

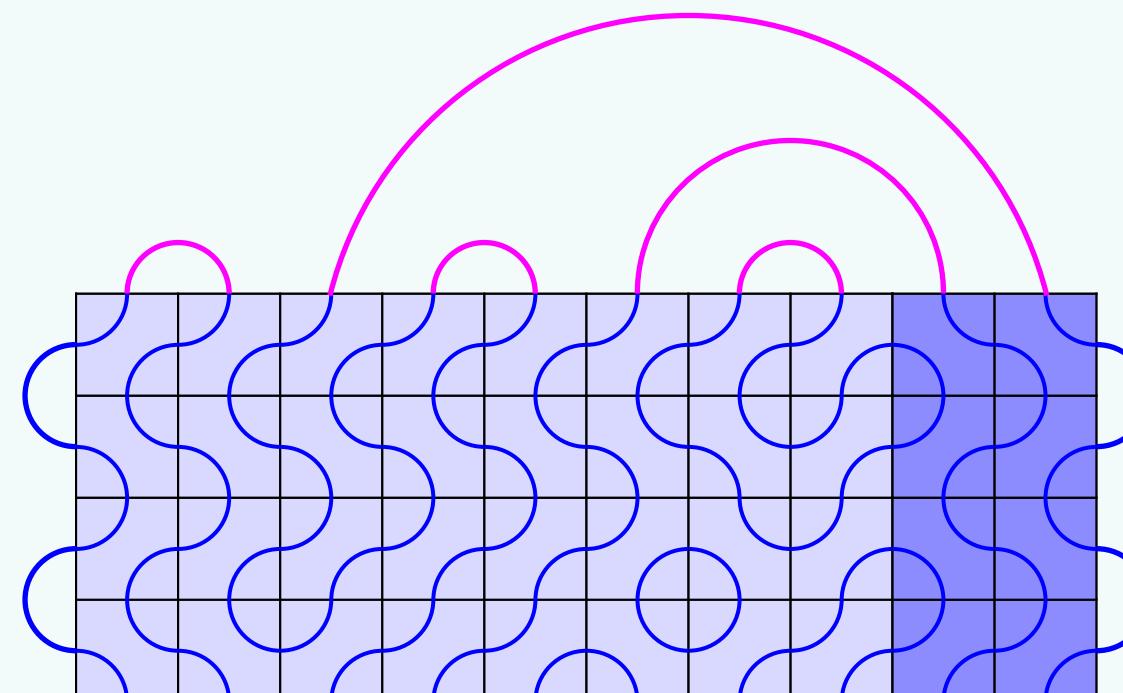
Coset Graphs and Modular Invariants in Logarithmic Minimal Models

Paris, 7 October 2011

Jørgen Rasmussen

Department of Mathematics and Statistics, University of Melbourne

Supported by the Australian Research Council



- P.A. Pearce, JR, J.-B. Zuber, *Logarithmic minimal models*, J. Stat. Mech. P11017 (2006).
- P.A. Pearce, JR, P. Ruelle, *Integrable boundary conditions and \mathcal{W} -extended fusion in the logarithmic minimal models $\mathcal{LM}(1, p)$* , J. Phys. A: Math. Theor. 41 (2008).
- JR, *\mathcal{W} -extended logarithmic minimal models*, Nucl. Phys. B807 (2009).
- P.A. Pearce, JR, *Coset graphs in bulk and boundary logarithmic minimal models*, Nucl. Phys. B846 (2011).

