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Integer quantum Hall effect 

• Two-dimensional electron gas 
 

• Strong magnetic field, low temperature 
 

• Hall resistance shows plateaus 
 
 
 
 

• Longitudinal resistance shows peaks 
  separated by insulating valleys 
 
• Transitions between the plateaus –  
  unsolved problem K. v. Klitzing, Rev. Mod. Phys. 56 (1986) 
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IQH and localization in strong magnetic field 

• Single electron in a magnetic field and a random potential 
 
 
 

 
• Without disorder: Landau levels  
 
 
 
 

• Disorder broadens the levels  
   and localizes most states 
 
 
• Extended states near       (green) 
 

 
• Transition between QH plateaus upon varying        or 
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• Localization length diverges 
    
• Critical phenomenon, example of Anderson transition –  
  quantum phase transition driven by disorder 
 

• Universal scaling with temperature, current, frequency, and system size 

Critical scaling near IQH plateau transition 

H. P. Wei et al., PRL 61 (1988) 
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• Goals for a theory of the transition: 
 

- Critical exponents 
- Scaling functions 
- Correlation functions at the transition 

 
 
 

• No analytical description of the critical region so far 
 
 
• Conformal invariance at the transition in 2D should help 
 
 

• Plenty of numerical results (confirming conformal invariance) 
 

Theory of IQH plateau transition 
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• New approach using ideas of stochastic conformal geometry 
 

• Conformal restriction and Schramm-Loewner evolution (SLE): 
  spectacular and powerful recent mathematical tools 

 
 

• These ideas were applied to non-random classical statistical mechanics  
  but seemed useless for disordered and/or quantum systems 
 
 
• We show how to apply them to Anderson transitions including IQH  
  plateau transition 

Our approach 
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• We consider point contact conductances (PCC) within  
  the Chalker-Coddington network model 
 
 

• Map average PCC to a classical problem 
 
 

• Establish crucial restriction property 
 
 

• Assume conformal invariance in the continuum limit  
  and obtain PCC in systems with various boundary conditions 

Our approach 
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• Obtained from semi-classical drifting orbits in smooth potential 
 
 
 
 
 
 
 
 
 
 
 
 

• Fluxes (currents) on links, scattering at nodes 
 

• The model is designed to describe transport properties 

Chalker-Coddington network model 

J. T. Chalker, P. D. Coddington, 1988 
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Boundary conditions 

• Reflecting (right) • Reflecting (left) 

• Absorbing: boundary nodes are the same as in the bulk 
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Boundary condition changes 

• Reflecting (right or left) to absorbing 
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Boundary PCC and boundary conditions 

• Absorbing • Reflecting (left or right) 

• Mixed 
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Chalker-Coddington network model 

• States of the system specified by 
 

           the number of links 
 
• Evolution (discrete time) specified by a random 
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• Choice of disorder 
 
 

 
 

• Extreme limits 
 
 
 
 
 
 
 
 
 
 
 

• Critical point at  

Chalker-Coddington network model 

Quantum Hall Insulator 

IHP, Paris, November 2nd, 2011 



Chalker-Coddington network model 

• Graphical representation of propagator as a sum over (Feynman) paths 
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PCC and mapping to a classical problem 

E. Bettelheim, IAG, A. W. W. Ludwig, 2010 

• Average point contact conductance (PCC) 
 
 
 
 
 
•             are intrinsic positive weights of “pictures” 
 
 

• This representation is valid at and away from the critical point  
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• Picture is obtained by “forgetting” the order in which links are traversed 
 
 
 
 
 
 
 
 
 
 

 
 
• We know how to enumerate paths giving rise to a picture 
 

• Detailed analysis of the weights             may lead to a complete solution 
 

• We try to go to continuum directly using restriction property  

Pictures and paths 
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• Truncated version of the CC model 
 
• Equivalent to keeping pictures with  
 

• In this case the weights simplify 
   
  where             is the number of links in the picture      and                                
 
                            is the number of distinct paths leading to the picture 
 
 
• This model, as well as “higher” truncations with 
  satisfy the restriction property  
 
• O(1) model in class D can be treated in the same way.  
  Its minimal truncation leads to the same model as Ikhlef et al.  

