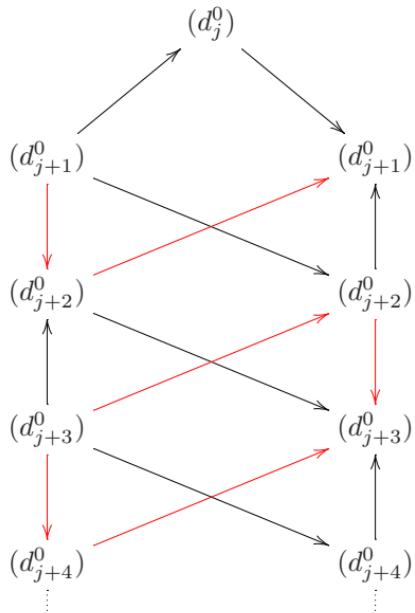
- In particular, the subquotient structure for $S^z = 0$ is



Decomposition over \widehat{TL}_N

GRS, 2011

For any sector with $j = |S^z|$ (with fixed number of fermions)



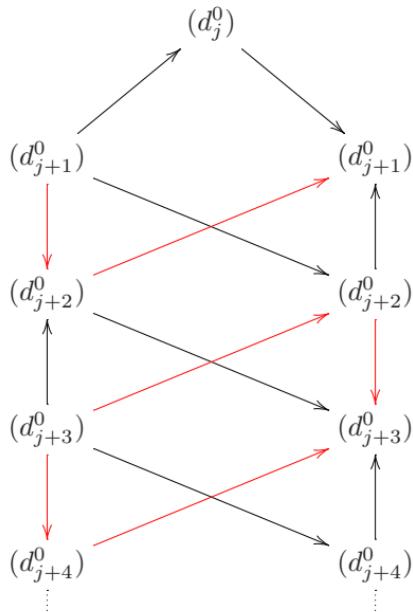
Dimensions of \widehat{TL}_N simples:

$$d_{j,(-1)^{j+1}}^0 = \binom{2L-2}{L-j} - \binom{2L-2}{L-j-2}$$

Decomposition over \widehat{TL}_N

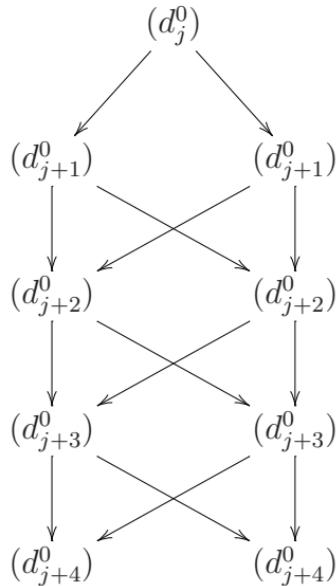
GRS, 2011

For any sector with $j = |S^z|$ (with fixed number of fermions)

