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Lattice Approaches to (Logarithmic) CFT
Rational minimal models (BPZ & ABF 1984)

M(p,p'); (p,p)=1, l<p<yp

Conventional lattice approach to CFT

local symmetric diagonalizable . .
Lo is rational
degrees of = transfer = transfer = : . =
. . diagonalizable CFT
freedom matrices matrices

. . . . ; essentially everyone
Logarithmic CFT (Knizhnik 1987, Rozansky-Saleur 1992, Gurarie 1993, Sresent here tOday!)

® The Virasoro mode Lg is non-diagonalizable and exhibits non-trivial Jordan blocks.

Paradigm shift in lattice approach

logarithmic N non-local
CFT degrees of freedom

® Statistical systems with non-local degrees of freedom are associated with Logarithmic
CFTs. Examples are critical dense polymers and critical percolation.

Logarithmic minimal models (Pearce-Rasmussen-Zuber 2006)

LM(p,p); (p,p)=1, 1<p<yp

Other lattice approaches to logarithmic CFT (Mahieu-Ruelle 2001, Read-Saleur 2007)

® Abelian sandpile model, quantum spin chains, ...
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Logarithmic Minimal Models LM(p, p)

Face operators defined in planar Temperley-Lieb algebra (Jones 1999)

_ y sin(A—wu) |/ sinu . | _sin(A —u) Sinue.
X(u) = R  sin\ 7| T sinx |\ | Xj(u) = sin A ! sin\
1 < p < p’ coprime integers, A= &' ;,p)w = Crossing parameter
u = spectral parameter, B = 2cos\ = fugacity of loops
Planar Algebra
(Temperley-Lieb Algebra) /_\
YBE /@/JFDJJKD NN
AT DD
Nonlocal Statistical Mechanics AUANNAANAVANAN N4 AN 4
(Yang-Baxter Integrable Link Models) (JKJ/J/J/J/J/\\\\\K\\\D
continuum lattice \\\\/f////JKJ/JfJfJ/
limit realization

Logarithmic CFTs
(Logarithmic Minimal Models)

® Non-local degrees of freedom (connectivities)
® Inf. families of integrable boundary conditions
® Transfer matrices act on spaces of link states
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Trilogy and Central Questions

Theory M(p,p') LM(p,p') WLM(p,p)
Dedrees of non-local loops
9 local heights non-local loops with infinitely thick
freedom .
boundary conditions
. N ~ crit. dense ~ triplet
p=1 M(1,p") =10 LM(1,2): selvriers WLM(1,2): nodel
LM (p,p") with
- / 9
p>1 Baxter-Forrester RSOS LM(p,p") W-boundaries
1 _8(—p)’ —q,_6(—p)’ 1 _6(—p)’
CFT content pp/ pp/ pp/
finite # irred reps infinite # indec reps finite sets of W-indec reps

Central Questions:

® To what extent do W-extended logarithmic minimal models WLM(p,p’) resemble
rational CFTs?

® For example, is there a Verlinde-like formula?

® Are the W-extended logarithmic minimal models WL M (p,p’) classified by graphs?

® If so, is it the same graphs describing the bulk and boundary theories?

® Considering that & = 1 for the logarithmic minimal models,
does the ¢ = 1 compactified boson play a role in their description?
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Projective Representations in WL M(p, p’)

Representations associated with boundary conditions
There are 2pp’ W-projective representations associated with boundary conditions

7?:;’;7&,1),, kK =1,2; 0<r<p—1, 0<s<p -1

This notation assumes that

0,0 0,0

~T,S ~T,S . M»r,S = _ = _
Ropw = R, p2p"  Ropoy = Rpgn  Rpy = W(Ap ), Ropw = W(A2pp)
and for later convenience, we extend it by
pPs — 70,5 srp _ 57,0 p,p _ 500 _ 50,0
R p.p Rp,Qp” Rp,p’ — RQp,p” R p.p R2p,2p’ — "pp
Rank of a VW-projective representation
D) drs
raﬂk(RZ’;’&,p,) — d']"’s - L
where the degree d, s is defined by
N 1, m=mn mod N
e = el = (2 — 8@ — 559 Ao = .
0, otherwise
® In summary
([ #[rank 1] = 2
#[Proj] = 2pp/, S #lrank 2] = 2(p+p' —2)
| #[rank 3] = 2(p - 1)(p' - 1)

