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Lattice Approaches to (Logarithmic) CFT

Rational minimal models (BPZ & ABF 1984)

M(p, p′); (p, p′) = 1, 1 < p < p′

Conventional lattice approach to CFT

local
degrees of
freedom

⇒
symmetric
transfer
matrices

⇒
diagonalizable

transfer
matrices

⇒ L0 is
diagonalizable

⇒ rational
CFT

Logarithmic CFT (Knizhnik 1987, Rozansky-Saleur 1992, Gurarie 1993,
essentially everyone
present here today!

)

• The Virasoro mode L0 is non-diagonalizable and exhibits non-trivial Jordan blocks.

Paradigm shift in lattice approach

logarithmic
CFT

⇒ non-local
degrees of freedom

• Statistical systems with non-local degrees of freedom are associated with Logarithmic

CFTs. Examples are critical dense polymers and critical percolation.

Logarithmic minimal models (Pearce-Rasmussen-Zuber 2006)

LM(p, p′); (p, p′) = 1, 1 ≤ p < p′

Other lattice approaches to logarithmic CFT (Mahieu-Ruelle 2001, Read-Saleur 2007)

• Abelian sandpile model, quantum spin chains, ...
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Logarithmic Minimal Models LM(p, p′)

Face operators defined in planar Temperley-Lieb algebra (Jones 1999)

X(u) = u =
sin(λ− u)

sinλ
+

sinu

sinλ
; Xj(u) =

sin(λ− u)

sinλ
I +

sinu

sinλ
ej

1 ≤ p < p′ coprime integers, λ =
(p′ − p)π

p′
= crossing parameter

u = spectral parameter, β = 2cosλ = fugacity of loops

Planar Algebra

(Temperley-Lieb Algebra)

YBE

Nonlocal Statistical Mechanics

(Yang-Baxter Integrable Link Models)

continuum
limit

lattice
realization

Logarithmic CFTs

(Logarithmic Minimal Models)

• Non-local degrees of freedom (connectivities)

• Inf. families of integrable boundary conditions

• Transfer matrices act on spaces of link states
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Trilogy and Central Questions

Theory M(p, p′) LM(p, p′) WLM(p, p′)

Degrees of
freedom

local heights non-local loops
non-local loops

with infinitely thick
boundary conditions

p = 1 M(1, p′) = ∅ LM(1,2):
crit. dense
polymers

WLM(1,2):
triplet
model

p > 1 Baxter-Forrester RSOS LM(p, p′) LM(p, p′) with
W-boundaries

CFT content
c = 1− 6(p− p′)2

pp′

finite # irred reps

c = 1− 6(p− p′)2

pp′

infinite # indec reps

c = 1− 6(p− p′)2

pp′

finite sets of W-indec reps

Central Questions:

• To what extent do W-extended logarithmic minimal models WLM(p, p′) resemble
rational CFTs?

• For example, is there a Verlinde-like formula?

• Are the W-extended logarithmic minimal models WLM(p, p′) classified by graphs?

• If so, is it the same graphs describing the bulk and boundary theories?

• Considering that ceff = 1 for the logarithmic minimal models,

does the c = 1 compactified boson play a role in their description?
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Projective Representations in WLM(p, p′)
Representations associated with boundary conditions

There are 2pp′ W-projective representations associated with boundary conditions

R̂r,s
κp,κ′p′, κ, κ′ = 1,2; 0 ≤ r ≤ p− 1, 0 ≤ s ≤ p′ − 1

This notation assumes that

R̂r,s
2p,p′ = R̂r,s

p,2p′, R̂r,s
2p,2p′ = R̂r,s

p,p′, R̂0,0
p,p′ = W(∆p,p′), R̂0,0

2p,p′ = W(∆2p,p′)

and for later convenience, we extend it by

R̂p,s
p,p′ ≡ R̂0,s

p,2p′, R̂r,p′
p,p′ ≡ R̂r,0

2p,p′, R̂p,p′
p,p′ ≡ R̂0,0

2p,2p′ ≡ R̂0,0
p,p′

Rank of a W-projective representation

rank(R̂r,s
κp,κ′p′) = dr,s − ⌊dr,s4 ⌋

where the degree dr,s is defined by

dr,s = d
(p)
r d

(p′)
s = (2− δ

(p)
r,0 )(2− δ

(p′)
s,0 ), δ

(N)
m,n =







1, m = n mod N

0, otherwise

• In summary

#[Proj] = 2pp′,



















#[rank 1] = 2

#[rank 2] = 2(p+ p′ − 2)