Lattice Approaches to (Logarithmic) CFT

Rational minimal models (BPZ & ABF 1984)

$$\mathcal{M}(p, p'); \quad (p, p') = 1, \quad 1 < p < p'$$

Conventional lattice approach to CFT

$$\begin{array}{ccccccc} \text{local} & & \text{symmetric} & & \text{diagonalizable} & & \\ \text{degrees of} & \Rightarrow & \text{transfer} & \Rightarrow & \text{transfer} & & \\ \text{freedom} & & \text{matrices} & & \text{matrices} & & \\ & & & & & \Rightarrow & \\ & & & & & L_0 \text{ is} & \\ & & & & & \text{diagonalizable} & \Rightarrow \\ & & & & & & \text{rational} \\ & & & & & & \text{CFT} \end{array}$$

Logarithmic CFT (Knizhnik 1987, Rozansky-Saleur 1992, Gurarie 1993, essentially everyone present here today!)

- The Virasoro mode L_0 is non-diagonalizable and exhibits **non-trivial Jordan blocks**.

Paradigm shift in lattice approach

$$\begin{array}{ccc} \text{logarithmic} & & \text{non-local} \\ \text{CFT} & \Rightarrow & \text{degrees of freedom} \end{array}$$

- Statistical systems with **non-local** degrees of freedom are associated with **Logarithmic** CFTs. Examples are critical dense polymers and critical percolation.

Logarithmic minimal models (Pearce-Rasmussen-Zuber 2006)

$$\mathcal{LM}(p, p'); \quad (p, p') = 1, \quad 1 \leq p < p'$$

Other lattice approaches to logarithmic CFT (Mahieu-Ruelle 2001, Read-Saleur 2007)

- Abelian sandpile model, quantum spin chains, ...