Pictures in a truncated model 
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Stochastic geometry and conformal invariance 

• Schramm-Loewner evolution 
 

• Precise geometric description of classical conformally-invariant 
  2D systems  
 

• Complementary to conformal field theory (CFT) 
 

• Focuses on extended random geometric objects: cluster boundaries 
 
 
 
 
 
 
 
 
 
 
 

• Powerful analytic and computational tool 
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Stochastic geometry and conformal invariance 

• SLE does not seem to apply to our case 
 
 

• Pictures are neither lines nor clusters in a local model 
 
 

•            corresponds to CFT with 
 
 

 
 
 

• CFTs for Anderson transitions in 2D  
  should have 
 
• Not enough for all 2D Anderson transitions and other              theories 
 
 

• Appropriate stochastic/geometric notion is conformal restriction  
 (closely related to              ) 
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Conformal restriction 

• Consider an ensemble of curves     in a domain        
  and a subset                 “attached” to boundary of  
 
 

• From ensemble of curves       in                 
  we can get an ensemble in              in two ways: 
 
     - conditioning (keep only curves in the subset) 
 

     - conformal transformation  
 
 
• If the two ways give the same result, the ensemble is said to satisfy 

  conformal restriction 
 
• Essentially, any intrinsic probability measure on curves satisfies restriction 

G. Lawler, O. Schramm, W. Werner, 2003 
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Restriction measures 

• More general sets than curves satisfying conformal restriction 
 

• (Filled in) Brownian excursions, self-avoiding random walks,  
  conditioned percolation hulls  
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Restriction exponent 

• Consider the probability that a sample from  
  a restriction measure avoids a set 
 
• Collection of these probabilities for all possible 
  completely specifies the restriction measure 
                                           
• Main result (LSW): these probabilities are 
 
 
 

 
 
 

• General construction using reflected  
   Brownian motions 
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Restriction measures and SLE 

• Statistics of a restriction measure is fully determined by the statistics 
   of its boundaries 
 

• Boundary of a restriction measure is a variant of SLE:  
 
 
 
 
 

• CFT interpretation:                         is obtained by the simple fusion  
 

  of             (that creates an                trace) with an auxiliary operator 
 

  whose Coulomb charge  
 
•      is the weight of a primary operator with charge  
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IQH transition and restriction 

• Weights of pictures             are intrinsic: their ensemble satisfies  
  restriction property with respect to absorbing boundaries 
 
 

• Assume conformal invariance, then can use conformal restriction theory 
 
 

• Current insertions create pictures, and are primary CFT operators 
 
 

• Important to know their scaling dimensions 
 
 

• Explicit analytical results for average PCC with various boundaries 

E. Bettelheim, IAG, A. W. W. Ludwig, 2010 

IHP, Paris, November 2nd, 2011 



Boundary operators and dimensions 
E. Bettelheim, IAG, A. W. W. Ludwig, 2010 
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• Dimensions known numerically S. Bera, F. Evers, H. Obuse, in progress 

(exact ?) 



Boundary operators and dimensions 
E. Bettelheim, IAG, A. W. W. Ludwig, 2010 
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(exact) 

• Dimensions known numerically S. Bera, F. Evers, H. Obuse, in progress 



Explicit exact results for PCC 
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• Case A: two-point PCC 
 

 
• Case B: change in the PCC upon perturbing the boundary near   



• Current insertion at absorbing boundary 
 
• Forcing the current to pass through a boundary point: stress energy  
 

  tensor and             with   
 
• Current insertion at a twist in reflecting boundary 
 

• “Lift-off” points                  
 

• Consequence: boundary condition change 
 
 
 

• PCC with reflecting interval 

Superuniversal weights 
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More complicated PCC 
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• Use external wires A and B 
 

• Consider a particular combination        of  
 

  conductances with and without these wires,  
 

  so that the point X corresponds to  
 

 
• This combination satisfies 
 
 
 
 
 
 
 

• Choice of solution depends on the model 



Other systems and conformal restriction 

• Same approach applies to other disordered systems in 2D: 
 
    - Spin QH transition where we have an exact mapping to 2D percolation 
       
 
 
 

         In this case all the dimensions are known analytically 
     
    - The classical limit of CC model (diffusion in strong magnetic fields) 
 
 
    - Metal in class D 
 
 
 
 

 In these cases all the dimensions are known analytically  
 in terms of the Hall angle  
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Conclusions and future directions 

• Conformal restriction: a new exact analytical approach  
   to quantum Hall transitions 
 
 

• Other boundary conditions and (degenerate) operators 
 

 
 
 
 
 
 
 
 
 
 
 

• Numerical studies  
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Conclusions and future directions 

• Conformal restriction in the bulk: bulk-boundary and bulk-bulk PCCs 
 
 

• “Massive” (off-critical) restriction: exponent       and scaling functions 
 
 

• Other Anderson transitions and disordered systems 
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