® )V-extension believed to be w.r.t. W, . of Feigin-Gainutdinov-Semikhatov-Tipunin (2006).
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YW-Projective Fusion Algebra

p—lr—r|=1 |p—r—r'|-1_ p/—|s—s/|-1 |p/—s—s|-1

57,8 oy dr,sdr/’s/ ! S
Rf@p,p’ & p,k'p’ T 4 EB D @ @ D EB Rfep,ﬁc’p’
,r.// ,r.// S// S//
p—lp—r—r'|=1 |r—r'|-1  p'—lp'—s—=s'|-1 [|s=s'|-1, =
~7T ,8
o @ e @} & e & R,
,r.// ,r.// 8// 8//
p—lr—r|-1  |p—r—r|-1. p—|p—s—s/|-1 |s—s/|-1
~7T ,S
2 @ e @ J © o & |G,
,r.// ,r.// S// S//
p—lp—r—r'|=1 |r—r/|-1. p—fs—s/|-1 |p'—s—s/|-1,
~ 7T ,S
:f ® e @ H B & B R,

wherel-1=2.-2=1,2-1=1-2=2 and

N

N
Dhn= D Bn
n

n=ec(N), by 2

e(N) =2(1 - (-1)") =N (mod 2)

® This fusion algebra does not contain an identity but is both associative and commutative

and, despite appearances, the multiplicities are all non-negative integers.
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YW-Projective Grothendieck Group

Projective characters [/ =0, 1]

= :ﬁ(()é?u)p,p/: (¢9) = qu) > q(Rk+0?pr' /4

X :ﬁc(béc—)u)p,p/: (¢) = % > q(at(k+0p)?p /4p

. [ﬁg,’?wl)p/} (¢) = % > o0+ (2k+0p")p/4p"

X[ﬁc(%l-l)p,p’](@ — % = [q(ap —bp+(2k+0pp)/4pr 4 q(ap’+bp—|-(2k—|—£)pp’)2/ 4pp’]

® The number of linearly independent W-projective characters is given by

s+ 1) +1)

Projective Grothendieck generators

gr,s — [7%;7;/], g’r,s — gp_r,a7p/_37 0<r<p, 0<s< p,

® Such an equivalence class is uniquely characterized by the conformal weight

(p'r —ps)? — (p—p')?
4pp/ ’ -

AT,S — Ap—’r,p’—s —

® The projective Grothendieck generators can be organized into a Kac table with a Z», Kac-

table symmetry.
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Kac Tables of Critical Percolation LM (2,3)/WLM(2,3)

5 5
i 0,2 0.1
2 5} 2 33 7 2 |22 N ESEC0
0|12 2|5 | 2] 1| 4% ° ° °° 102198127
8 8 8 ) 1 1110,1]55,]0,1
Lig |1 %3] 53 1 |58 88
o | 28 143 ] 10 | 35 | 1 |_1 i 0,1 2,5
S I I I o l—2| 2 | 38| 10 0 |—2|221] 38 {210
33 5 1 24 3 24 3 24 | 3’3 24 373
g | 7|2 |22 |01
o 1 2 3 7 o 1 2 3 7
7 |5 I 1 BEE 0 BEE - w-Irreducible (Non-Minimal) Projective Covers
6 | 0|38 | L |_1| 1 |35 | . s s
3 24 3 24 3 24
35 1 1
5220|212 3 S| 28| 3 |72
5 1
41| L]o]2|2]|2 2 £ 2 18|03
1 1 1 35 10 | 143 1 0 1 1 0 2
3| 3 | 24| 3 | 24| 3 |28 8 8
1 1 35
2lo0 |2 |1]2|5 |2 0 0 |=24| 3 | 22
5 33 85 0 1 2 T 0 1 2 T
1|02 |2 2|72 o o _ -
Minimal/Projective Covers Proj Grothendieck
1 2 3 4 5 6 T (Bordered Minimal Kac)

degree / 1, corner (mid blue)
. N
dr.s = Srank—1 = (2 — 57%70))(2 — 5&90)) = (2, edge (light blue) 57(7”2 =
4, interior (white)

