Anomalous dimensions for deformed supergroup WZW models

Thomas Quella

University of Cologne

IHP Program on Advanced Conformal Field Theory

Workshop on Logarithmic CFT and Representation Theory, 5.10.2011

Based on work with T. Creutzig, G. Götz, A. Konechny, V. Mitev and V. Schomerus (in various combinations).

For a recent review see "Conformal superspace σ -models", J.Geom.Phys. 61 (2011) 1703-1716 (not on the arXiv).

Geometrical QFTs: σ -models and their Applications

σ -models in a nutshell

World-sheet

2D surface (w/wo boundaries or handles)

Target space

(Pseudo-)Riemannian manifold (extra structure: gauge fields, ...)

σ -models = (quantum) field theories

Adding supersymmetry...

Appearances of superspace σ -models

String theory

- Quantization of strings in flux backgrounds
- String theory / gauge theory correspondence
- Moduli stabilization in string phenomenology

Disordered systems

- Quantum Hall systems
- Self avoiding random walks, polymer physics, ...
- Efetov's supersymmetry trick

Conformal invariance

- String theory: Diffeomorphism + Weyl invariance
- Statistical physics: Critical points / 2nd order phase transitions

[KKLT] [...]

Supergroups and supercosets

Two important classes

- Supergroups
- Supercosets

Outline of the talk

Outline of this talk

Supergroup WZW models and their deformations

- Harmonic analysis on supergroups G
- Free fermion resolution
- Deformations preserving G and $G \times G$

The compactified free boson and its dualities

(a) Supercoset σ -models

- Overview & Applications
- Conformal invariance

A particular example

- Supersphere σ -models
- Duality with deformed supergroup WZW models

Supergroup WZW models

Supergroup WZW models: A lightning review

Ingredients

- Lie supergroup G, based on simple Lie superalgebra $\mathfrak{g} = \mathfrak{g}_{\underline{0}} \oplus \mathfrak{g}_{\underline{1}}$
- Non-degenerate invariant form $\langle \cdot, \cdot \rangle$ (normalized)
- The level $k \in \mathbb{Z}$, corresponding to

$$m{k}\omega_{ ext{top}}(g) \;=\; m{k}ig\langle g^{-1}dg, [g^{-1}dg, g^{-1}dg]ig
angle \in H_3(G)\cong \mathbb{Z}$$

Action functional

$$S^{WZW}[g] = kS_{metric}[g] + kS_{top}[g]$$

Supergroup WZW models: Solution strategy

Symmetry

Isometry
$$G \times G \implies \begin{cases} \text{Affine Lie superalgebra } J(z), \ \overline{J}(\overline{z}) \\ J^{\mu}(z) \ J^{\nu}(w) = \frac{k\kappa^{\mu\nu}}{(z-w)^2} + \frac{if^{\mu\nu}{\lambda} \ J^{\lambda}(w)}{z-w} \end{cases}$$

Solving the supergroup WZW model

Supergeometry & Harmonic analysis

Laplacian non-diagonalizable Non-chiral state space

[Schomerus,Saleur'05] [Götz,TQ,Schomerus'06] [Saleur,Schomerus'06] [TQ,Schomerus'07]

Step by step

- \bullet Some relevant modules of ${\mathfrak g}$
- The algebra of functions on G
- Harmonic analysis
- Lift to the affine Lie superalgebra

List of relevant modules

- Simple modules \mathcal{L}_{μ}
- Kac modules \mathcal{K}_{μ}
- Projective covers \mathcal{P}_{μ}
- Projective modules \mathcal{B}_{μ}

Realization: Projective modules

 \bullet As an induced module from $\mathfrak{g}_{\underline{0}}$ using all fermionic generators

$$\mathcal{B}_{\mu} \;=\; \mathsf{Ind}_{\mathfrak{g}_{\underline{\mathfrak{o}}}}^{\mathfrak{g}}(L_{\mu}) \; o\; L_{\mu}\otimes \bigwedge(\mathfrak{g}_{\underline{1}})$$

