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Some physical motivation



Why we need logarithmic models of CFT?



2D percolation Cardy, 1992
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Crossing probability P = Zaa − Zab of percolation cluster

formation between two boundaries (horizontal crossing)

Zaa ∼ 〈φf |a(z1)φa|f(z2)φf |a(z3)φa|f(z4)〉

Zab ∼ 〈φf |a(z1)φa|f(z2)φf |b(z3)φb|f(z4)〉



2D percolation and field φ1,2(z) Cardy, 1992

Crossing probability P = Zaa − Zab of percolation

Zaa ∼ 〈φf |a(z1)φa|f(z2)φf |a(z3)φa|f(z4)〉

Zab ∼ 〈φf |a(z1)φa|f(z2)φf |b(z3)φb|f(z4)〉

Conformal dimension of the boundary field φf |a(z) should be zero:

L0 φf |a(z) = 0 & c = 0 −→ φf |a(z) = φ1,2(z)

(L−2 −
3

2
L2
−1)φ1,2(z) = 0 −→ Cardy formula



2D percolation and Staggered modules Mathieu–Ridout, 2007

Boundary fields φ1,2(z) + operator algebra to be closed

=⇒ appearance of nontrivial Jordan cells in spectrum of the hamiltonian L0

characterized by indecomposibility parameter b: 〈t|T 〉 = b (= −5/8)

|0〉

L−2|0〉=|T 〉

L0

L0

|φ1,2〉

|φ1,4〉

|φ1,5〉=|t〉

L−1|φ1,2〉



In a log CFT model, we encounter (at least) two problems:

(1) The space of states (indefinite inner-product space) is decomposed into com-

plicated indecomposables over Virasoro but their structure is not known

apriori – a problem in constructing even a consistent chiral theory.

(2) a problem in combining chiral and antichiral parts to construct the full space

of states of a local theory (non-chiral theory) in order to describe, say, 2D

percolation on a torus.



It might be better to begin studying logarithmic behaviour on

a finite lattice model where algebraic part is under better

control and to get then some intuition

for the continuum (LCFT) in the scaling limit.



Logarithmic lattice models

There are few different approaches:

• 1+1D (super-symmetric) spin-chain models =

= non-degenerate indef. inner product spaces Read–Saleur 2001

• 2D (integrable) loop models Pearce–Rasmussen–Zuber 2006,

Dubail–Jacobsen–Saleur 2006-2009

Both approaches show presence of Jordan cells for

the hamiltonian H =
∑

j ej and

are based on “hamiltonian densities”, ej, algebra

— the Temperley–Lieb (TL) algebra —

(the hamiltonian densities are representations of TL algebra)



Logarithmic lattice models

There are few different approaches:

• 1+1D (super-symmetric) spin-chain models =

= non-degenerate indef. inner product spaces Read–Saleur 2001

• 2D (integrable) loop models Pearce–Rasmussen–Zuber 2006,

Dubail–Jacobsen–Saleur 2006-2009

Morally,

• the lattice models are discretizations of LCFTs and

• TL algebra gives a regularization of the energy–momentum tensor T (z):

its modes Ln are obtained in a scaling limit from the hamiltonian

densities ej keeping “higher” hamiltonians H(n) =
∑

j exp(iπnj/N)ej —

— due to somehow underestimated old result of Koo–Saleur, 1994



Logarithmic lattice models (SUSY spin-chains)

We consider gl(1|1) and sl(2|1) SUSY spin-chains

with open and closed boundary conditions (b.c.)

• open b.c. give in the scaling limit

chiral (or boundary) LCFTs with c = −2 and c = 0, resp.

• closed b.c. give in the scaling limit

non-chiral (or bulk) LCFTs with c = −2 and c = 0, resp.

The space of states is the tensor product space H = (V ⊗ V ∗)⊗L of N = 2L

tensorands labelled j = 1, . . . , 2L with the fundamental representation V = C
1|1

for gl(1|1) and V = C
2|1 for sl(2|1) on even sites and the dual V ∗ on odd sites.