1, m=n mod N
0, otherwise
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Projective Grothendieck Ring of WL M (p,p")

Multiplication rules

p—e(r+r'+1) p'—e(st+s'+1)

g?“,s o gt)"/78/ = d?“,sdr/73/ Z Z g,,J/)S//
r""=e(p+r+r'+1),by 2 s"=e(p’+s+s'+1),by2

® It follows that, up to the multiplicities dr,SdT/’S/E{1,2,4,8, 16}, there are only
two possible linear combinations of generators arising as the result of a simple
multiplication in the projective Grothendieck ring.

Conformal partition functions associated with projective boundary conditions

p—e(r+r'+1) p'—e(s+s'+1)

Z(T,s)|(r’,s’) (q) = X[Gr,s * gr/7s’](Q) — Z Z dr,SdT/78/X[gr//7S//](q)
r"=e(p+r+r'+1),by2 s'=e(p'+s+s'+1),by?2

® Here we have assighed G, s the common character of the representatives within its
equivalence class

X[gr,s] (q) = X[ﬁ;’;/] ()
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c=1 Compactified Boson Revisited

The ¢ =1 boson on the circle of compactification radius R = /2p’/p, where p,p’ are
coprime integers, exhibits an extended symmetry with 2n = 2pp’ primary operators.

The conformal weights and u(1) characters are

-2 -\ 2
- [7° (2n—j) 1 : 2 ,

A
4n 4n n(a) (=7

J

The W-projective characters are expressible in terms of the w(1) characters

X[gr,S](Q) — dr,s%;},s(Q)a %77},3(9) — %[%gp/_sp(Q) + %?p/+8p(9)]7 O0<r<p, 0<s< P,

The modular transformations and modular matrix SCI'C are

2n—1
: : : : 1 .
%n(e—Qm,/T) — gCirc %n(627m7')’ gCirc _ e~ Tijk/n
For each pair p,p’, there is a modular invariant partition function
Ci 2n—1
Zo0(g) = Y.« (@)@,  wo=rop +s0p (mod 2n)
7=0

The Bezout pair (rg,sp) and Bezout number wg are uniquely determined by
rop’ — sop = 1, 1<ro<p-—-1, 1<sg<p —1, pso < p'ro
The Bezout number wg acts as a conjugation on characters

n —_ n —_ 2 - /
%CUO(Tp/:lZSP)(Q) _%frp/:ljsp(Q)7 T_O717“‘7p1 8_0717“‘7p
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Aq(f) Graph Fusion Algebra, 1

® Thec=1 boson fusion algebra is associated with the cyclic directed graph Z,,, with 2n nodes

o k_ (2n)

mn

Gi X b = > Ni“én, Nij" = 0;1 7%
k=0

where 1,5,k and their sums are interpreted as integers mod 2n.

® This algebra is realized by powers of the cyclic shift matrix 2 where w is coprime to
2n = 2pp’ and Q2" = 1.

® Consider the composites ¢, + ¢p— = 2cos(re/y/n), r = 0,n. Setting X = N; = Q¥ + Q¢
etc, the corresponding algebra

(Ny = 1 (Q + Q7™), r = 0,1,...,n)

IS realized by

Ny =dMT(X), 0<r<n Ty () -Th1 () =0

where T,(X) is the r'th Chebyshev polynomial of the first kind.