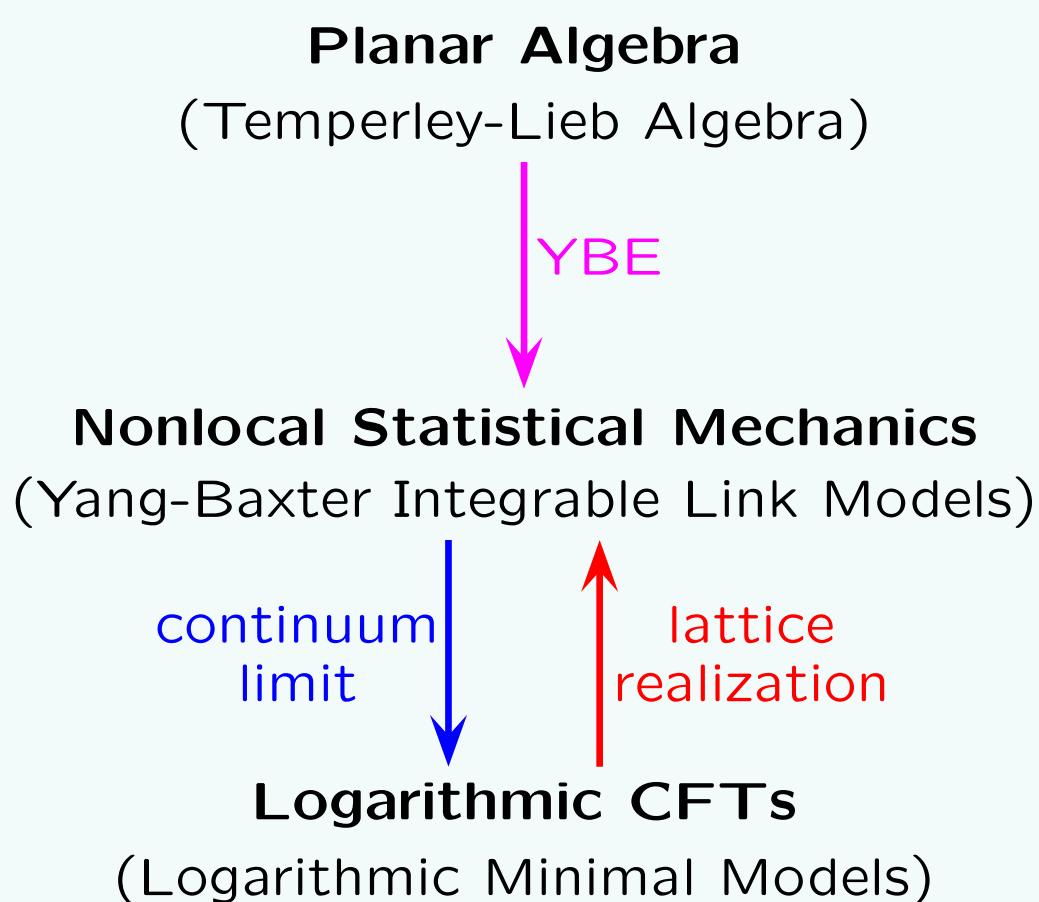
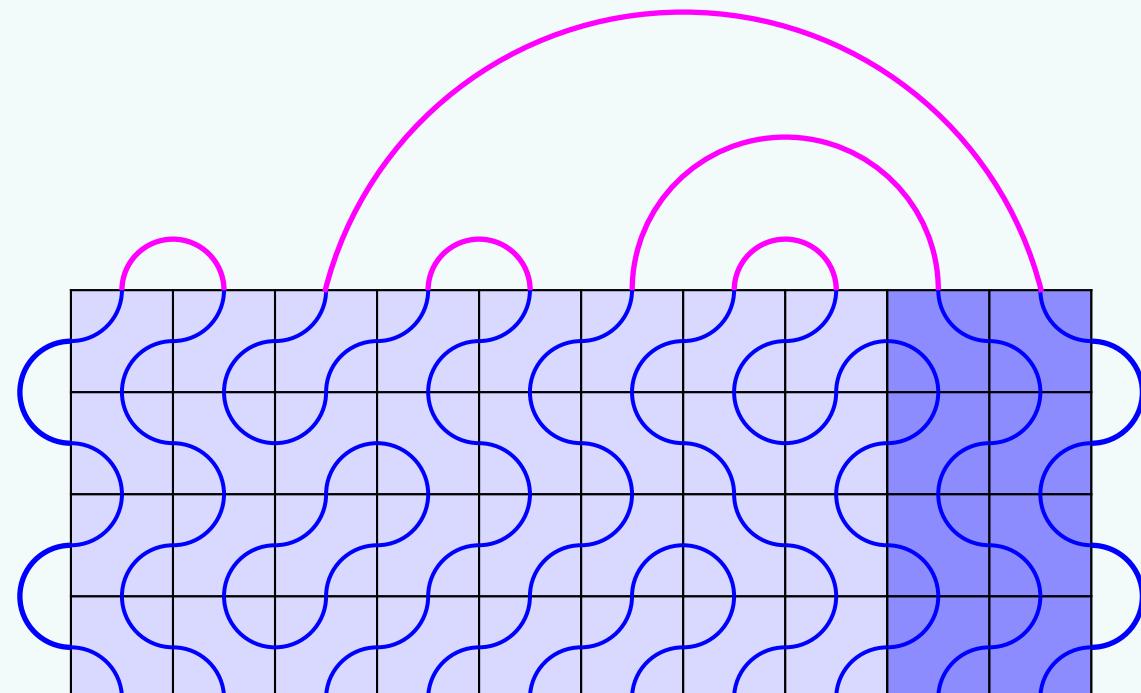
Logarithmic Minimal Models $\mathcal{LM}(p, p')$

Face operators defined in planar Temperley-Lieb algebra (Jones 1999)

$$X(u) = \begin{array}{|c|} \hline u \\ \hline \end{array} = \frac{\sin(\lambda - u)}{\sin \lambda} \begin{array}{|c|} \hline \diagup \diagdown \\ \hline \end{array} + \frac{\sin u}{\sin \lambda} \begin{array}{|c|} \hline \diagdown \diagup \\ \hline \end{array}; \quad X_j(u) = \frac{\sin(\lambda - u)}{\sin \lambda} I + \frac{\sin u}{\sin \lambda} e_j$$

$$1 \leq p < p' \text{ coprime integers,} \quad \lambda = \frac{(p' - p)\pi}{p'} = \text{crossing parameter}$$

$$u = \text{spectral parameter,} \quad \beta = 2 \cos \lambda = \text{fugacity of loops}$$