#[rank 3] = 2(p− 1)(p′ − 1)

• W-extension believed to be w.r.t. Wp,p′ of Feigin-Gainutdinov-Semikhatov-Tipunin (2006).
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W-Projective Fusion Algebra

R̂r,s
κp,p′ ⊗ R̂r′,s′

p,κ′p′ =
dr,sdr′,s′

4







{ p−|r−r′|−1
⊕

r′′
⊕

|p−r−r′|−1
⊕

r′′

}{ p′−|s−s′|−1
⊕

s′′
⊕

|p′−s−s′|−1
⊕

s′′

}

R̂r′′,s′′
κp,κ′p′

⊕
{ p−|p−r−r′|−1

⊕

r′′
⊕

|r−r′|−1
⊕

r′′

}{ p′−|p′−s−s′|−1
⊕

s′′
⊕

|s−s′|−1
⊕

s′′

}

R̂r′′,s′′
κp,κ′p′

⊕
{ p−|r−r′|−1

⊕

r′′
⊕

|p−r−r′|−1
⊕

r′′

}{ p′−|p′−s−s′|−1
⊕

s′′
⊕

|s−s′|−1
⊕

s′′

}

R̂r′′,s′′
κp,(2·κ′)p′

⊕
{ p−|p−r−r′|−1

⊕

r′′
⊕

|r−r′|−1
⊕

r′′

}{ p′−|s−s′|−1
⊕

s′′
⊕

|p′−s−s′|−1
⊕

s′′

}

R̂r′′,s′′
κp,(2·κ′)p′







where 1 · 1 = 2 · 2 = 1, 2 · 1 = 1 · 2 = 2 and

N
⊕

n
Rn =

N
⊕

n=ǫ(N),by 2

Rn, ǫ(N) = 1
2(1− (−1)N) = N (mod 2)

• This fusion algebra does not contain an identity but is both associative and commutative

and, despite appearances, the multiplicities are all non-negative integers.

0-6



W-Projective Grothendieck Group

Projective characters [ℓ = 0,1]

χ
[

R̂0,0
(ℓ+1)p,p′

]

(q) =
1

η(q)

∑

k∈Z
q(2k+ℓ)2pp′/4

χ
[

R̂a,0
(ℓ+1)p,p′

]

(q) =
2

η(q)

∑

k∈Z
q(a+(2k+ℓ)p)2p′/4p

χ
[

R̂0,b
p,(ℓ+1)p′

]

(q) =
2

η(q)

∑

k∈Z
q(b+(2k+ℓ)p′)2p/4p′

χ[R̂a,b
(ℓ+1)p,p′](q) =

2

η(q)

∑

k∈Z

[

q(ap
′−bp+(2k+ℓ)pp′)2/4pp′+ q(ap

′+bp+(2k+ℓ)pp′)2/4pp′
]

• The number of linearly independent W-projective characters is given by

1
2(p+1)(p′ +1)

Projective Grothendieck generators

Gr,s = [R̂r,s
p,p′], Gr,s = Gp−r,p′−s, 0 ≤ r ≤ p , 0 ≤ s ≤ p′

• Such an equivalence class is uniquely characterized by the conformal weight

∆r,s = ∆p−r,p′−s =
(p′r − ps)2 − (p− p′)2

4pp′
, 0 ≤ r ≤ p , 0 ≤ s ≤ p′

• The projective Grothendieck generators can be organized into a Kac table with a Z2 Kac-

table symmetry.

0-7



Kac Tables of Critical Percolation LM(2,3)/WLM(2,3)

...
...

...
...

...
... . . .