List of relevant modules

- Simple modules \mathcal{L}_{μ}
- Kac modules \mathcal{K}_{μ}
- Projective covers \mathcal{P}_{μ}
- Projective modules \mathcal{B}_{μ}

Realization: Projective covers

• As indecomposable submodule of \mathcal{B}_{μ}

$$\mathcal{B}_{\mu} = \bigoplus m_{\mu\nu} \mathcal{P}_{\nu}$$

• By Frobenius reciprocity, the multiplicity satisfies

$$m_{\mu
u} = \dim \operatorname{Hom}_{\mathfrak{g}}(\mathcal{B}_{\mu}, \mathcal{L}_{
u}) = \dim \operatorname{Hom}_{\mathfrak{g}_0}(L_{\mu}, \mathcal{L}_{
u}|_{\mathfrak{g}_0})$$

List of relevant modules

- Simple modules \mathcal{L}_{μ}
- Kac modules \mathcal{K}_{μ}
- Projective covers \mathcal{P}_{μ}
- Projective modules \mathcal{B}_{μ}

Realization: Kac modules

- Rather complicated in general
- In case of \mathbb{Z}_2 -compatible \mathbb{Z} -grading localized in *three* degrees:

$$\mathfrak{g} = \mathfrak{g}_{\underline{0}} \oplus \mathfrak{g}_{\underline{1}} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$$
 ("type I")

one simply induces using half of the fermionic generators

$$\mathcal{K}_{\mu} = \operatorname{Ind}_{\mathfrak{g}_{0}\oplus\mathfrak{g}_{1}}^{\mathfrak{g}}(L_{\mu}) \rightarrow L_{\mu}\otimes \bigwedge(\mathfrak{g}_{-1})$$

List of relevant modules

- Simple modules \mathcal{L}_{μ}
- Kac modules \mathcal{K}_{μ}
- Projective covers \mathcal{P}_{μ}
- Projective modules \mathcal{B}_{μ}

Realization: Simple modules

- As (possibly trivial) quotients of Kac modules \mathcal{K}_{μ} or projective covers \mathcal{P}_{μ} by their unique maximal submodule
- Typical: $\mathcal{L}_{\mu} \cong \mathcal{P}_{\mu}$
- Atypical: otherwise

The algebra of functions on supergroups

The algebra of functions on G

- Definition: $\mathcal{F}(G) = \mathcal{F}(G_0) \otimes \bigwedge(\mathfrak{g}_{\underline{1}}^*)$
- Action of $\mathfrak{g} \oplus \mathfrak{g}$

Decomposition

• Peter-Weyl Theorem for G_0

$$\mathcal{F}(G_0)\big|_{\mathfrak{g}_0\oplus\mathfrak{g}_0} = \bigoplus L_\mu\otimes L_\mu^*$$

This induces

$$\begin{aligned} \mathcal{F}(G)\big|_{\mathfrak{g}_{0}\oplus\mathfrak{g}} &= \bigoplus L_{\mu}\otimes\left(L_{\mu}\otimes\bigwedge(\mathfrak{g}_{\underline{1}}\right)^{*} = \bigoplus L_{\mu}\otimes\mathcal{B}_{\mu}^{*} \\ &= \bigoplus m_{\mu\nu}\,L_{\mu}\otimes\mathcal{P}_{\nu}^{*} = \bigoplus \mathcal{L}_{\nu}|_{\mathfrak{g}_{0}}\otimes\mathcal{P}_{\nu}^{*} \end{aligned}$$

Peter-Weyl Theorem for supergroups

Peter-Weyl Theorem for supergroups

• Left-right regular action

$$\mathcal{F}(\mathsf{G})igert_{\mathfrak{g}\oplus\mathfrak{g}} \;=\; igoplus_{\mu} \operatorname{typ} \mathcal{L}_{\mu}\otimes \mathcal{L}_{\mu}^{*}\oplus igoplus_{[\sigma]} \operatorname{atyp} \mathcal{I}_{[\sigma]}$$