- Non-local degrees of freedom (connectivities)
- Inf. families of integrable boundary conditions
- Transfer matrices act on spaces of link states

Trilogy and Central Questions

Theory	$\mathcal{M}(p, p')$	$\mathcal{LM}(p, p')$	$\mathcal{WLM}(p, p')$
Degrees of freedom	local heights	non-local loops	non-local loops with infinitely thick boundary conditions
$p = 1$	$\mathcal{M}(1, p') = \emptyset$	$\mathcal{LM}(1, 2)$: crit. dense polymers	$\mathcal{WLM}(1, 2)$: triplet model
$p > 1$	Baxter-Forrester RSOS	$\mathcal{LM}(p, p')$	$\mathcal{LM}(p, p')$ with \mathcal{W} -boundaries
CFT content	$c = 1 - \frac{6(p - p')^2}{pp'}$ finite # irred reps	$c = 1 - \frac{6(p - p')^2}{pp'}$ infinite # indec reps	$c = 1 - \frac{6(p - p')^2}{pp'}$ finite sets of \mathcal{W} -indec reps

Central Questions:

- To what extent do \mathcal{W} -extended logarithmic minimal models $\mathcal{WLM}(p, p')$ resemble rational CFTs?
- For example, is there a Verlinde-like formula?

- Are the \mathcal{W} -extended logarithmic minimal models $\mathcal{WLM}(p, p')$ classified by graphs?
- If so, is it the same graphs describing the bulk and boundary theories?

- Considering that $c^{\text{eff}} = 1$ for the logarithmic minimal models, does the $c = 1$ compactified boson play a role in their description?

Projective Representations in $\mathcal{WLM}(p, p')$

Representations associated with boundary conditions

There are $2pp'$ \mathcal{W} -projective representations associated with boundary conditions

$$\widehat{\mathcal{R}}_{\kappa p, \kappa' p'}^{r,s}, \quad \kappa, \kappa' = 1, 2; \quad 0 \leq r \leq p-1, \quad 0 \leq s \leq p'-1$$

This notation assumes that

$$\widehat{\mathcal{R}}_{2p, p'}^{r,s} = \widehat{\mathcal{R}}_{p, 2p'}^{r,s}, \quad \widehat{\mathcal{R}}_{2p, 2p'}^{r,s} = \widehat{\mathcal{R}}_{p, p'}^{r,s}, \quad \widehat{\mathcal{R}}_{p, p'}^{0,0} = \mathcal{W}(\Delta_{p, p'}), \quad \widehat{\mathcal{R}}_{2p, p'}^{0,0} = \mathcal{W}(\Delta_{2p, p'})$$

and for later convenience, we extend it by

$$\widehat{\mathcal{R}}_{p, p'}^{p,s} \equiv \widehat{\mathcal{R}}_{p, 2p'}^{0,s}, \quad \widehat{\mathcal{R}}_{p, p'}^{r, p'} \equiv \widehat{\mathcal{R}}_{2p, p'}^{r, 0}, \quad \widehat{\mathcal{R}}_{p, p'}^{p, p'} \equiv \widehat{\mathcal{R}}_{2p, 2p'}^{0,0} \equiv \widehat{\mathcal{R}}_{p, p'}^{0,0}$$

Rank of a \mathcal{W} -projective representation

$$\text{rank}(\widehat{\mathcal{R}}_{\kappa p, \kappa' p'}^{r,s}) = d_{r,s} - \lfloor \frac{d_{r,s}}{4} \rfloor$$

where the **degree** $d_{r,s}$ is defined by

$$d_{r,s} = d_r^{(p)} d_s^{(p')} = (2 - \delta_{r,0}^{(p)})(2 - \delta_{s,0}^{(p')}), \quad \delta_{m,n}^{(N)} = \begin{cases} 1, & m = n \bmod N \\ 0, & \text{otherwise} \end{cases}$$