Nearest-neighbour interaction is given by ej’s – projectors on the gl(1|1)-

or sl(2|1)-invariant in the product V ⊗ V ∗ of two neighbour tensorands.



Logarithmic lattice models (open SUSY spin-chain)

• The open gl(1|1) spin-chain has a free fermion representation based on op-

erators fj and f †
j acting non-trivially only on jth tensorand and obeying

{fj, fj′} = 0, {fj, f
†
j′} = (−1)jδjj′,

where the ‘−’ sign for an odd j is due to the dual representations of gl(1|1).

• Nearest-neighbour interaction is then

ej = (fj + fj+1)(f
†
j + f †

j+1), 1 6 j 6 2L − 1,

• The critical hamiltonian H =
∑2L−1

j=1 ej is hermitian but acts on an indefinite

inner product space H = (V ⊗ V ∗)⊗L because of the sign factor.



Logarithmic lattice models (open SUSY spin-chain)

Nearest-neighbour interaction ej for sl(2|1) spin-chains is quartic in bosonic and

fermionic operators ‘sitting’ at sites j and j + 1.

• in both cases, they satisfy TL algebra TLN(m) relations:

e2
j = mej, ejej±1ej = ej,

ejek = ekej, (j 6= k, k ± 1),

• with m = 0 for gl(1|1) and with m = 1 for sl(2|1) SUSY spin-shains –

– the algebra is non semi-simple

• These open chains provide a faithful representation of TLN(m).

−→
How to get a decomposition or (indecomposable)

module structure over TLN(m)?



Logarithmic lattice models (SUSY spin-chains) Read–Saleur, 2007

SUSY spin-chain approach uses an important concept

— the full symmetry algebra ZTL —

the centralizer of the “hamiltonian densities” algebra TL (the centralizer is a

largest algebra that commutes with TL, i.e. technically is defined as EndTL(H)

In the open gl(1|1) spin-chain, ZTL is generated by the identity and

F(1) =
∑

1 6 j 6 N

fj, F †
(1) =

∑

1 6 j 6N

f †
j ,

F(2) =
∑

1 6 j<j′ 6N

fjfj′, F †
(2) =

∑

1 6 j<j′ 6N

f †
j′f

†
j ,

Sz =
∑

1 6 j 6N

(−1)jf †
j fj − L.



Logarithmic lattice models (the centralizer for gl(1|1) spin-chain)

• In the open gl(1|1) spin-chain, ZTL is generated by the identity and

F(1) =
∑

1 6 j 6 N

fj, F †
(1) =

∑

1 6 j 6N

f †
j ,

F(2) =
∑

1 6 j<j′ 6N

fjfj′, F †
(2) =

∑

1 6 j<j′ 6N

f †
j′f

†
j ,

Sz =
∑

1 6 j 6N

(−1)jf †
j fj − L.

Why this algebra generates the full symmetry algebra?

• Note that the formulas give a representation of the quantum group Uqsℓ(2)

with q = i. The fermionic generators F(1) and F †
(1) are from the nilpotent part

and the bosonic ones form the sℓ(2) subalgebra in Uqsℓ(2).



Logarithmic behaviour of the hamiltonian H and XX spin-chain

• Jordan–Wigner transformation gives an isomorphism

between the open gl(1|1) and XX spin-chains and between ZTL and Uisℓ(2)

ω
F
†
(1) F(1)

H

φ+

F(1)

F(2)

φ−

F
†
(1)

F
†
(2)

Ω

q
Sz

S±
q
−Sz

= qS±,

[S+, S−] =
q
Sz

− q
−Sz

q − q−1
,

F †
(1) = S+, F(1) = S−,

F †
(2) = (S+)2

[2]!
, F(2) = (S−)2

[2]!
.

the vacuum Ω and the state ω form a 2-dim

Jordan cell of the lowest eigenvalue for H



Logarithmic lattice models (the centralizer) Read–Saleur, 2007

We have to exploit the symmetry algebra.

• Decomposition over the full symmetry algebra ZTL is usually easier to study

than for the “hamiltonian densities” algebra TLN(m).