Restriction to either left or right action yields

$$\mathcal{F}(\mathcal{G})\big|_{\mathfrak{g}} \;=\; igoplus_{\mu} \operatorname{\mathsf{typ}} \operatorname{\mathsf{dim}}(\mathcal{L}^*_{\mu}) \, \mathcal{L}_{\mu} \oplus igoplus_{\sigma \; \operatorname{\mathsf{atyp}}} \operatorname{\mathsf{dim}}(\mathcal{L}^*_{\sigma}) \, \mathcal{P}_{\sigma}$$

• Laplacian Δ is not diagonalizable on the spaces $\mathcal{I}_{[\sigma]}$

["Common lore"] [TQ,Schomerus'07] [Mitev,TQ,Schomerus'11]

Relevant representations

The space of functions $\mathcal{F}(GL(1|1))$

The space of functions $\mathcal{F}(\mathsf{GL}(1|1))$

In the typical sectors one finds the spectrum

The space of functions $\mathcal{F}(\mathsf{GL}(1|1))$

In the typical sectors one finds the spectrum

Thomas Quella (University of Cologne) Deformed supergroup WZW models

The space of functions $\mathcal{F}(\mathsf{GL}(1|1))$

In the atypical sectors of the WZW model, however, one obtains

Thomas Quella (University of Cologne) Deformed supergroup WZW models

Relevant representations

The space of functions $\mathcal{F}(\mathsf{GL}(1|1))$

In the atypical sectors of the WZW model, however, one obtains

Thomas Quella (University of Cologne)

Lift to the full WZW model

Free fermion resolution (type I only)

Bosonic WZW model on G_0 Supergroup WZW model on $G = \begin{cases} \text{Symplectic fermions } (\rightarrow \mathfrak{g}_{\pm 1}) \\ \text{Interactions} \end{cases}$

[Schomerus, Saleur'05] [Götz, TQ, Schomerus'06] [Saleur, Schomerus'06] [TQ, Schomerus'07]

Comparison with standard free field constructions

	Standard	Here
Grading	$\mathfrak{g}=\mathfrak{h}\oplus igoplus\mathfrak{g}_lpha$	$\mathfrak{g}=\mathfrak{g}_1\oplus\mathfrak{g}_0\oplus\mathfrak{g}_{-1}$
Gauss decomposition	$\exp(X^+) t \exp(X^-)$	$\exp(F^+)g_0 \exp(F^-)$

Deformations of supergroup WZW models

Deformation operator

Observation

Supergroup WZW models with vanishing Killing form possess non-standard marginal deformations [Bershadsky,Vaintrob,Zhukov]

Marginal deformations of supergroup WZW models

Full supersymmetry $G \times G$: Diagonal supersymmetry G:

$$S_{def} = \int \langle J, Ad_g (\overline{J} S_{def}) \rangle$$

 $S_{def} = \int \langle J, \overline{J} \rangle$

Data

Field	$J^{\mu}(z)$	$\bar{J}^{ u}(\bar{z})$	$Ad_{g} \to : \phi_{\mu\nu}(g(z,\overline{z})):$	$\operatorname{Ad}_g(\bar{J})$
Representation	(ad, 0)	(0, ad)	(ad,ad)	(ad, 0)
Dimension (h, \bar{h})	(1,0)	(0, 1)	(0,0)	(0,1)

Deformation operator

Observation

Supergroup WZW models with vanishing Killing form possess non-standard marginal deformations [Bershadsky,Vaintrob,Zhukov]

Marginal deformations of supergroup WZW models

Full supersymmetry $G \times G$: Diagonal supersymmetry G:

$$\mathcal{S}_{def} = \int \langle J, Ad_g(\bar{J}) \rangle$$

 $\mathcal{S}_{def} = \int \langle J, \bar{J} \rangle$

Data

Field	$J^\mu \bar{J}_\mu$	$: J^{\mu}\phi_{\mu u}\mathbf{ar{J}}^{ u}:$
Representation	(ad, ad)	(0,0)
Dimension (h, \bar{h})	(1, 1)	(1,1)

The moduli space of supergroup σ -models

Action functional

$$S^{WZW}[g] = f S_{metric}[g] + k S_{top}$$

The β -function vanishes identically...