12
65
8 5

21
8 1

1
8

· · ·

28
3

143
24

10
3

35
24

1
3

− 1
24

· · ·

7
33
8 2

5
8 0

1
8

· · ·

5
21
8 1

1
8 0

5
8

· · ·

10
3

35
24

1
3

− 1
24

1
3

35
24

· · ·

2
5
8 0

1
8 1

21
8

· · ·

1
1
8 0

5
8 2

33
8

· · ·

1
3

− 1
24

1
3

35
24

10
3

143
24

· · ·

0
1
8 1

21
8 5

65
8

· · ·

0
5
8 2

33
8 7

85
8

· · ·

1 2 3 4 5 6 r

1

2

3

4

5

6

7

8

9

10

s
5
8 2

33
8 7

1
8 1

21
8 5

− 1
24

1
3

35
24

10
3

W-Irreducible (Non-Minimal)

0 1 2 3 r̂

0

1

2

ŝ

5
8
,5
8

0,2

0,2
1
8
,33
8

0,1

2,7

1
8
,1
8

0,1

0,1
5
8
,21
8

0,1

2,5

− 1
24

1
3
,1
3

35
24

1
3
,10
3

Projective Covers

0 1 2 3 r̂

0

1

2

ŝ

0

0

Minimal/Projective Covers

0 1 2 r

0

1

2

3

s

35
24

1
3

− 1
24

5
8 0

1
8

1
8 0

5
8

− 1
24

1
3

35
24

Proj Grothendieck

(Bordered Minimal Kac)

0 1 2 r

0

1

2

3

s

dr,s =







degree

2rank−1
= (2− δ

(p)
r,0 )(2− δ

(p′)
s,0 ) =















1, corner (mid blue)

2, edge (light blue)

4, interior (white)

δ
(N)
m,n =







1, m = n mod N

0, otherwise
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Projective Grothendieck Ring of WLM(p, p′)

Multiplication rules

Gr,s ∗ Gr′,s′ = dr,sdr′,s′
p−ǫ(r+r′+1)

∑

r′′=ǫ(p+r+r′+1),by 2

p′−ǫ(s+s′+1)
∑

s′′=ǫ(p′+s+s′+1),by 2

Gr′′,s′′

• It follows that, up to the multiplicities dr,sdr′,s′∈{1,2,4,8,16}, there are only

two possible linear combinations of generators arising as the result of a simple

multiplication in the projective Grothendieck ring.

Conformal partition functions associated with projective boundary conditions

Z(r,s)|(r′,s′)(q) = χ[Gr,s ∗ Gr′,s′](q) =
p−ǫ(r+r′+1)

∑

r′′=ǫ(p+r+r′+1),by 2

p′−ǫ(s+s′+1)
∑

s′′=ǫ(p′+s+s′+1),by 2

dr,sdr′,s′χ[Gr′′,s′′](q)

• Here we have assigned Gr,s the common character of the representatives within its

equivalence class

χ[Gr,s](q) = χ[R̂r,s
p,p′](q)
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c=1 Compactified Boson Revisited

• The c = 1 boson on the circle of compactification radius R =
√

2p′/p, where p, p′ are
coprime integers, exhibits an extended symmetry with 2n = 2pp′ primary operators.

• The conformal weights and u(1) characters are

∆j = min

[

j2

4n
,
(2n− j)2

4n

]

, κ
n
j (q) = κ

n
2n−j(q) =

1

η(q)

∑

k∈Z
q(j+2kn)2/4n, j = 0,1, . . . ,2n

• The W-projective characters are expressible in terms of the u(1) characters

χ[Gr,s](q) = dr,sκ
n
r,s(q), κ

n
r,s(q) = 1

2

[

κ
n
rp′−sp(q) + κ

n
rp′+sp(q)

]

, 0 ≤ r ≤ p; 0 ≤ s ≤ p′

• The modular transformations and modular matrix SCirc are

κ
n
j (e

−2πi/τ) =
2n−1
∑

k=0

SCirc
jk κ

n
k(e

2πiτ), SCirc
jk =

1√
2n

e−πijk/n

• For each pair p, p′, there is a modular invariant partition function

ZCirc
p,p′ (q) =

2n−1
∑

j=0

κ
n
j (q)κ

n
ω0j

(q̄), ω0 = r0p
′ + s0p (mod 2n)