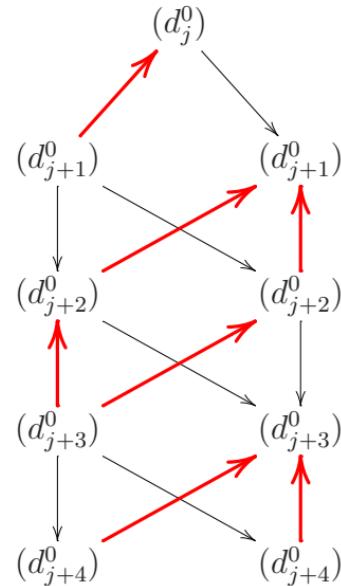


The hamiltonian acts by Jordan blocks of **rank 2**, horizontally

Spin-chain vs. Standard modules over \widehat{TL}_N



structure of the **cell** (standard)
modules at $q = i$

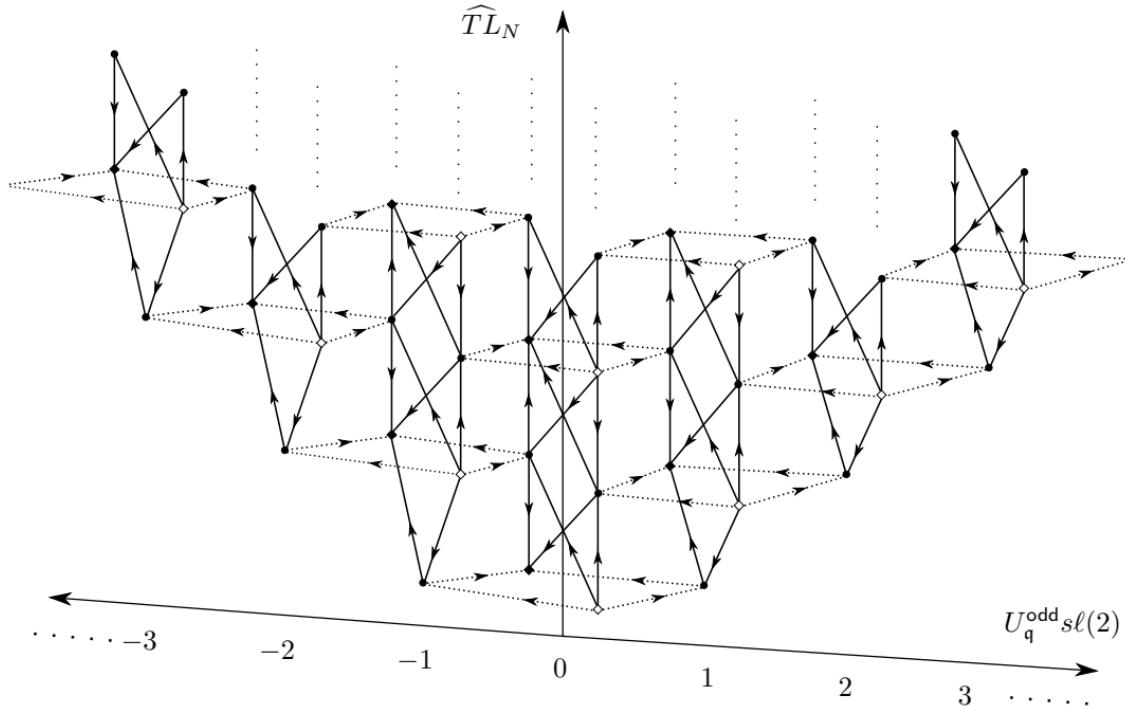


structure of the **spin-chain**
modules at $q = i$

The arrows in **red** have been flipped w.r.t. the structure of the standard modules.

Bimodule over the pair $(\widehat{TL}_N, U_q^{\text{odd}}\mathfrak{sl}(2))$

GRS, 2011



The action of \widehat{TL}_N is depicted by vertical arrows

The action of $U_q^{\text{odd}}\mathfrak{sl}(2)$ is shown by dotted horizontal lines.

The full space of states is a **bimodule** over $\widehat{TL}_N(0) \otimes U_{\mathfrak{q}}^{\text{odd}} \mathfrak{sl}(2)$

- the states are organized into indecomposables for $U_{\mathfrak{q}}^{\text{odd}} \mathfrak{sl}(2)$ (or $\widehat{TL}_N(0)$)
 - with nodiag. action of the Casimir operator (or the hamiltonian H)

What is going on with such a structure when the scaling limit is taken?

- ground state $\leftrightarrow |0\rangle$;
- low-lying excitations \leftrightarrow many-particles states in Fock spaces;
- correspondence between generating spectrum algebras:

(periodic) Temperley–Lieb \leftrightarrow Virasoro (+ $\overline{\text{Virasoro}}$)

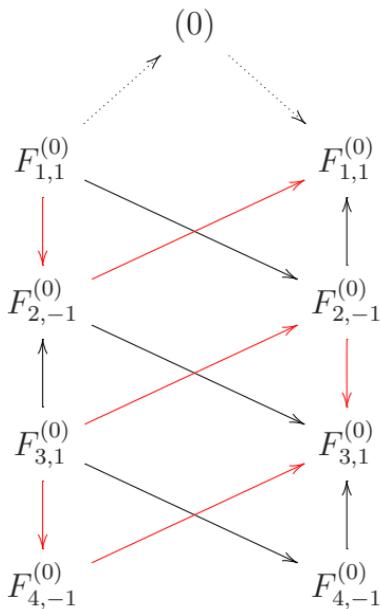
Fourier modes (1) $\frac{N}{\pi} \sum_k e^{ik\mathbf{n}\frac{\pi}{N}} \mathbf{e}_k \xrightarrow[\text{asymptotic}]{\text{leading}} \text{Virasoro } (L_{\mathbf{n}} + \bar{L}_{-\mathbf{n}})$

