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1. The Chalker-Coddington

model



1.1.

Integer Quantum Hall Effect

B e 2D electron gas in strong transverse B.

RS e Disordered electric potential V.
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\ e Neglect interactions = single-particle.
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Conductivity plateaux :




1.2. Landau-level picture
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» Single e™ in disordered potential Vs and transverse B
» Chemical potential 1 || B||
» Disorder = broadened Landau levels



1.3. Real-space picture, plateau transition
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» Inside Landau band :
> e~ “trapped” in potential wells
» Wavefunction % is localised
» Exponential decay of correlations 1(0)*¢(r)® ~ exp(—r/§)

» At critical energy E. :

Typical e~ trajectories become very long

Meet many saddle points of Vi;s

Wavefunction ) is delocalised

Algebraic decay of correlations 1(0)*t)(r)> ~ r=2Xa

vV vy VvVvYy



1.4. The Chalker-Coddington model

Potential landscape Lattice model

Definition of network model :
» One-parameter (E = ) scaling
> Discrete wavefunction [1)) = " _vele)
» Edges (~ equipotential lines) — random phases {exp(ip.)}
> Vertices (~ saddle points) — 2 X 2 scattering matrix S



» Time-evolution operator :

u= 11 1> exp(ier) Sje |ej)(er]

v
vertex v et ej{

» Scattering matrix :

€2 eh
, , S cosA —sinA
€ [ el €2 == .
: ! sin\  cos
e1 e}

even sites odd sites

» Parameter A controls plateau transition (analogous to p)
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1.5. SUSY lattice path-integral

» Action [b(e)= complex Gaussian var.]

A= > > exp(ier) Sje b(€j)"b(er)

v
vertex v el—’ef

» Green's function

6(e'e) = (€] (1~ Uy ) — L DELET(e)0Ne) exp AL

[[Db] exp A[b]

» Use Grassmann {f(e)} :

/ [Df] exp A[f] = < / [Db] exp A[b]> -

= G(e,e) = /[Db][Df] b*(e')b(e) exp(A[b] + A[f])



1.6. Correlation functions

» Mean squared Green's function :
6. = [DhialiDAz] (Bib2)(e) (Babi)(e)
x exp(A[b1] + A[A] + A*[b2] + A*[f])
» 2N-point correlation function :
Gonl(er, ... eyler,...en) =
N N
[ pbialD [ (biea)(e) [ (bub3)en)
j=1 =1
x exp(A[b1] + A[A] + A*[b2] + A*[f])

» Question : CFT for the Gop ?



1.7. Relation to Logarithmic CFT

» CC model= {path integral with loop weight n = 0

n — 0 replicas of the pure model

» J. Cardy’s argument [cond-mat/9911024]
These n — 0 limits include correlators of the form

(D(r)D(0)) o r *(log r +...)
together with a ‘partner’
(C(D(0)) oc r=2, (C(r)C(0)) =0

(for replicas, C := ) _E, and D := E,)

> Expect the CFT for {Gon} to be a LCFT !



2. Exactly solvable truncated
model



2.1. Truncation scheme

» {b(e)}=bosons = lattice paths for G,y are in infinite
number!
» Existing schemes [Kondev, Marston, Tsai, Zirnbauer, 90's]
» Equivalent spin chain

H=VaV'®  -oVeV"

V, V* infinite-dim. (Fock-space) repr. of g/(2|2)

» Truncate V, V* in sectors of the SUSY charges Qap

» = series of non-critical, SUSY spin chains

» Observe numerically convergence to IQHE

» Our scheme

» Truncate path integral = well-defined loop model

» Fine-tune Boltzmann weights = series of critical, integrable
loop models

» Identify corresponding CFTs



2.2. Truncation to a loop model
» Path integral
» Generic factor in A[b] :

x K2
ekble) blee)  — 1 4 Kb(e)*b(er) + 7[b(ej)*b(eg)]2 +...