• The Bezout pair (r0, s0) and Bezout number ω0 are uniquely determined by

r0p
′ − s0p = 1, 1 ≤ r0 ≤ p− 1, 1 ≤ s0 ≤ p′ − 1, ps0 < p′r0

• The Bezout number ω0 acts as a conjugation on characters

κ
n
ω0(rp′±sp)(q) = κ

n
rp′∓sp(q), r = 0,1, . . . , p; s = 0,1, . . . , p′
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A
(2)
n Graph Fusion Algebra, I

• The c=1 boson fusion algebra is associated with the cyclic directed graph Z2n with 2n nodes

φi × φj =
2n−1
∑

k=0

Nij
kφk, Nij

k = δ
(2n)
i+j,k

where i, j, k and their sums are interpreted as integers mod 2n.

• This algebra is realized by powers of the cyclic shift matrix Ωω where ω is coprime to

2n = 2pp′ and Ω2n = I.

• Consider the composites φr + φ−r = 2cos(rϕ/
√
n), r 6= 0, n. Setting X = N1 = Ωω +Ω−ω

etc, the corresponding algebra

〈Nr = 1
2d

(n)
r (Ωrω +Ω−rω), r = 0,1, . . . , n〉

is realized by

Nr = d
(n)
r Tr(

X
2 ), 0 ≤ r ≤ n; Tn+1(

X
2 )− Tn−1(

X
2 ) = 0

where Tr(X) is the r’th Chebyshev polynomial of the first kind.

• The multiplication rules are given explicitly by

NrNr′ =
n
∑

r′′=0

Nrr′
r′′Nr′′ =

d
(n)
r d

(n)
r′

2

(

1

d
(n)
|r−r′|

N|r−r′| +
1

d
(n)
n−|n−r−r′|

Nn−|n−r−r′|
)

, 0 ≤ r, r′ ≤ n
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A
(2)
n Graph Fusion Algebra, II

Regular representation

N1 =

















0 1
2 0 1

1 ·
·

· 1
1 0 2

1 0

















= asymmetric, λ
(n)
r = 2cos

rπ

n
= eigvals, r = 0,1, . . . , n

Twisted A
(2)
n graph

• The fundamental generator X can be viewed as the adjacency matrix for the twisted affine

Dynkin diagram A
(2)
n . The latter can be obtained by folding the affine Dynkin diagram A

(1)
2n−1

with 2n nodes

0 1 2 3 4

1 1,2 1,2 1,2 1

0

1

2

3

4

5

6

7

1

1
1

1

1

1
1

1

A
(1)
2n−1

A
(2)
n

C =































2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0































A
(1)
2n−1C = CA

(2)
n

[Left/Right Perron-Frobenius eigenvectors indicated]

• 2I −NT
1 is a generalized, symmetrizable Cartan matrix. So D1/2NT

1 D−1/2 is symmetric
and A = NT

1 is similar to a real symmetric matrix with real eigenvalues and eigenvectors

D = diag(d0, d1, . . . , dn) = diag(1,2,2, . . . ,2,1), dr = ar = Coxeter labels
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Coset Graph A
(2)
p,p′

Definition [The Z2 quotient is taken with respect to the Z2 Kac-table symmetry, cf.p.0-14]

A
(2)
p,p′ = A

(2)
p ⊗ A

(2)
p′ /Z2,

1
2(p+1)(p′ +1) nodes

Eigenvalues of adjacency matrix

λp,p
′

r,s = λ
p,p′
p−r,p′−s

= 4cos
rπ

p
cos

sπ

p′
, r = 0,1, . . . , p; s = 0,1, . . . , p′

A
(2)
p,p′ graph fusion algebra [generated by 1

2(p+1)(p′ +1) matrices, where X = N1,0, Y = N0,1]

Nr,sNr′,s′ =
∑

r′′,s′′
Nrs,r′s′

r′′s′′Nr′′,s′′, Nr,s = Np−r,p′−s = dr,sTr(
X
2 )Ts(

Y
2 ), 0 ≤ r ≤ p; 0 ≤ s ≤ p′

where Tp+1(
X
2 )− Tp−1(

X
2 ) = Tp′+1(

Y
2 )− Tp′−1(

Y
2 ) = Tp(

X
2 )− Tp′(

Y
2 ) = 0.