(2) $\frac{N}{\pi} \sum_k e^{ik\mathbf{n}\frac{\pi}{N}} [\mathbf{e}_k, \mathbf{e}_{k+1}] \longrightarrow (L_{\mathbf{n}} - \bar{L}_{-\mathbf{n}})$

— **non-chiral** Virasoro with the central charge $c = -2$

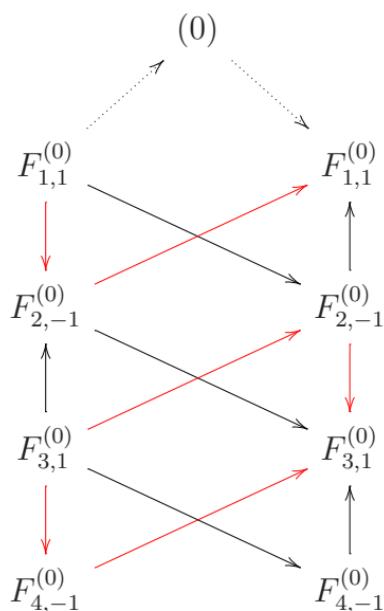
in the symplectic-fermions representation

- Decomposition of bulk sympl. ferm. over Vir and $\overline{\text{Vir}}$
is **consistent** with the limit of $\widehat{TL}(0)$ spin-chain modules



$F_{j,(-1)^{j+1}}^{(0)} = \sum_{j_1, j_2 > 0}^* \chi_{j_1, 1} \overline{\chi}_{j_2, 1}$, where the
 sum is done with the constraints:
 $|j_1 - j_2| + 1 \leq j, \quad j_1 + j_2 - 1 \geq j,$
 $j_1 + j_2 - 1 = j \bmod 2$

- Scaling limit of first irreducible subquotients $F_{j,(-1)^{j+1}}^{(0)}$



$$F_{0,-1}^{(0)} = 0$$

$$F_{1,1}^{(0)} = \sum_{r=1}^{\infty} \chi_{r1} \bar{\chi}_{r1}$$

$$F_{2,-1}^{(0)} = \sum_{r=1}^{\infty} \chi_{r1} (\bar{\chi}_{r-1,1} + \bar{\chi}_{r+1,1})$$

$$F_{3,1}^{(0)} = \chi_{21} (\bar{\chi}_{21} + \bar{\chi}_{41}) \\ + \sum_{r=3}^{\infty} \chi_{r1} (\bar{\chi}_{r-2,1} + \bar{\chi}_{r1} + \bar{\chi}_{r+2,1})$$

...

Symmetry algebra for non-chiral Virasoro

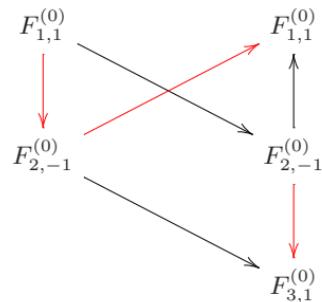
It turns out that centralizer for the **non**-chiral Virasoro is **bigger** than $U_q^{\text{odd}}\mathfrak{sl}(2)$:

- a lattice analogue of Kausch's **global** $\mathfrak{sl}(2)$ does not commute with $\widehat{TL}_N(0)$.

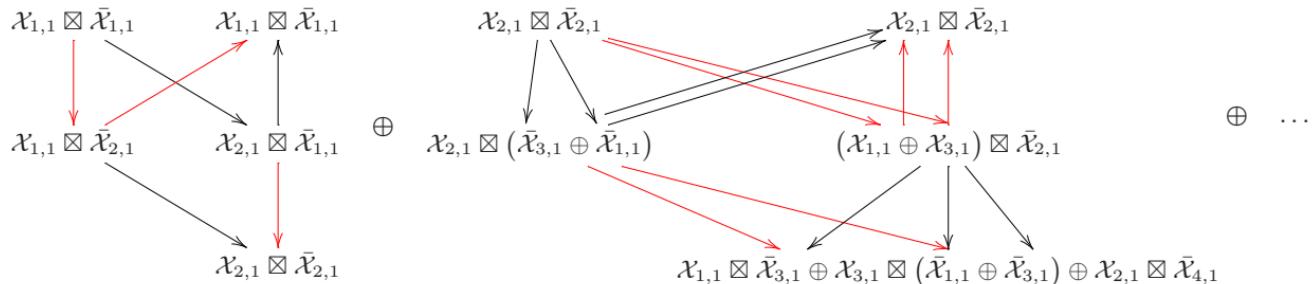
This $\mathfrak{sl}(2)$ symmetry 'splits' the block $F_{j,(-1)^j}$ into sectors with isospins $k \geq \frac{j}{2}$.