Our strategy is then:

(1) to start with a decomposition of spin-chains over ZTL on indecomposable

direct summands which are technically tilting modules;

(2) then, studying all homomorphisms (intertw. operators) between the tilting

modules gives module structure over the algebra TL (a direct sum of its

projective modules).

(3) multiplicities in front of tilting ZTL-modules give dimensions of simple TL-

modules.



Read–Saleur, 2007

Open case for the gl(1|1) model (or XX model) — finite chain with N = 8

TL8 acts in the vertical direction,

Uisℓ(2) acts in the horizontal way.



The full space of states is a bimodule over TLN(0) ⊗ Uisℓ(2)

• the spin-states are organized into indecomposables for TLN(0) (or Uisℓ(2))

• with nondiag. action of the hamiltonian H (or the Casimir operator)

What is going on with such a structure when the scaling

limit is taken?



Read–Saleur, 2007

Projective TL-modules and staggered Vir-modules

(j)
◦

(j−1)
◦

(j+1)
•

(j)
•

N→∞
−−−−−−−→

hj,1
◦

hj−1,1
◦

hj+1,1
•

hj,1
•

TL-projectives go over to

staggered modules for chiral Virasoro



Read–Saleur, 2007

Open case for the gl(1|1) model (q = i, c = −2) — scaling limit N → ∞

Symplectic fermions theory with c = −2

S =
∫
d2zJαβ∂µΦα∂µΦβ



Read–Saleur, 2007

Open case for the gl(1|1) model (q = i, c = −2) — scaling limit N → ∞

Virasoro Vir1,2 acts in vertical direction,

Uisℓ(2) acts in the horizontal way.



Read–Saleur, 2007

Open case for the gl(1|1) model (q = i, c = −2) — scaling limit N → ∞

Screening construction gives

the centralizer for chiral Virasoro

[Vir1,p, Uqsℓ(2)] = 0 (BFGT, 2009).



Open case for the sl(2|1) model (q = eiπ/3, c = 0) — scaling limit N → ∞

• The full symmetry algebra ZTL(1) is Morita-equivalent to Uqsℓ(2) (the same

module structure but different dimensions for simples)

Virasoro Vir2,3 acts in vertical direction,

ZTL(1) acts in the horizontal way.



Open case for the sl(2|1) model (q = eiπ/3, c = 0) — scaling limit N → ∞

• In a paper of Vasseur–Jacobsen–Saleur-2011, the indecomposibility parameter 〈T |t〉 = b was measured in the

sl(2|1) chain using the Koo–Saleur formula with the result b = −5/8, as expected for boundary 2D percolation.

Virasoro Vir2,3 acts in vertical direction,
ZTL(1) acts in the horizontal way.



How to extend this approach for

description of bulk LCFTs?



How to extend this approach for

description of bulk LCFTs?

Consider periodic gl(1|1) and sl(2|1)

spin-chains and their scaling limit.



The periodic gl(1|1) spin-chain

The closed (periodic) spin-chain is obtained simply by adding a coupling between

the sites with j = 2L and j = 1, that is by adding a generator

e2L = (f2L + f1)(f
†
2L + f †

1),

which corresponds to the periodic boundary condition f
(†)
2L+1 = f

(†)
1 on the fermions.

The critical hamiltonian for our model is then expressed as

H =

2L∑

j=1

ej

We have now a translation symmetry for H given by operator u : j → j + 2.



The periodic gl(1|1) model and affine TL

The set of 2L generators ej, j = 1, . . . , 2L, with the translation operator u,

satisfy affine TL algebra T̂LN(m) relations:

e2
j = mej, ejej±1ej = ej

ejek = ekej, (j 6= k, k ± 1),

ueju
−1 = ej+2

(with m = 0) where now the indices have to be interpreted cyclically.

• The periodic gl(1|1) spin chain provides a non-faithful representation of the

affine TL algbera T̂LN(0) ≡ T̂LN .