- In summary

$$\#[\text{Proj}] = 2pp', \quad \begin{cases} \#[\text{rank 1}] = 2 \\ \#[\text{rank 2}] = 2(p + p' - 2) \\ \#[\text{rank 3}] = 2(p - 1)(p' - 1) \end{cases}$$

- \mathcal{W} -extension believed to be w.r.t. $\mathcal{W}_{p, p'}$ of Feigin-Gainutdinov-Semikhatov-Tipunin (2006).

\mathcal{W} -Projective Fusion Algebra

$$\begin{aligned}
\widehat{\mathcal{R}}_{\kappa p, p'}^{r, s} \otimes \widehat{\mathcal{R}}_{p, \kappa' p'}^{r', s'} &= \frac{d_{r, s} d_{r', s'}}{4} \left(\left\{ \begin{array}{c|c} p - |r - r'| - 1 & |p - r - r'| - 1 \\ \hline \bigoplus_{r''} & \bigoplus_{r''} \end{array} \right\} \left\{ \begin{array}{c|c} p' - |s - s'| - 1 & |p' - s - s'| - 1 \\ \hline \bigoplus_{s''} & \bigoplus_{s''} \end{array} \right\} \widehat{\mathcal{R}}_{\kappa p, \kappa' p'}^{r'', s''} \right. \\
&\quad \left. + \left\{ \begin{array}{c|c} p - |p - r - r'| - 1 & |r - r'| - 1 \\ \hline \bigoplus_{r''} & \bigoplus_{r''} \end{array} \right\} \left\{ \begin{array}{c|c} p' - |p' - s - s'| - 1 & |s - s'| - 1 \\ \hline \bigoplus_{s''} & \bigoplus_{s''} \end{array} \right\} \widehat{\mathcal{R}}_{\kappa p, \kappa' p'}^{r'', s''} \right. \\
&\quad \left. + \left\{ \begin{array}{c|c} p - |r - r'| - 1 & |p - r - r'| - 1 \\ \hline \bigoplus_{r''} & \bigoplus_{r''} \end{array} \right\} \left\{ \begin{array}{c|c} p' - |p' - s - s'| - 1 & |s - s'| - 1 \\ \hline \bigoplus_{s''} & \bigoplus_{s''} \end{array} \right\} \widehat{\mathcal{R}}_{\kappa p, (2 \cdot \kappa') p'}^{r'', s''} \right. \\
&\quad \left. + \left\{ \begin{array}{c|c} p - |p - r - r'| - 1 & |r - r'| - 1 \\ \hline \bigoplus_{r''} & \bigoplus_{r''} \end{array} \right\} \left\{ \begin{array}{c|c} p' - |s - s'| - 1 & |p' - s - s'| - 1 \\ \hline \bigoplus_{s''} & \bigoplus_{s''} \end{array} \right\} \widehat{\mathcal{R}}_{\kappa p, (2 \cdot \kappa') p'}^{r'', s''} \right)
\end{aligned}$$

where $1 \cdot 1 = 2 \cdot 2 = 1$, $2 \cdot 1 = 1 \cdot 2 = 2$ and

$$\bigoplus_n^N R_n = \bigoplus_{n=\epsilon(N), \text{ by } 2}^N R_n, \quad \epsilon(N) = \frac{1}{2}(1 - (-1)^N) = N \pmod{2}$$

- This fusion algebra does not contain an identity but is both associative and commutative and, despite appearances, the multiplicities are all non-negative integers.