Ingredients:Invariant metric: $\kappa^{\mu\nu}$ Structure constants: $f^{\mu\nu\lambda}$

The β -function vanishes identically...

The β -function vanishes identically...

There is a unique invariant rank 3 tensor!

[Bershadsky,Zhukov,Vaintrob'99] [Babichenko'06]

The β -function vanishes identically...

There is a unique invariant rank 3 tensor!

[Bershadsky, Zhukov, Vaintrob'99] [Babichenko'06]

How to deal with deformed supergroup WZW models?

- Quasi-abelian perturbation theory
 - → This talk [Bershadsky,Zhukov,Vaintrob] [TQ,Schomerus,Creutzig] [Mitev,TQ,Schomerus] [Konechny,TQ]
- Non-chiral current algebras
 - \rightarrow Troost's talk

[Ashok,Benichou,Troost] [Benichou,Troost] [Konechny,TQ]

U(1) WZW models

The compactified free boson

Free boson theories R_0^2/R R_0 R_0

Two lessons

- There is an equivalence: $R \leftrightarrow R_0^2/R$ ("T-duality")
- In the quantum regime geometry starts to loose its meaning

The compactified free boson

Free boson theories

An open string partition function

$$Z_{\rm op}(q,z|R) = \operatorname{tr}\left[z^{\rm P} q^{\operatorname{Energy}(R)}\right] = \frac{1}{\eta(q)} \sum_{w \in \mathbb{Z}} z^w q^{\frac{w^2}{2R^2}}$$

Goals of the remaining talk

Next steps

- Tackle supercoset σ -models
- Employ deformations of supergroup WZW models
- Use quasi-abelian perturbation theory, i.e. reduce calculations to the free boson case

Supercosets

String backgrounds as supercosets...

Minkowski	$AdS_5 imes S^5$	$AdS_4\times \mathbb{CP}^3$	$AdS_2 imes S^2$
super-Poincaré Lorentz	$\frac{PSU(2,2 4)}{SO(1,4)\timesSO(5)}$	$\frac{OSP(6 2,2)}{U(3)\timesSO(1,3)}$	$\frac{PSU(1,1 2)}{U(1)\timesU(1)}$

[Metsaev, Tseytlin] [Berkovits, Bershadsky, Hauer, Zhukov, Zwiebach] [Arutyunov, Frolov]

Supercosets in statistical physics...

IQHE	Dense polymers	Dense polymers
(non-conformal)	$S^{2S+1 2S}$	$\mathbb{CP}^{S-1 S}$
$rac{{ m U}(1,1 2)}{{ m U}(1 1) imes { m U}(1 1)}$	$rac{ ext{OSP}(2S+2 2S)}{ ext{OSP}(2S+1 2S)}$	$rac{U(S S)}{U(1) imes U(S-1 S)}$

[Weidenmüller] [Zirnbauer]

[Read,Saleur] [Candu,Jacobsen,Read,Saleur]

A unifying construction

Definition of the cosets

$$G/H$$
: $gh \sim g$

Some additional requirements for conformal invariance

- $H \subset G$ is invariant subgroup under an automorphism
- Ricci flatness ("super Calabi-Yau") ⇔ vanishing Killing form

Examples: Cosets of PSU(N|N), OSP(2S + 2|2S), D($2, 1; \alpha$).

For complete list, see [Candu, Creutzig, Mitev, Schomerus]

Properties of conformal supercoset models

Integrability

[Kagan, Young] [Babichenko] [Candu, Creutzig, Mitev, Schomerus]

[Pohlmeyer] [Lüscher] ... [Bena, Polchinski, Roiban] [Young]

Properties of conformal supercoset models

The general open string partition function

$$Z(q, z|R) = \operatorname{tr}\left[z^{\operatorname{Cartan}} q^{\operatorname{Energy}(R)}\right] = \sum_{\Lambda} \underbrace{\psi_{\Lambda}(q, R)}_{\operatorname{Dynamics}} \underbrace{\chi_{\Lambda}(z)}_{\operatorname{Symmetry}}$$