The periodic gl(1|1) and a twisted closed XX-model

The gl(1|1) model is equivalent to a twisted XX spin chain. The expression of

the TL generators in this case is well known

eXX
j =

1

2

[
σx

j σ
x
j+1 + σy

jσ
y
j+1 + i(σz

j − σz
j+1)

]
, 1 6 j 6N,

with twisted boundary conditions

σ±
N+1 = −(−1)S

z

σ±
1 , Sz =

1

2

N∑

j=1

σz
j

Then

ej = i(−1)jeXX
j



The periodic gl(1|1) model and the centralizer Z
T̂L(0)

GRS, 2011

While the gl(1|1) symmetry remains, being generated by F(1), F †
(1), and Sz, the

‘bosonic’ sℓ(2) generators F(2) and F †
(2) do not commute with the action of

T̂LN(0). We have only an odd (or fermionic) subalgebra of ZTL(0) generates the

centralizer of T̂LN(0), with n > 0,

F(2n+1) =
∑

1 6 j1<j2< ...
... <j2n+1 6 2L

fj1fj2 . . . fj2n+1,

F †
(2n+1) =

∑

1 6 j1<j2< ...
... <j2n+1 6 2L

f †
j1
f †

j2
. . . f †

j2n+1
,

Sz =
∑

1 6 j 6 2L

(−1)jf †
j fj − L,



Definition of Uodd
q

sℓ(2) (with q = i) GRS, 2011

Uodd
q

sℓ(2) is generated by S±
n (n > 0) and Sz with the def. relations

q
Sz

S±
n q

−Sz

= qS±
n , [Sz, S±

n ] = ±(2n + 1)S±
n ,

[S+
m, S−

n ] =

min(n,m)∑

r=1

Pr(S
z)S−

n−rS
+
m−r,

[S±
m, S±

n ] = 0, (S±
m)2 = 0.

• Uodd
q

sℓ(2) is a subalgebra in Uqsℓ(2) and acts as

S+
n = F †

(2n+1), S−
n = F(2n+1).

Theorem. On the periodic gl(1|1) spin-chain, the associative algebra

Uodd

q
sℓ(2) is the centralizer of the affine Temperley–Lieb algebra T̂LN .



Representation theory of Uodd
q

sℓ(2)

• All the irreps for Uodd
q

sℓ(2) which appear as subfactors in the spin-chain are

one-dimensional and parametrized by the weights with respect to Sz and

depicted in diagrams by Xn, where −N
2 6 n 6 N

2 .

• The indecomposable Uodd
q

sℓ(2)-modules Tn are restrictions of the tilting

Uqsℓ(2)-modules P1,n that appear in open spin-chains.



Example. Decomposition over Uodd
q

sℓ(2) for N = 8

• the multiplicities (d0
1) = (14)′, (d0

2) = (14), (d0
3) = (6), and (d0

4) = (1) are

dimensions of simples for T̂LN(0).



Example. Decomposition over T̂LN for N = 8

The decomposition of the full spin-chain on 8 sites with respect to T̂LN .

where the black arrows represent the action of the open TL and the red ones –

of the last generator eN .



Decomposition over Uodd
q

sℓ(2) for N = 2L

Decomposition w.r.t. the odd quantum group Uodd
q

(sℓ(2))

H|Uodd
q sℓ(2) =

N/2⊕

n=1

(d0
n) ⊠ Tn

the multiplicities (d0
n) are dimensions of irreducibles for T̂LN .



Decomposition over T̂LN GRS, 2011

We compute EndUodd
q sℓ(2)(H) to decompose

the periodic gl(1|1) spin-chain over T̂LN for any even N .

• In particular, the subquotient structure for Sz = 0 is



Decomposition over T̂LN GRS, 2011

For any sector with j = |Sz| (with fixed number of fermions)
(d0

j )

(d0
j+1) (d0

j+1)

(d0
j+2) (d0

j+2)

(d0
j+3) (d0

j+3)

(d0
j+4) (d0

j+4) Dimensions of T̂LN simples:

d0
j,(−1)j+1 =

(
2L−2
L−j

)
−

(
2L−2

L−j−2

)



Decomposition over T̂LN GRS, 2011

For any sector with j = |Sz| (with fixed number of fermions)
(d0

j )

(d0
j+1) (d0

j+1)

(d0
j+2) (d0

j+2)