\mathcal{W} -Projective Grothendieck Group

Projective characters $[\ell = 0, 1]$

$$\begin{aligned}
 \chi[\widehat{\mathcal{R}}_{(\ell+1)p,p'}^{0,0}](q) &= \frac{1}{\eta(q)} \sum_{k \in \mathbb{Z}} q^{(2k+\ell)^2 pp'/4} \\
 \chi[\widehat{\mathcal{R}}_{(\ell+1)p,p'}^{a,0}](q) &= \frac{2}{\eta(q)} \sum_{k \in \mathbb{Z}} q^{(a+(2k+\ell)p)^2 p'/4p} \\
 \chi[\widehat{\mathcal{R}}_{p,(\ell+1)p'}^{0,b}](q) &= \frac{2}{\eta(q)} \sum_{k \in \mathbb{Z}} q^{(b+(2k+\ell)p')^2 p/4p'} \\
 \chi[\widehat{\mathcal{R}}_{(\ell+1)p,p'}^{a,b}](q) &= \frac{2}{\eta(q)} \sum_{k \in \mathbb{Z}} \left[q^{(ap' - bp + (2k+\ell)pp')^2 / 4pp'} + q^{(ap' + bp + (2k+\ell)pp')^2 / 4pp'} \right]
 \end{aligned}$$

- The number of linearly independent \mathcal{W} -projective characters is given by

$$\frac{1}{2}(p+1)(p'+1)$$

Projective Grothendieck generators

$$\mathcal{G}_{r,s} = [\widehat{\mathcal{R}}_{p,p'}^{r,s}], \quad \mathcal{G}_{r,s} = \mathcal{G}_{p-r,p'-s}, \quad 0 \leq r \leq p, \quad 0 \leq s \leq p'$$