= e---® + e—e + e—=e -+ ...
> Keep only two first terms [e*b(e)"b(e)] =1 4 Kb(e;)*b(er)

» Average on the p(e)
= { edges of forward path } = { edges of backward path }

» Resulting n = 0 loop model
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! Via v e N/

ZlOOp = Z t#t(c) uf&ul(c) . X#X(C) X n#loops(C)
config. C



2.3. Two-colour algebras and the BWM algebra

» Single Temperley-Lieb algebra {e;}

2

ej =neg, €€j+16 = €
> Baxterisation : n= —2cos20, R;(u):= Si"(ztnlz)zgl__;)i"” =1
Ri()Ria(u+ VIR(Y) = Ria (R (u+ )Ry (u)
R(u)Ri(~u) = 1

» Braiding limit
¥ bibi11b; = bi1b;b;
+._ B jPj+1bj) J+185j+1
b_j = Rj(iIOO) = { bj_bj_ _ bj_bj_ -1
» Double-TL algebra TL @ TL contains the
Birman-Wenzl-Murakami braid-monoid algebra :

Ei=e®e, Bjj[::bji@)bji



2.4. Integrable two-colour loop model

» OQur two-colour loop model is based on two copies of the
dilute TL algebra : dTL ® dTL

» For dTL generators g; € {ej, bjr, b, 1j, . .} apply the same
trick : Gj := g ® gj

» The G; generate the dilute BWM algebra

» dBMW was Baxterised in [Grimm-Warnaar, '95] :

n = —2cos20

t = —cos(2¢ — 36) — cos 50 + cos 36 + cos 0
up = —2sin20sin(¢ — 30)
up = 2sin20singp

v = x=2sinpsin(y — 30)
wi = 2sin(¢ — 20)sin(¢ — 30)
wy = 2singsin(p —0)



3. Results on the loop model



3.1. Conformal Field Theory at roots of unity

» Two types of critical regimes :

> regime | : loop flavours are decoupled — (Coulomb Gas)?
> regime Il : loop flavours are coupled

» Roots of unity :

n=—(q+q, q:e’%, k=1,23...

» In the coupled regime :

» CFT: W coset WZW model

» Central charge : ¢ = Wlfkﬂ)
» Energy dimension : X7 = ,f—fl

» Question : Analytic continuation for k — 07



3.2. Numerical study of truncated model

» Method = exact transfer-matrix diagonalisation

central charge X1
3 : : : 2.5 T T T
L=4 -«
95 L=46 - 9l L=6 «
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0/m 0/
» For k > 1: c and X7 match coset-CFT prediction
» At k=0:

» ¢ =0, as expected in disordered critical model

» Energy dimension X1 ~ 0.29 < fractal dim. of path df ~ 1.71

» “One-leg” exponent Xg, = 0 (proba. conservation in original
CC model)



3.3. Correlation-length exponent

» Off-critical CC model

©p 4 4 pt+alp—al pt+a
N N N N N N
¢ @ @ - p—alptalp—a
N N N N N N
® ® ® ptalp—alpta
D I I I I
CCat A=A, CCat M # A
homogeneous loop model staggered loop model

» Correlation length & ~ |a|™"

» Numerical result estimate : v ~ 1.1



3.4. Relation between Xt and v

» Effective massive Hamiltonian
Het(n) = Herit + " Hpert
» Scaling law
§o<|0/|1/yT = d—XT:£

r is constant on the critical line (when n is varied)

» Exactly solvable point : n =1 (free fermions)
mﬁmzly:/dx@w@w+amaxa%Ww)

» Throughout the coupled critical regime :

2-Xr=2

v




3.5. Summary

v

Defined integrable critical loop model

v

At roots of unity (n = —2cos (), identifed CFT :

W WZW coset model

v

At n = 0, loop model = truncation of the CC model

v

Fractal dimension of loops df >~ 1.71

v

Correlation-length exponent v ~ 1.1, scaling relation
2-Xr=2

v

v

A bit far from voc ~ 2.34...



3.6. Discussion : higher-order truncations
» Average on random phases ﬁ imposes on every edge :
Np, + Nf, = Np; + Ny
» Possible terms on a given edge (m=1,2,3,...) :
L bPHABSTIR) B(BTTIR), BTTIALS, bbS

» Truncated models : D = 4p + 1 terms per edge

param. space

oozt CC=QHE
*’/*’/r//
/,//
.
5 9 13 s~ D

% = our critical truncation

non-critical truncation (Marston,Kondev, Tsai ~ '96)



Perspectives

v

Full CFT spectrum form Bethe-Ansatz solution

» k — 0 limit : log-CFT features?

v

Relation to a super-spin chain?

v

Higher-order truncations : fusion of dBMW integrable model



Thank you for your attention !
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