How are the indecomposable spin-chain modules
decomposed (splitted) onto modules for $\text{Vir} \otimes \overline{\text{Vir}}$?

Splitting of \widehat{TL} -modules into left-right Virasoro

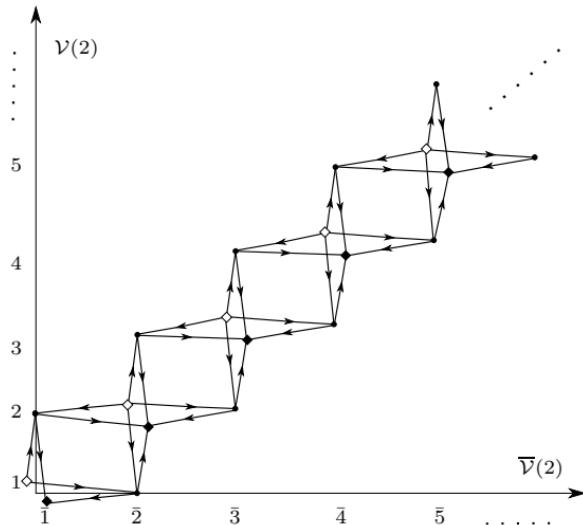
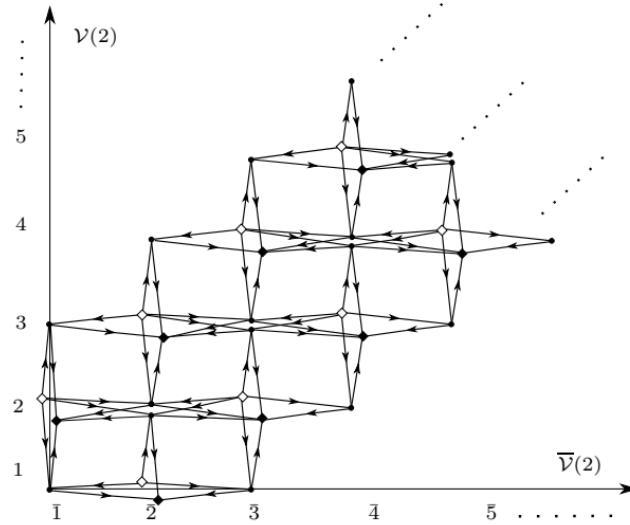


It is decomposed over $\text{Vir} \otimes \overline{\text{Vir}}$ into the direct sum (over all integer isospins)