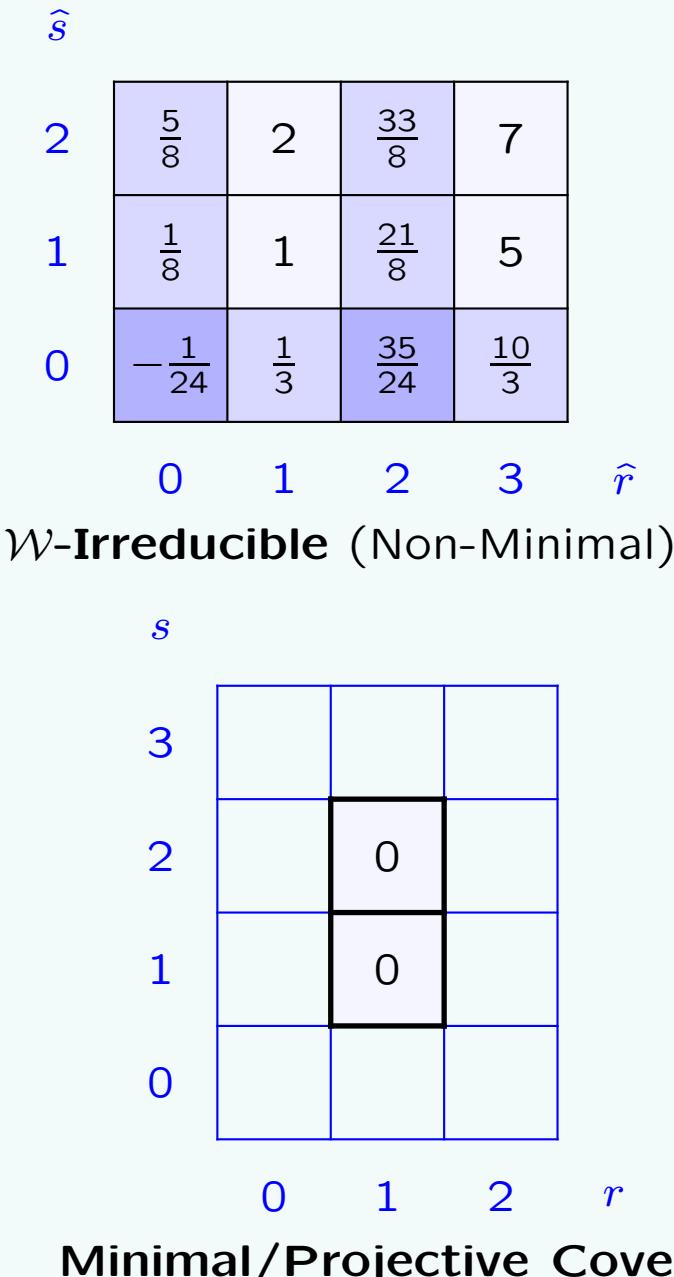
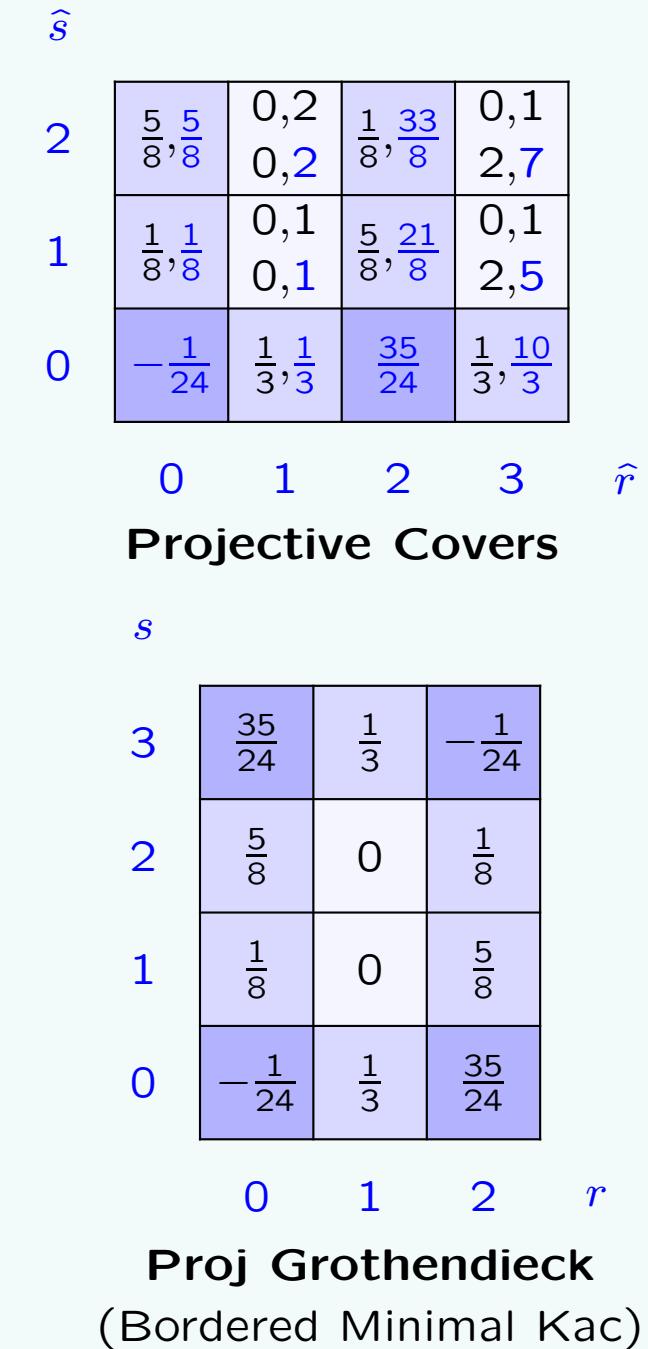
- Such an equivalence class is uniquely characterized by the conformal weight

$$\Delta_{r,s} = \Delta_{p-r,p'-s} = \frac{(p'r - ps)^2 - (p - p')^2}{4pp'}, \quad 0 \leq r \leq p, \quad 0 \leq s \leq p'$$

- The projective Grothendieck generators can be organized into a Kac table with a \mathbb{Z}_2 Kac-table symmetry.