(d0
j+3) (d0

j+3)

(d0
j+4) (d0

j+4) The hamiltonian acts by Jordan

blocks of rank 2, horizontally



Spin-chain vs. Standard modules over T̂LN

(d0
j)

(d0
j+1) (d0

j+1)

(d0
j+2) (d0

j+2)

(d0
j+3) (d0

j+3)

(d0
j+4) (d0

j+4)

(d0
j)

(d0
j+1) (d0

j+1)

(d0
j+2) (d0

j+2)

(d0
j+3) (d0

j+3)

(d0
j+4) (d0

j+4)

structure of the cell (standard)

modules at q = i

structure of the spin-chain

modules at q = i

The arrows in red have been flipped w.r.t. the structure of the standard modules.



Bimodule over the pair (T̂LN , Uodd
q

sℓ(2)) GRS, 2011

T̂ LN

U odd
q

sℓ(2)

1
32

0−1−2−3

The action of T̂LN is depicted by vertical arrows

The action of Uodd
q

sℓ(2) is shown by dotted horizontal lines.



The full space of states is a bimodule over T̂LN(0) ⊗ Uodd
q

sℓ(2)

• the states are organized into indecomposables for Uodd
q

sℓ(2) (or T̂LN(0))

• with nodiag. action of the Casimir operator (or the hamiltonian H)

What is going on with such a structure when the scaling

limit is taken?



Scaling limit N → ∞ GRS, 2011

• ground state ↔ |0〉;

• low-lying excitations ↔ many-particles states in Fock spaces;

• correspondence between generating spectrum algebras:

(periodic)Temperley–Lieb ↔ Virasoro (+ Virasoro)

Fourier modes (1) N

π

∑
k e

ikn
π

N ek
leading

−−−−−→
asymptotic

Virasoro
(
Ln + L̄−n

)

(2) N

π

∑
k e

ikn
π

N [ek, ek+1] −→
(
Ln − L̄−n

)

— non-chiral Virasoro with the central charge c = −2

in the symplectic-fermions representation



Scaling limit N → ∞ GRS, 2011

• Decomposition of bulk sympl. ferm. over Vir and Vir

is consistent with the limit of T̂L(0) spin-chain modules

(0)

F
(0)
1,1 F

(0)
1,1

F
(0)
2,−1 F

(0)
2,−1

F
(0)
3,1 F

(0)
3,1

F
(0)
4,−1 F

(0)
4,−1

F
(0)
j,(−1)j+1 =

∑∗
j1,j2>0 χj1,1χj2,1, where the

sum is done with the constraints:

|j1 − j2| + 1 6 j, j1 + j2 − 1 > j,

j1 + j2 − 1 = jmod 2



Scaling limit N → ∞ GRS, 2011

• Scaling limit of first irrdeucible subquotients F
(0)
j,(−1)j+1

(0)

F
(0)
1,1 F

(0)
1,1

F
(0)
2,−1 F

(0)
2,−1

F
(0)
3,1 F

(0)
3,1

F
(0)
4,−1 F

(0)
4,−1

F
(0)
0,−1 = 0

F
(0)
1,1 =

∑∞
r=1 χr1χ̄r1

F
(0)
2,−1 =

∑∞
r=1 χr1 (χ̄r−1,1 + χ̄r+1,1)

F
(0)
3,1 = χ21 (χ̄21 + χ̄41)

+
∑∞

r=3 χr1 (χ̄r−2,1 + χ̄r1 + χ̄r+2,1)

. . .



Symmetry algebra for non-chiral Virasoro

It turns out that centralizer for the non-chiral Virasoro is bigger than Uodd
q

sℓ(2):

• a lattice analogue of Kausch’s global sℓ(2) does not commute with T̂LN(0).

This sl(2) symmetry ‘splits’ the block Fj,(−1)j into sectors with isospins k >
j
2.

How are the indecomposable spin-chain modules

decomposed (splitted) onto modules for Vir ⊗ Vir?