• Explicitly

Nrs,r′s′
r′′s′′ =

dr,sdr′,s′

4dr′′,s′′

(

δr′′,|r−r′| + δr′′,p−|p−r−r′|
)(

δs′′,|s−s′| + δs′′,p′−|p′−s−s′|
)

• The coset graphs A
(2)
p,p′ are symmetrizable, with degrees

dr,s = d
(p)
r d

(p′)
s =















1, (r, s) is a corner

2, (r, s) is on an edge

4, (r, s) is in the interior

D = diag(. . . , dr,s, . . .) = graph valencies

• The ranks of projective representations are thus related (through the Coxeter labels) to

data of twisted affine Dynkin graphs.
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Projective Grothendieck Kac Tables as Coset Graphs

3
8

−1
8

0 0

−1
8

3
8

0 1 r

0

1

2

s

0

1

2

35
24

1
3

− 1
24

5
8 0

1
8

1
8 0

5
8

− 1
24

1
3

35
24

0 1 2 r

0

1

2

3

s

0

1 5

4

3

2

6

− 9
112

5
14

187
112

27
7

775
112

1
16 0

13
16

5
2

81
16

55
112

− 1
14

27
112

10
7

391
112

135
112

1
7

− 5
112

9
14

247
112

247
112

9
14

− 5
112

1
7

135
112

391
112

10
7

27
112

− 1
14

55
112

81
16

5
2

13
16 0

1
16

775
112

27
7

187
112

5
14

− 9
112

0 1 2 3 4 r

0

1

2

3

4

5

6

7

s

0 14 28

3 11 17 25

5 19 9 23

13 27 1 15

21 7

8 6 22 20

16 2 26 12

24 10 18 4
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Building Coset Graphs from A
(2)
n Graphs

• The coset graph A
(2)
p,p′ can be built from the linear A

(2)
pp′ graph by folding and gluing pairs

of nodes together. [cf.p.0-14]

Intertwining similarity relation

A
(2)
p,p′ = A

(2)
p ⊗ A

(2)
p′ /Z2 = 2CLA

(2)
pp′ CR, CLCR = I

• The intertwining matrices CL and CR are rectangular, not square. It is an intertwining

relation since the common eigenvalues of A
(2)
p,p′ and 2A

(2)
pp′ are intertwined. It is a similarity

in the sense that CL and CR are generalized inverses.

Eigenvalues of the coset graph A
(2)
p,p′

λp,p
′

r,s = 4cos
rπ

p
cos

sπ

p′
= 2cos

(rp′ − sp)π

pp′
+2cos

(rp′ + sp)π

pp′
= λ

pp′
rp′−sp

+ λ
pp
rp′+sp

• A node is labelled by a pair of Bezout conjugate integers associated to κn
k(p′−p)

(q) and

κ
n
ω0k(p′−p)

(q), k = 0,1, . . . , n = pp′, or equivalently to λ
pp′
rp′−sp

and λ
pp
rp′+sp

.

Projection

• The W-projective characters are expressible in terms of the c=1 u(1) characters [n = pp′]

χ[Gr,s](q) = dr,sκ
n
r,s(q), κ

n
r,s(q) = 1

2

[

κ
n
rp′−sp(q) + κ

n
rp′+sp(q)

]

, 0 ≤ r ≤ p; 0 ≤ s ≤ p′

• The intertwining similarity implements a change of basis to symmetric and anti-symmetric

combinations of κn
rp′−sp(q) and κn

rp′+sp(q), projecting out the anti-symmetric combinations

pp′ +1− 1
2(p− 1)(p′ − 1) = 1

2(p+1)(p′ +1)
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Verlinde Formula

• The anti-symmetric combinations are ordinary minimal Virasoro characters

chr,s(q) = κ
n
rp′−sp(q)− κ

n
rp′+sp(q)

• They do appear in the modular invariant partition functions.