® The multiplication rules are given explicitly by

R

i 1 1
Ny N, = Z NTT/T N,n» = > (d(n) N|’r | -+ Nn—|n—’r—’r’|>7 o<, r <n

r’'=0 |7 —7/| n—|n—r—r
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A%Q) Graph Fusion Algebra, II
Regular representation
26 \

1 - . .
Ni = : = asymmetric, A — 205’ = eigvals, r=0,1,...,n

n
Twisted Ag,?) graph

® The fundamental generator X can be viewed as the adjacency matrix for the twisted affine

Dynkin diagram Ag). The latter can be obtained by folding the affine Dynkin diagram Agg_l

with 2n nodes

1

= O
OoN

(2 0 0 0 O)
O 1 00O
O 01 0O
_ 100010 A o= 0a@
AL =100 0 0 2 Azp— 10 = CAn
Azn—1 00010
O 01 0O
\O 1 00 O)
A(Q) }((1,2 1,2 1,|2))} [Left /Right Perron-Frobenius eigenvectors indicated]

0 1 2 3 4

® 27 — N is a generalized, symmetrizable Cartan matrix. So DY/2NI'D=1/2 is symmetric
and A = N1 IS similar to a real symmetric matrix with real eigenvalues and eigenvectors

D = diag(dg,dq,...,dn) = diag(1,2,2,...,2,1), dr = ar = Coxeter labels
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Coset Graph A](fp),

Definition [The Z> quotient is taken with respect to the Z, Kac-table symmetry, cf.p.0-14]

2 2 2
A2 =aP @A)z, L+ 1) 4 1) nodes
Eigenvalues of adjacency matrix
/ / 7T STr
NP = Agfr,p’—s = 4cos?cos?, r=0,1,....,p;, s=0,1,....,p

A]ng), graph fusion algebra [generated by %(p + 1)(®»' + 1) matrices, where X = N3 o, Y = Ng 1]

1"

NT,SNT’,S’ — Z Nrs,r’s’r i Nr”,s”a Nrs = N — dT,STT(g)TS(%)a 0<r<p; 0<s< p/

p—r,p'—s =7 = =2 =
,r.//,S//
where Tp,11(5) = Tp-1(5) = Ty11(5) — Ty_1(5) = Tp(3) — T(5) = 0.
® Explicitly
1" dr,sdrl o
Nrs,fr’s’r G 4d,,4//7s// <5r”,|r—r’| -+ 5r”,p—|p—r—r’|) (53”,|s—s’| -+ 53”,p’—|p’—s—s’|)

® The coset graphs A](fp), are symmetrizable, with degrees

;

/ 1, (r,s) is a corner
drs = d&p)dgm =42, (r,s)is on an edge D = diag(...,drs,...) = graph valencies
|4, (r,s) is in the interior

® The ranks of projective representations are thus related (through the Coxeter labels) to
data of twisted affine Dynkin graphs.
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Projective Grothendieck Kac Tables as Coset Graphs

S
3 _1
2 8 8
1 0] 0]
_1 3
0 8 8
0 1 r |:|
S
2 | s | 2r |87 | 5 |_ 9
112 7 112 14 112
81 | 5 | 13 1
6 16 2 16 O 16
5 | 391 | 10 | 27 | _1| 55
112 7 112 14 112
4 | 247 | 9 [_5| 1 | 135
112 14 112 7 112
3 |18 | 1 [_5| 9 | 247
112 7 112 14 112
5> | 55 | _1 |27 | 10 | 391
112 14 112 7 112
1 13| 5 | 81
1 16 O 16 2 16
o |—o| 5 |87 | 27 | 78
112 14 112 7 112
0 1 2 3 4

S

35 | 1 | 1
24 3 24
5 1
8 0 8
1 5
8 0 8
11 | 3
24 3 24
o 1 2

AR
Im
L

P BV'A Y
o)

14 D8
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Building Coset Graphs from A(Q) Graphs

® The coset graph A(Q), can be built from the linear A( ) graph by folding and gluing pairs
p,p
of nodes together. [cf.p.0-14]

Intertwining similarity relation

2 2 2 2
A = AP @ A j1, = 20,A0)Cr,  CLCR=1

® The intertwining matrices C; and Cpi are rectangular, not square. It is an intertwining
relation since the common eigenvalues of A](fp), and QAI(;,) are intertwined. It is a similarity
in the sense that C; and Ci are generalized inverses.