Vacuum sector for left and right Virasoro

GRS, 2011



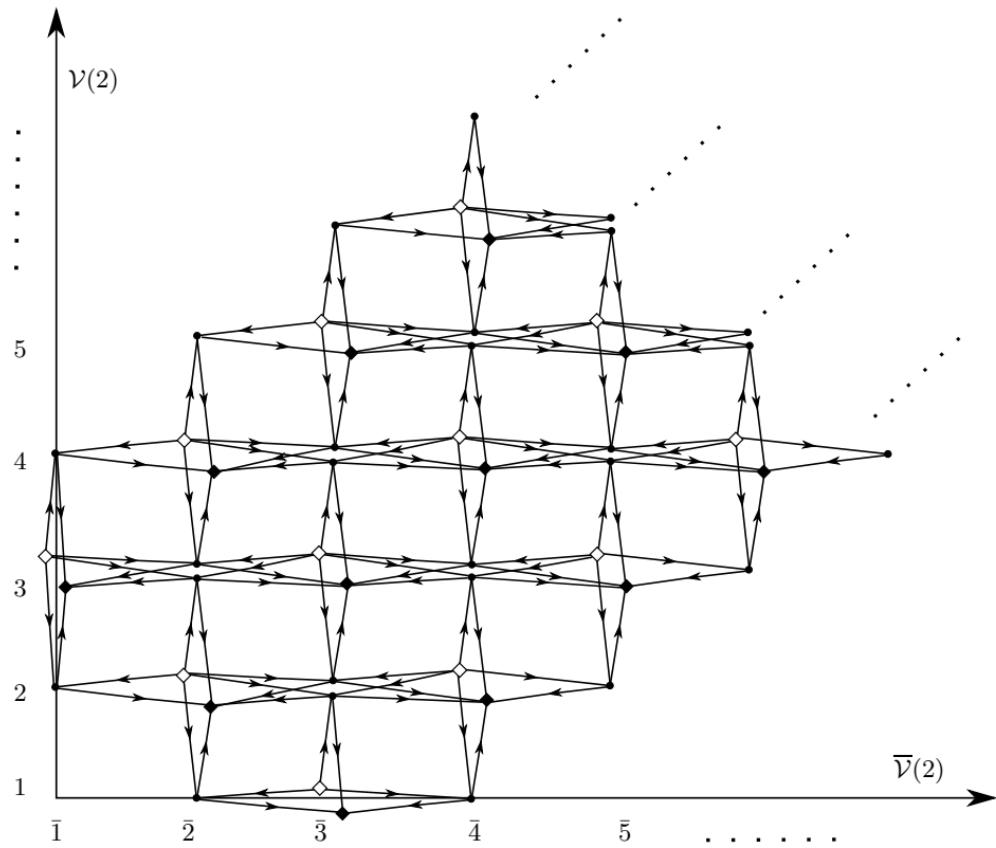
Module structure over $\text{Vir} \otimes \overline{\text{Vir}}$ for the vacuum sector

(with zero $s\ell(2)$ -isospin) on the left diagram

while the right one is for the doublet-sector 1/2-isospin.

Isospin-1 sector for left and right Virasoro

GRS, 2011



Node $(\bar{n}, n') = (\Delta_{n',1}, \bar{\Delta}_{\bar{n},1})$.

Conclusion for periodic $gl(1|1)$ spin-chain and the limit of $\widehat{TL}(0)$

In the scaling limit, an indecomposable module for the $\widehat{TL}(0)$ algebra splits into an infinite sum of indecomposable representations under the product of the left and right Virasoro algebra.

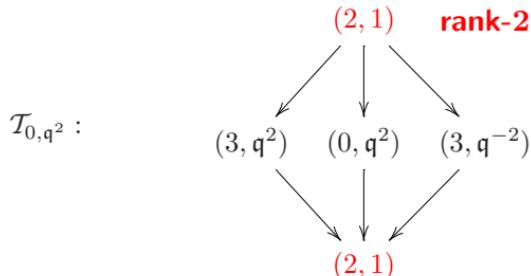
The (full) scaling limit of the $\widehat{TL}(0)$ algebra is thus should be bigger than the product $\text{Vir} \otimes \overline{\text{Vir}}$. Indeed, there exist additional fields in the bulk that generate the limit of $\widehat{TL}(0)$! These bulk fields ‘link’ infinitely many indecomposables for $\text{Vir} \otimes \overline{\text{Vir}}$ into one indecomposable of **the same structure** as we found from the lattice analysis. The theory is still non-rational in the sense we have infinitely-many primaries but the limit of $\widehat{TL}(0)$ gives a good organizing principle for bulk fields.

$sl(2|1)$ periodic spin-chain ($q = e^{i\pi/3}$)

Adding a coupling e_{2L} between $j = 2L$ and $j = 1$ tensorands and introducing the translational operator $u : j \rightarrow j + 2$, as we did for the $gl(1|1)$ case, we obtain a **faithful** representation of the $\widehat{TL}_N(m = 1)$ and the decomposition

$$\mathcal{H}_N = \mathcal{T}_{0,q^2} \oplus 8\mathcal{T}_{1,1} \oplus 22\mathcal{T}_{2,1} \oplus 24\mathcal{T}_{2,-1} \oplus 112\mathcal{T}_{3,1} \oplus 75\mathcal{T}_{3,q^{\pm 2}} \oplus \dots$$

where the weights (j, P) of indecomposable direct summands correspond to $2j$ strings and the pseudomomentum $P = e^{2i\pi j/l}$, $1 \leq l \leq j$, of u on the strings.