Modular transformations

• The modular matrix S = Sp,p′ (S2 = I, S 6= ST) of the W-projective characters forms a

representation of the modular group. [Feigin-Gainutdinov-Semikhatov-Tipunin (2006)]

Standard Verlinde algebra

NiNj =

1
2(p+1)(p′+1)−1

∑

k=0

Nij
kNk

where i, j, k run over allowed pairs (r, s) in the projective Grothendieck Kac table, while

Nij
k = (Ni)j

k =

1
2(p+1)(p′+1)−1

∑

m=0

SimSjmSmk

S0m
∈ N0

• This is precisely the graph algebra of the twisted coset graph A
(2)
p,p′ = A

(2)
p ⊗A

(2)
p′ /Z2.

• The modular matrix diagonalizes the multiplication rules of the W-projective Grothendieck

ring.
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Conformal Partition Functions Revisited

• The conformal partition functions for W-projective boundary conditions are given by

Zi|j(q) =

1
2(p+1)(p′+1)−1

∑

k=0

Nij
k(Fχ[G])k(q)

where

F =



























∑

r, s odd

Nr,s, p+ p′ odd

∑

r+s even
s ≤ (p′−1)/2

Nr,s, p+ p′ even

acts on the column of characters χ[G] = {χ[Gr,s]}.

• Explicitly, the ‘block characters’ are

(Fχ[G])r,s(q) =

p−ǫ(r+1)
∑

r′′=ǫ(p+r+1),by 2

p′−ǫ(s+1)
∑

s′′=ǫ(p′+s+1),by 2

dr,s χ[Gr′′,s′′](q)

where ǫ is the parity

ǫ(r) = r (mod 2)
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Bulk Modular Invariants in WLM(p, p′)

Sesquilinear form in W-irreducible characters

Z =
∑

i,j∈ Irr

Mijχi(q)χj(q̄), |Irr| = 2pp′ + 1
2(p− 1)(p′ − 1)

Proposition: An S-invariant sesquilinear form in W-irreducible characters can be expressed

as a sesquilinear form in W-projective and minimal characters.

• This is equi-numerous with the linearly independent u(1) characters [c = 1, R =
√

2p′/p]

pp′ +1 = 1
2(p+1)(p′ +1)+ 1

2(p− 1)(p′ − 1)

Conjecture: A modular invariant sesquilinear form in W-projective and minimal characters

decomposes into a sum of separate modular invariant sesquilinear forms in W-projective and

minimal characters

Z = ZProj + ZMin

Evidence: Verified for all p < p′ coprime satisfying pp′ ≤ 225.
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Projective and Minimal A-Type Modular Invariants

Projective part

• Our coset graphs provide new expressions for the diagonal A-type modular invariants in

W-projective characters considered by FGST (2006) and Wood (2010)

ZProj
p,p′ (q) = 1

2

p
∑

r=0

p′
∑

s=0

dr,s |κn
r,s(q)|2 = 1

2

p
∑

r=0

p′
∑

s=0

1

dr,s

∣

∣

∣χ[Gr,s](q)
∣

∣

∣

2
=

2p−1
∑

r̂=0

p′−1
∑

ŝ=0

1

d2r̂,ŝ
|χ[P̂r̂,ŝ](q)|2

The factors of 1
2 in the first two double sums reflect the Z2 Kac-table symmetry, |κ0,0(q)|2

appears with multiplicity 1 and all multiplicities are non-negative integers.