Eigenvalues of the coset graph Af}},

(rp’ + sp)m
pp/ + 2cos pp/ T rp —Sp T A rp '+sp

/
ri STC r — Sp)T
>\§3’§ —4cos—cos—,_2cos(p P)
p p

® A node is labelled by a pair of Bezout conjugate integers associated to % k(p/— )(q) and

= = i pp’ pp
1 k)@ E=0,1,...,n= pp’, or equivalently to X% and X%,

Projection
® The W-projective characters are expressible in terms of the c=1 u(1) characters [n = pp/]

X[grgs] (Q) — dr,s%:"’?;s(q), %’Ilr};S(Q) — _|: fr'p —Sp(q) /—I—SP(Q)]? O S r S p’ O S S S p,
® The intertwining similarity implements a change of basis to symmetric and anti-symmetric
combinations of s L (q) and s ,_|_Sp(q) projecting out the anti-symmetric combinations

' +1-3(p-1)@P -1)=53(rp+ 1) +1)
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Verlinde Formula

® T he anti-symmetric combinations are ordinary minimal Virasoro characters

n

Chr(0) = 1 0) = g0

® They do appear in the modular invariant partition functions.

Modular transformations

® The modular matrix S = SP¥ (52 =1,5 # ST) of the W-projective characters forms a
representation of the modular group. [Feigin-Gainutdinov-Semikhatov-Tipunin (2006)]

Standard Verlinde algebra

(p+1)(p'+1)-1
N;N; = 3 Nz-j’ka
k=0

where i, 7,k run over allowed pairs (r,s) in the projective Grothendieck Kac table, while

1 /
s(p+1)(P'+1)-1
2 SimSim Sy
Ni® = (IN;);* = > stjm ™ € Ny
m=0 Om

® This is precisely the graph algebra of the twisted coset graph A}S?, — A](f) 0% A]g,z)/ZQ.

® The modular matrix diagonalizes the multiplication rules of the W-projective Grothendieck
ring.
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Conformal Partition Functions Revisited

® The conformal partition functions for W-projective boundary conditions are given by

S(p+1)(p'+1)-1
Z;(q) = > N (Ex[GDk(a)
k=0
where
Y Nys,  p+p odd
r,s odd
= Z Ny s, D —I—p’ even
r—+s even
(s <(pP—1)/2

acts on the column of characters X[G] = {X[Gr ]}

® Explicitly, the ‘block characters’ are

p—e(r+1) p'—e(s+1)
(F'x[G])r,s(q) = > > dr,s X[Gpr g1](q)

r"=e(p+r+1),by2 s"=e(p'+s+1),by 2

where € is the parity
e(r) =r (mod 2)
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Bulk Modular Invariants in WL M(p,p')

Sesquilinear form in YV-irreducible characters

Z= 3% Mppx(@x;@, |rrl=2pp'+350p—-1F —1)
1,7€ Irr

Proposition: An S-invariant sesquilinear form in W-irreducible characters can be expressed
as a sesquilinear form in YW-projective and minimal characters.

® This is equi-numerous with the linearly independent w(1) characters [c=1, R = /2p'/p]

' +1=3(p+1D@+1)+i@@-1)E -1)

Conjecture: A modular invariant sesquilinear form in W-projective and minimal characters
decomposes into a sum of separate modular invariant sesquilinear forms in VW-projective and
minimal characters

7 — ZPrO_j + ZMln

Evidence: Verified for all p < p’ coprime satisfying pp’ < 225.
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Projective and Minimal A-Type Modular Invariants

Projective part

Our coset graphs provide new expressions for the diagonal A-type modular invariants in
Wh-projective characters considered by FGST (2006) and Wood (2010)

Proj 1 p ¥ 2 1 P ¥ R et D 2
Zp,p,J(q — 5 Z Z d’r,s |%;r},s(q}| — 5 Z Z — ‘X[gr s](Q)‘ Z Z 2 |X[7D?,§](Q)|
r=0 s=0 r=0 s=0 r=0 s=0 f S

The factors of % in the first two double sums reflect the Z> Kac-table symmetry, |%O’O(q)|2
appears with multiplicity 1 and all multiplicities are non-negative integers.