Supersphere σ -Models

The supersphere $S^{3|2}$

Realization of $S^{3|2}$ as a submanifold of flat superspace $\mathbb{R}^{4|2}$

$$ec{X} = \begin{pmatrix} ec{x} \\ \eta_1 \\ \eta_2 \end{pmatrix}$$
 with $ec{X}^2 = ec{x}^2 + 2\eta_1\eta_2 = R^2$

OSP(4|2)

Symmetry

$$O(4) \times SP(2) \xrightarrow{super-symmetrization}$$

Realization as a supercoset

$$S^{3|2} = \frac{OSP(4|2)}{OSP(3|2)}$$

The supersphere σ -model

Action functional

$$\mathcal{S}_{\sigma} = \int \partial_{\mu} ec{X} \cdot \partial^{\mu} ec{X}$$
 with $ec{X}^2 = R^2$

The space of states for freely moving open strings

$$\prod X^{a_i} \prod \partial_t X^{b_j} \prod \partial_t^2 X^{c_k} \cdots \qquad \text{and} \qquad \vec{X}^2 = R$$

 \Rightarrow Products of coordinate fields and their derivatives

Large volume partition function

- $\bullet~$ "Single particle energies" add up $\rightarrow~\#$ derivatives
- Partition function is pure combinatorics

[Candu,Saleur] [Mitev,TQ,Schomerus]

2

Sketch of the large volume partition function

Sketch of the large volume partition function

A Duality for

Supersphere σ -Models

A world-sheet duality for superspheres?

Interpolation of an open string spectrum

In the two extreme limits the spectrum has the form

Evidence for the duality

[Candu,Saleur]² [Mitev,TQ,Schomerus]

Evidence for the duality

Goal:
$$Z_{\text{GN}}(q, z|g^2) = \sum_{\Lambda} \psi^{\sigma}_{\Lambda}(q, g^2) \chi_{\Lambda}(z)$$

[Candu,Saleur] [Mitev,TQ,Schomerus]

OSP(4|2) Gross-Neveu Model

The OSP(4|2) Gross-Neveu model

Field content

- Fundamental OSP(4|2)-multiplet ($\psi_1, \psi_2, \psi_3, \psi_4, \beta, \gamma$)
- All these fields have scaling dimension 1/2

Formulation as a Gross-Neveu model

$$S_{\rm GN} = S_{\rm free} + g^2 S_{\rm int} \begin{cases} S_{\rm free} = \int [\psi \bar{\partial} \psi + \beta \bar{\partial} \gamma + h.c.] \\ S_{\rm int} = \int [\psi \bar{\psi} + \beta \bar{\gamma} - \gamma \bar{\beta}]^2 \end{cases}$$

Goal:
$$Z_{GN}(q, z|g^2)$$

Weak coupling Strong coupling

Formulation as a deformed OSP(4|2) WZW model

$$\mathcal{S}_{\sf GN} = \mathcal{S}_{\sf WZW} + g^2 \mathcal{S}_{\sf def}$$
 with $\mathcal{S}_{\sf def} = \int \langle J, J \rangle$

• At g = 0 there is an OSP(4|2) Kac-Moody algebra symmetry

$$\mathsf{J}^{\mu}(z)\,\mathsf{J}^{\nu}(w) = \frac{k\,\kappa^{\mu\nu}}{(z-w)^2} + \frac{if^{\mu\nu}{}_{\lambda}\mathsf{J}^{\lambda}(w)}{z-w}$$

• Partition functions can be constructed using combinatorics

An open string partition function for g = 0

$$Z_{\rm GN}(g^2 = 0) = \sum_{\Lambda} \underbrace{\psi_{\Lambda}^{\rm WZW}(q)}_{\rm energy levels OSP(4|2) content} \underbrace{\chi_{\Lambda}(z)}_{\rm content}$$

r

Formulation as a deformed OSP(4|2) WZW model

$$\mathcal{S}_{\mathsf{GN}} \;=\; \mathcal{S}_{\mathsf{WZW}} + g^2 \, \mathcal{S}_{\mathsf{def}} \qquad ext{ with } \qquad \mathcal{S}_{\mathsf{def}} \;=\; \int \left\langle \, \mathsf{J}, ar{\mathsf{J}}
ight
angle$$

