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1. The Chalker-Coddington

model



1.1. Integer Quantum Hall Effect

Vdis

~B • 2D electron gas in strong transverse ~B.

• Disordered electric potential Vdis.

• Neglect interactions ⇒ single-particle.

Conductivity plateaux :



1.2. Landau-level picture

Ec2

E

Ec1µ

◮ Single e− in disordered potential Vdis and transverse ~B

◮ Chemical potential µ ∝ ‖~B‖

◮ Disorder ⇒ broadened Landau levels



1.3. Real-space picture, plateau transition

V

xEc

Landau band

◮ Inside Landau band :
◮ e− “trapped” in potential wells
◮ Wavefunction ψ is localised
◮ Exponential decay of correlations ψ(0)αψ(r)α ∼ exp(−r/ξ)

◮ At critical energy Ec :
◮ Typical e− trajectories become very long
◮ Meet many saddle points of Vdis

◮ Wavefunction ψ is delocalised
◮ Algebraic decay of correlations ψ(0)αψ(r)α ∼ r−2Xα



1.4. The Chalker-Coddington model

Potential landscape Lattice model
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Definition of network model :

◮ One-parameter (E = µ) scaling

◮ Discrete wavefunction |ψ〉 =
∑

e ψe |e〉

◮ Edges (∼ equipotential lines) → random phases {exp(iϕe)}

◮ Vertices (∼ saddle points) → 2 × 2 scattering matrix S



◮ Time-evolution operator :

U =
∏

vertex v







∑

eℓ

v
→e′

j

exp(iϕe′
j
) Sjℓ |e

′
j 〉〈eℓ|







◮ Scattering matrix :

even sites odd sites

e2

e′1e′2

e1

e′2

e′1

e1 e2 S =

(

cos λ − sinλ
sinλ cos λ

)

◮ Parameter λ controls plateau transition (analogous to µ)
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1.5. SUSY lattice path-integral

◮ Action [b(e)= complex Gaussian var.]

A[b] =
∑

vertex v

∑

eℓ

v
→e′

j

exp(iϕe′
j
) Sjℓ b(e′j )

∗b(eℓ)

◮ Green’s function

G (e′, e) := 〈e′| (1 − U)−1 |e〉 =

∫

[Db] b∗(e′)b(e) expA[b]
∫

[Db] expA[b]

◮ Use Grassmann {f (e)} :

∫

[Df ] expA[f ] =

(
∫

[Db] expA[b]

)−1

⇒ G (e′, e) =

∫

[Db][Df ] b∗(e′)b(e) exp(A[b] + A[f ])



1.6. Correlation functions

◮ Mean squared Green’s function :

∣

∣G (e′, e)
∣

∣

2
=

∫

[Db1,2][Df1,2] (b∗
1b2)(e

′) (b1b
∗
2)(e)

× exp(A[b1] + A[f1] + A∗[b2] + A∗[f2])

◮ 2N-point correlation function :

G2N(e′1, . . . e
′
N |e1, . . . eN) :=

∫

[Db1,2][Df1,2]

N
∏

j=1

(b∗
1b2)(e

′
j )

N
∏

ℓ=1

(b1b
∗
2)(eℓ)

× exp(A[b1] + A[f1] + A∗[b2] + A∗[f2])

◮ Question : CFT for the G2N ?



1.7. Relation to Logarithmic CFT

◮ CC model=

{

path integral with loop weight n = 0

n → 0 replicas of the pure model

◮ J. Cardy’s argument [cond-mat/9911024]
These n → 0 limits include correlators of the form

〈D(r)D(0)〉 ∝ r−2x(log r + . . . )

together with a ‘partner’

〈C (r)D(0)〉 ∝ r−2x , 〈C (r)C (0)〉 = 0

(for replicas, C :=
∑

a Ea and D := Ea)

◮ Expect the CFT for {G2N} to be a LCFT !



2. Exactly solvable truncated

model



2.1. Truncation scheme

◮ {b(e)}=bosons ⇒ lattice paths for G2N are in infinite
number !

◮ Existing schemes [Kondev, Marston, Tsai, Zirnbauer, 90’s]
◮ Equivalent spin chain

H = V ⊗ V ∗ ⊗ · · · ⊗ V ⊗ V ∗

V ,V ∗ infinite-dim. (Fock-space) repr. of gl(2|2)
◮ Truncate V ,V ∗ in sectors of the SUSY charges Qab

◮ ⇒ series of non-critical, SUSY spin chains
◮ Observe numerically convergence to IQHE

◮ Our scheme
◮ Truncate path integral ⇒ well-defined loop model
◮ Fine-tune Boltzmann weights ⇒ series of critical, integrable

loop models
◮ Identify corresponding CFTs



2.2. Truncation to a loop model

◮ Path integral
◮ Generic factor in A[b] :

eKb(ej )
∗b(eℓ) = 1 + Kb(ej)

∗b(eℓ) +
K 2

2
[b(ej)

∗b(eℓ)]
2 + . . .

= • · · · • + • → • + • ⇉ • + . . .