• The modular invariance of ZProj
p,p′ (q) follows from the identities

ZProj
p,p′ (q) = 1

2

[

ZCirc
1,pp′(q) + ZCirc

p,p′ (q)
]

, ZProj
1,p′ (q) = ZCirc

1,p′ (q)

Minimal part

• The coset graphs also encode the rational minimal A-type modular invariants

ZMin
p,p′ (q) = 1

2

p−1
∑

r=1

p′−1
∑

s=1

|chr,s(q)|2 = 1
2

p
∑

r=0

p′
∑

s=0

∣

∣

∣κ
n
rp′−sp(q)− κ

n
rp′+sp(q)

∣

∣

∣

2

where the factors of 1
2 reflect a Z2 Kac-table symmetry. In terms of the c = 1 boson

ZMin
p,p′ (q) = 1

2

[

ZCirc
1,pp′(q)− ZCirc

p,p′ (q)
]

, ZMin
1,p′ (q) = 0
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A-Type WLM(p, p′) Modular Invariants

• Assuming ZProj 6= 0 and that the operator with minimal conformal weight enters exactly

once, the A-type WLM(p, p′) modular invariant partition functions must be of the form

Zp,p′(q) = ZProj
p,p′ (q) + np,p′Z

Min
p,p′ (q), np,p′ ∈ Z

• For p = 1

ZMin
1,p′ (q) = 0 ⇒ Zp,p′(q) = ZProj

p,p′ (q)

Conjecture: For p > 1, the physical modular invariants of A-type WLM(p, p′) are given by

np,p′ = 2

• Examples of modular invariant partition functions

Z1,2(q) = |κ−1
8
(q)|2 +2|κ0(q)|2 + |κ3

8
(q)|2

Z2,3(q) = |κ− 1
24
(q)|2 + |κ0(q) + κ1(q)|2 +2|κ1

8
(q)|2 +2|κ1

3
(q)|2 +2|κ5

8
(q)|2 + |κ35

24
(q)|2 +2|ch0(q)|2

Z3,4(q) = |κ− 1
48
(q)|2 + |κ0(q) + κ1(q)|2 + |κ 1

16
(q) + κ33

16
(q)|2 +2|κ1

6
(q)|2 +2|κ 5

16
(q)|2

+ |κ1
2
(q) + κ5

2
(q)|2 +2|κ35

48
(q)|2 +2|κ21

16
(q)|2 +2|κ5

3
(q)|2 + |κ143

48
(q)|2

+ 2
{

|ch0(q)|2 + |ch 1
16
(q)|2 + |ch1

2
(q)|2

}
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Supporting Evidence

• For n2,3 = 2, we recover the WLM(2,3) modular invariant partition function of Gaberdiel-

Runkel-Wood (2011).

• As in the WLM(2,3) case of GRW 2011, we find generally that for np,p′ = 2

Zp,p′(q) =
∑

i∈ Irr

χi(q)χ[Pi](q̄)

where the sum is over all W-irreducible representations. As demonstrated above, this

partition function is in fact left-right symmetric when expanded in u(1) characters.

• In terms of the c = 1 boson

Zp,p′(q) = ZCirc
1,pp′(q) + (np,p′ − 1)ZMin

p,p′ (q)

Our conjecture thus yields a minimal extension of the compactified boson ZCirc
1,pp′(q) by

adding the partition function for the rational minimal model with coefficient

np,p′ − 1 = 1

as encoded in the coset graph viewed as a folded A
(2)
pp′ graph.
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Summary and Open Questions

• Infinite series of Yang-Baxter integrable lattice models of non-local statistical mechanics.

• Description in terms of planar Temperley-Lieb algebras.

• Logarithmic CFTs with infinitely many indecomposable (higher-rank) representations.

• W-projective representations emerge as building blocks akin to the role played by irredu-

cible representations in rational CFTs.

• The W-projective Grothendieck ring leads to a standard Verlinde-like formula involving

twisted affine coset graphs.

• Compact formulas for the conformal partition functions with W-projective boundary condi-

tions.

• A-type WLM(p, p′) modular invariants encoded by twisted affine coset graphs.

• The boundary and bulk A-type logarithmic minimal models are ‘classified’ by the same

twisted affine coset graphs.

• Will an extension of Gaberdiel-Runkel-Wood for c = 0 confirm np,p′ = 2?

• A-D-E classification of the logarithmic Verlinde graph fusion algebras à la Behrend-Pearce-

Petkova-Zuber?

• A-D-E classification of the logarithmic modular invariant partition functions à la Cappelli-

Itzykson-Zuber?

• Logarithmic coset construction à la Goddard-Kent-Olive?

• D- and E-type logarithmic minimal models on the lattice?
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