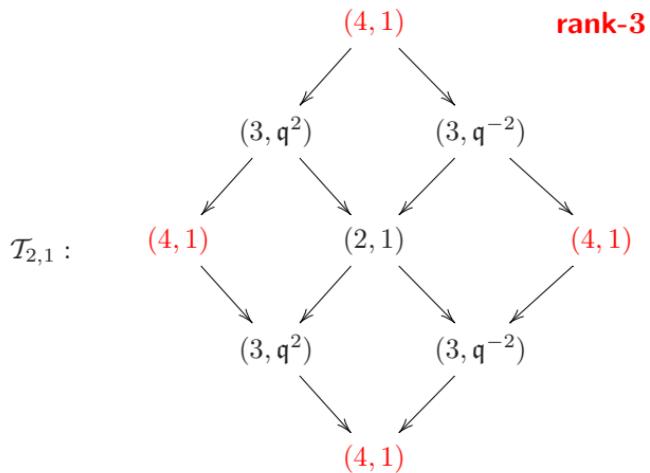


The vacuum sector: the model has unique vacuum living in $(0, q^2)$, the 'energy-momentum' state $|T\rangle$ and its logarithmic partner $|t\rangle$ living in $(2, 1)$ subquotients.

In a paper of VGJS-2011, the indecomposability parameter $\langle T|t\rangle = b$ was measured with the result $b = -5$

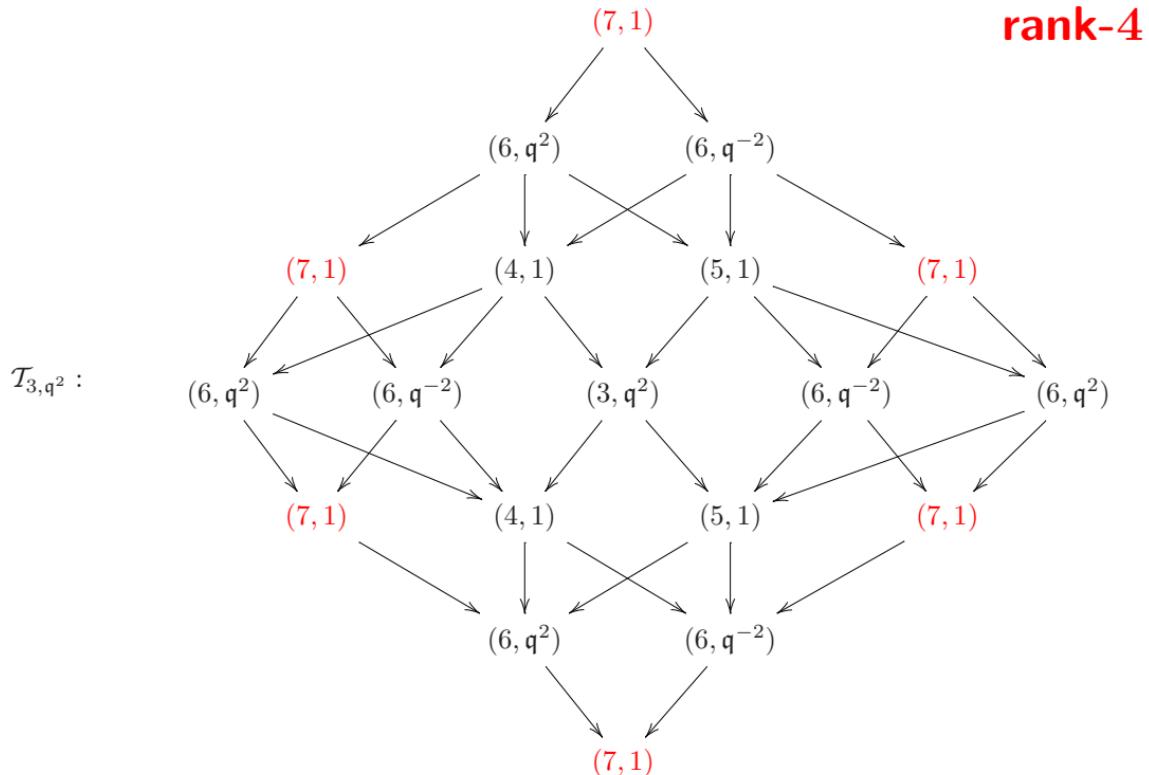
$sl(2|1)$ periodic spin-chain ($\mathfrak{q} = e^{i\pi/3}$)

There are Jordan cells for H of rank 3



sl(2|1) periodic spin-chain ($q = e^{i\pi/3}$)

There are Jordan cells for H of rank 4!



Thank You!