◮ Keep only two first terms
[

eKb(ej )
∗b(eℓ)

]

tr
:= 1 + Kb(ej)

∗b(eℓ)
◮ Average on the ϕ(e)

⇒ { edges of forward path } = { edges of backward path }

◮ Resulting n = 0 loop model

t

u1 u2 v

w1 w2

x

Zloop =
∑

config. C

t#t(C)u
#u1(C)
1 . . . x#x(C) × n#loops(C)



2.3. Two-colour algebras and the BWM algebra

◮ Single Temperley-Lieb algebra {ej}

e2
j = n ej , ejej±1ej = ej

◮ Baxterisation : n = −2 cos 2θ, Řj(u) :=
sin(2θ−u) 1−sinu ej

sin(2θ−u)

{

Řj(u)Řj+1(u + v)Řj(v) = Řj+1(v)Řj (u + v)Řj+1(u)

Řj(u)Řj(−u) = 1

◮ Braiding limit

b±
j := Řj(±i∞) ⇒

{

bjbj+1bj = bj+1bjbj+1

b+
j b−

j = b−
j b+

j = 1

◮ Double-TL algebra TL ⊗ TL contains the
Birman-Wenzl-Murakami braid-monoid algebra :

Ej := ej ⊗ ej , B±
j := b±

j ⊗ b±
j



2.4. Integrable two-colour loop model

◮ Our two-colour loop model is based on two copies of the
dilute TL algebra : dTL ⊗ dTL

◮ For dTL generators gj ∈ {ej , b
+
j , b

−
j , Ij , . . .} apply the same

trick : Gj := gj ⊗ gj

◮ The Gj generate the dilute BWM algebra

◮ dBMW was Baxterised in [Grimm-Warnaar, ’95] :

n = −2 cos 2θ
t = − cos(2ϕ− 3θ) − cos 5θ + cos 3θ + cos θ

u1 = −2 sin 2θ sin(ϕ− 3θ)
u2 = 2 sin 2θ sinϕ
v = x = 2 sinϕ sin(ϕ− 3θ)

w1 = 2 sin(ϕ− 2θ) sin(ϕ− 3θ)
w2 = 2 sinϕ sin(ϕ− θ)



3. Results on the loop model



3.1. Conformal Field Theory at roots of unity

◮ Two types of critical regimes :
◮ regime I : loop flavours are decoupled → (Coulomb Gas)2

◮ regime II : loop flavours are coupled

◮ Roots of unity :

n = −(q + q−1) , q = e
iπ

k+2 , k = 1, 2, 3 . . .

◮ In the coupled regime :

◮ CFT : SU(2)k×SU(2)k

SU(2)2k
coset WZW model

◮ Central charge : c = 3k2

(k+1)(k+2)

◮ Energy dimension : XT = 2k2

k+1

◮ Question : Analytic continuation for k → 0 ?



3.2. Numerical study of truncated model

◮ Method = exact transfer-matrix diagonalisation

◮

central charge XT

L = 12, 14
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◮ For k ≥ 1 : c and XT match coset-CFT prediction

◮ At k = 0 :
◮ c = 0, as expected in disordered critical model
◮ Energy dimension XT ≃ 0.29 ↔ fractal dim. of path df ≃ 1.71
◮ “One-leg” exponent XG2 = 0 (proba. conservation in original

CC model)



3.3. Correlation-length exponent

◮ Off-critical CC model

ϕ ϕ+ α

ϕ− α

ϕ+ α ϕ− α

ϕ+ α

ϕ− α ϕ+ α

ϕ− α

ϕ+ α

ϕ ϕ

ϕϕϕ

ϕ ϕ ϕ

CC at λ = λc CC at λ 6= λc

homogeneous loop model staggered loop model

◮ Correlation length ξ ∼ |α|−ν

◮ Numerical result estimate : ν ≃ 1.1



3.4. Relation between XT and ν

◮ Effective massive Hamiltonian

Heff (n) = Hcrit + αr Hpert

◮ Scaling law

ξ ∝ |αr |1/yT ⇒ d − XT =
r

ν

r is constant on the critical line (when n is varied)

◮ Exactly solvable point : n = 1 (free fermions)

Heff(n = 1) =

∫

dx
(

iΨ†∂xΨ + const × α2 Ψ†Ψ
)

◮ Throughout the coupled critical regime :

2 − XT = 2

ν



3.5. Summary

◮ Defined integrable critical loop model

◮ At roots of unity (n = −2 cos π
k+2 ), identifed CFT :

SU(2)k×SU(2)k
SU(2)2k

WZW coset model

◮ At n = 0, loop model ≡ truncation of the CC model

◮ Fractal dimension of loops df ≃ 1.71

◮ Correlation-length exponent ν ≃ 1.1, scaling relation
2 − XT = 2

ν

◮ A bit far from νCC ≃ 2.34...



3.6. Discussion : higher-order truncations

◮ Average on random phases (. . . ) imposes on every edge :

Nb1
+ Nf1 = Nb∗

2
+ Nf ∗2

◮ Possible terms on a given edge (m = 1, 2, 3, . . . ) :

1, bm−1
1 f1(b

m−1
2 f2)

∗, bm
1 (bm−1

2 f2)
∗, bm−1

1 f1b
m∗
2 , bm

1 bm∗
2

◮ Truncated models : D = 4p + 1 terms per edge

param. space

5 9 13 ∞

•
•

D

•

∗ ∗ ∗
∗ CC=QHE

∗ = our critical truncation
• = non-critical truncation (Marston,Kondev,Tsai ∼ ’96)



Perspectives

◮ Full CFT spectrum form Bethe-Ansatz solution

◮ k → 0 limit : log-CFT features ?

◮ Relation to a super-spin chain ?

◮ Higher-order truncations : fusion of dBMW integrable model



Thank you for your attention !
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