Solution at g = 0

• At g = 0 there is an OSP(4|2) Kac-Moody algebra symmetry

$$\mathsf{J}^{\mu}(z)\,\mathsf{J}^{\nu}(w) = \frac{k\,\kappa^{\mu\nu}}{(z-w)^2} + \frac{if^{\mu\nu}{}_{\lambda}\mathsf{J}^{\lambda}(w)}{z-w}$$

Partition functions can be constructed using combinatorics

An open string partition function for all
$$g$$

$$Z_{\rm GN}(g^2) = \sum_{\Lambda} \underbrace{q^{-\frac{1}{2}\frac{g^2}{1+g^2}C_{\Lambda}}}_{\rm anomalous \ dimension \ energy \ levels \ OSP(4|2) \ content} \underbrace{\chi_{\Lambda}(z)}_{\chi_{\Lambda}(z)}$$

An annulus partition function

Specific boundary conditions in the OSP(4|2) WZW model...

For a certain class of open strings one obtains

$$Z_{\rm GN}(g^2=0) = \underbrace{\chi_{\{0\}}(q,z)}_{\rm vacuum} + \underbrace{\chi_{\{1/2\}}(q,z)}_{\rm fundamental}$$

The problem (yet again...)

Organize this into representations of OSP(4|2)!

What did we achieve now?

Interpolation of the spectrum

Quasi-abelian Deformations

Radius deformation of the free boson revisited

Consider a deformation...

$$\underbrace{R_0} \longrightarrow \underbrace{R} \qquad R = R_0 \sqrt{1+\gamma}$$

Freely moving open strings on a circle of radius R...

$$Z(q, z | R) = \frac{1}{\eta(q)} \sum_{w \in \mathbb{Z}} z^w q^{\frac{w^2}{2R^2}} = \frac{1}{\eta(q)} \sum_{w \in \mathbb{Z}} q^{\frac{w^2}{2R_0^2(1+\gamma)}} \chi_w(z)$$

Anomalous dimensions

$$\delta_{\gamma} E_{w} = \frac{w^{2}}{2R_{0}^{2}} \left[\frac{1}{1+\gamma} - 1 \right] = -\frac{\gamma}{1+\gamma} \frac{w^{2}}{2R_{0}^{2}} = -\frac{\gamma}{1+\gamma} C_{2}(w)$$

Quasi-abelianness of supergroup WZW theories

The effective deformation for conformal dimensions

 The combinatorics of the perturbation series is determined by the current algebra

$$\mathsf{J}^{\mu}(z)\,\mathsf{J}^{\nu}(w) = \frac{k\,\kappa^{\mu\nu}}{(z-w)^2} + \frac{if^{\mu\nu}{}_{\lambda}\mathsf{J}^{\lambda}(w)}{z-w} \sim \frac{k\,\kappa^{\mu\nu}}{(z-w)^2}$$

 Vanishing Killing form ⇒ the perturbation is quasi-abelian (for the purposes of calculating anomalous dimensions)

[Bershadsky,Zhukov,Vaintrob] [TQ,Schomerus,Creutzig]

• In the OSP(4|2) WZW model a representation Λ shifts by

$$\delta E_{\Lambda}(g^2) = -\frac{1}{2} \frac{g^2 C_{\Lambda}}{1+g^2}$$

Conclusions

Conclusions and Outlook

Conclusions

- Supergroup WZW models and its deformations provide interesting geometric examples of logarithmic CFTs
- Using supersymmetry we determined the full spectrum of anomalous scaling dimensions for certain annulus partition functions in Gross-Neveu models as a function of the moduli
- Our results provided strong evidence for a duality between supersphere σ -models and Gross-Neveu models

Outlook

- Conformal invariance \leftrightarrow Integrability
- Correlation functions?
- Application to other geometries and phenomena...