The modular invariance of Z;;?j(q) follows from the identities
Proj Proi
2, (a) = 3| 2505(D) + Z5)5(D], 275 (a) = Z1 5 (a)

Minimal part

® The coset graphs also encode the rational minimal A-type modular invariants

#rp—sp(@) — rp’-|—sp(Q)|

—1p/—1 p P
ZMI(g) = Z > fehre(@I? = 2 2 |
r=1s=1 r=0s=0

where the factors of % reflect a Zo Kac-table symmetry. In terms of the ¢ = 1 boson

ZMN(9) = 32505 - Z50(@)], 2N =0
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A-Type WLM(p,p’) Modular Invariants

® Assuming ZPJ £ 0 and that the operator with minimal conformal weight enters exactly
once, the A-type WLM(p,p’) modular invariant partition functions must be of the form

Proi Mi
me/(q) — Zp’]';?J (q) + npjp/Zp,p'P (q), Ty pf e 7

® Forp=1

. .
2N =0 = Z,,(q) =27 (q)

Conjecture: For p > 1, the physical modular invariants of A-type WLM(p,p’) are given by

Tl = 2

® Examples of modular invariant partition functions

Z1(q) = |%_%<q>|2 + 2|50()|? + |%%<q>|2
Z23(q) = |%_%<q)|2 + |520(q) + 21 (q)|? + 2|%%<q>|2 + 2|%%<q>|2 + 2|%%<q>|2 + |%§<q>|2 + 2|cho(g)?
Z3.4(q) = |71 ()% + |20(q) + >1(q)|? + |21 (¢) + 233(a)|* + 2|51 (q)|? + 2|55 (¢)|?

48 16 16 6 16

+ 151(q) + 35(q)|? + 2|535(q) |2 + 2|21 (@)|% + 2|3¢5(q)|? + |5143(q)|?
2 2 48 3 48

16

H,_/

+ 2{Icho()I? + Ieh 1 (9)[? + Ich1 ()|
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Supporting Evidence

® For np3 = 2, we recover the WLM(2,3) modular invariant partition function of Gaberdiel-
Runkel-Wood (2011).

® As in the WLM(2,3) case of GRW 2011, we find generally that for n, , =2

Zp (@) = Y Xi(q) X[Pil(a)

1€ Irr

where the sum is over all W-irreducible representations. As demonstrated above, this
partition function is in fact left-right symmetric when expanded in «(1) characters.

® In terms of the ¢ =1 boson

ZZpJﬂ(kZ) — Zziig;a(Q) ‘F‘(7?pﬂy __:1)222221(Q)

Our conjecture thus yields a minimal extension of the compactified boson ngzf,(q) by
adding the partition function for the rational minimal model with coefficient

np,p’ —1=1

as encoded in the coset graph viewed as a folded A(2,> graph.
pp
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Summary and

Infinite series of Yang-Baxter integrable lattice models of non-local statistical mechanics.
Description in terms of planar Temperley-Lieb algebras.
Logarithmic CFTs with infinitely many indecomposable (higher-rank) representations.

VW-projective representations emerge as building blocks akin to the role played by irredu-
cible representations in rational CFTs.

The W-projective Grothendieck ring leads to a standard Verlinde-like formula involving
twisted affine coset graphs.

Compact formulas for the conformal partition functions with YW-projective boundary condi-
tions.

® A-type WLM(p,p') modular invariants encoded by twisted affine coset graphs.

® The boundary and bulk A-type logarithmic minimal models are ‘classified’ by the same

twisted affine coset graphs.

Will an extension of Gaberdiel-Runkel-Wood for ¢ = 0 confirm NS 27

A-D-F classification of the logarithmic Verlinde graph fusion algebras a |la Behrend-Pearce-
Petkova-Zuber?

A-D-F classification of the logarithmic modular invariant partition functions a la Cappelli-
Itzykson-Zuber?

LLogarithmic coset construction a la Goddard-Kent-Olive?

D- and E-type logarithmic minimal models on the lattice?
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