Splitting of T̂L-modules into left-right Virasoro

F
(0)
1,1 F

(0)
1,1

F
(0)
2,−1 F

(0)
2,−1

F
(0)
3,1

It is decomposed over Vir ⊗ Vir into the direct sum (over all integer isospins)

X1,1 ⊠ X̄1,1 X1,1 ⊠ X̄1,1

X1,1 ⊠ X̄2,1 X2,1 ⊠ X̄1,1

X2,1 ⊠ X̄2,1

⊕

X2,1 ⊠ X̄2,1 X2,1 ⊠ X̄2,1

X2,1 ⊠
`

X̄3,1 ⊕ X̄1,1

´ `

X1,1 ⊕ X3,1

´

⊠ X̄2,1

X1,1 ⊠ X̄3,1 ⊕X3,1 ⊠
`

X̄1,1 ⊕ X̄3,1

´

⊕X2,1 ⊠ X̄4,1

⊕ . . .



Vacuum sector for left and right Virasoro GRS, 2011

V(2)

V(2)

1̄ 2̄ 3̄ 4̄ 5̄

3

4

5

1

2

V(2)

V(2)

1̄ 2̄ 3̄ 4̄ 5̄

1

2

5

3

4

Module structure over Vir ⊗ Vir for the vacuum sector

(with zero sℓ(2)-isospin) on the left diagram

while the right one is for the doublet-sector 1/2-isospin.



Isospin-1 sector for left and right Virasoro GRS, 2011

V(2)

V(2)

1̄ 2̄ 3̄ 4̄ 5̄

1

2

3

4

5

Node (n̄, n′) = (∆n′,1, ∆̄n̄,1).



Conclusion for periodic gl(1|1) spin-chain and the limit of T̂L(0)

In the scaling limit, an indecomposable module for the T̂L(0) algebra splits

into an infinite sum of indecomposable representations under the product of

the left and right Virasoro algebra.

The (full) scaling limit of the T̂L(0) algebra is thus should be bigger than the

product Vir ⊗ Vir. Indeed, there exist additional fields in the bulk that generate

the limit of T̂L(0)! These bulk fields ‘link’ infinitely many indecomposables for

Vir ⊗ Vir into one indecomposable of the same structure as we found from

the lattice analysis. The theory is still non-rational in the sense we have

infinitely-many primaries but the limit of T̂L(0) gives a good organinzing

principle for bulk fields.



sl(2|1) periodic spin-chain (q = eiπ/3)
Adding a coupling e2L between j = 2L and j = 1 tensorands and introducing the
translational operator u : j → j + 2, as we did for the gl(1|1) case, we obtain a

faithful representation of the T̂LN(m = 1) and the decomposition

HN = T0,q2 ⊕ 8T1,1 ⊕ 22T2,1 ⊕ 24T2,−1 ⊕ 112T3,1 ⊕ 75T3,q±2 ⊕ . . . .

where the weights (j, P ) of indecomposable direct summands correspond to 2j

strings and the pseudomomentum P = e2iπj/l, 1 6 l 6 j, of u on the strings.

T0,q2 :

(2, 1) rank-2

(3, q2) (0, q2) (3, q−2)

(2, 1)

The vacuum sector: the model has unique vacuum living in (0, q2),

the ‘energy-momentum’ state |T 〉 and its logarithmic partner |t〉

living in (2, 1) subquotients.

In a paper of VGJS-2011, the indecomposibility parameter 〈T |t〉 = b

was measured with the result b = −5



sl(2|1) periodic spin-chain (q = eiπ/3)

There are Jordan cells for H of rank 3

T2,1 :

(4, 1) rank-3

(3, q2) (3, q−2)

(4, 1) (2, 1) (4, 1)

(3, q2) (3, q−2)

(4, 1)



sl(2|1) periodic spin-chain (q = eiπ/3)

There are Jordan cells for H of rank 4!

T3,q2 :

(7, 1) rank-4

(6, q2) (6, q−2)

(7, 1) (4, 1) (5, 1) (7, 1)

(6, q2) (6, q−2) (3, q2) (6, q−2) (6, q2)

(7, 1) (4, 1) (5, 1) (7, 1)

(6, q2) (6, q−2)

(7, 1)



Thank You!