Kac Tables of Critical Percolation $\mathcal{LM}(2,3)/W\mathcal{LM}(2,3)$

s	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\dots
10	12	$\frac{65}{8}$	5	$\frac{21}{8}$	1	$\frac{1}{8}$	\dots
9	$\frac{28}{3}$	$\frac{143}{24}$	$\frac{10}{3}$	$\frac{35}{24}$	$\frac{1}{3}$	$-\frac{1}{24}$	\dots
8	7	$\frac{33}{8}$	2	$\frac{5}{8}$	0	$\frac{1}{8}$	\dots
7	5	$\frac{21}{8}$	1	$\frac{1}{8}$	0	$\frac{5}{8}$	\dots
6	$\frac{10}{3}$	$\frac{35}{24}$	$\frac{1}{3}$	$-\frac{1}{24}$	$\frac{1}{3}$	$\frac{35}{24}$	\dots
5	2	$\frac{5}{8}$	0	$\frac{1}{8}$	1	$\frac{21}{8}$	\dots
4	1	$\frac{1}{8}$	0	$\frac{5}{8}$	2	$\frac{33}{8}$	\dots
3	$\frac{1}{3}$	$-\frac{1}{24}$	$\frac{1}{3}$	$\frac{35}{24}$	$\frac{10}{3}$	$\frac{143}{24}$	\dots
2	0	$\frac{1}{8}$	1	$\frac{21}{8}$	5	$\frac{65}{8}$	\dots
1	0	$\frac{5}{8}$	2	$\frac{33}{8}$	7	$\frac{85}{8}$	\dots
	1	2	3	4	5	6	r



$$d_{r,s} = \begin{cases} \text{degree} \\ 2^{\text{rank}_1} = (2 - \delta_{r,0}^{(p)})(2 - \delta_{s,0}^{(p')}) \end{cases} = \begin{cases} 1, & \text{corner (mid blue)} \\ 2, & \text{edge (light blue)} \\ 4, & \text{interior (white)} \end{cases}$$

$$\delta_{m,n}^{(N)} = \begin{cases} 1, & m = n \pmod N \\ 0, & \text{otherwise} \end{cases}$$

Projective Grothendieck Ring of $\mathcal{WLM}(p, p')$

Multiplication rules

$$\mathcal{G}_{r,s} * \mathcal{G}_{r',s'} = d_{r,s} d_{r',s'} \sum_{r''=\epsilon(p+r+r'+1), \text{ by 2}}^{p-\epsilon(r+r'+1)} \sum_{s''=\epsilon(p'+s+s'+1), \text{ by 2}}^{p'-\epsilon(s+s'+1)} \mathcal{G}_{r'',s''}$$

- It follows that, up to the multiplicities $d_{r,s} d_{r',s'} \in \{1, 2, 4, 8, 16\}$, there are only **two** possible linear combinations of generators arising as the result of a simple multiplication in the projective Grothendieck ring.

Conformal partition functions associated with projective boundary conditions

$$Z_{(r,s)|(r',s')}(q) = \chi[\mathcal{G}_{r,s} * \mathcal{G}_{r',s'}](q) = \sum_{r''=\epsilon(p+r+r'+1), \text{ by 2}}^{p-\epsilon(r+r'+1)} \sum_{s''=\epsilon(p'+s+s'+1), \text{ by 2}}^{p'-\epsilon(s+s'+1)} d_{r,s} d_{r',s'} \chi[\mathcal{G}_{r'',s''}](q)$$

- Here we have assigned $\mathcal{G}_{r,s}$ the common character of the representatives within its equivalence class

$$\chi[\mathcal{G}_{r,s}](q) = \chi[\widehat{\mathcal{R}}_{p,p'}^{r,s}](q)$$

$c=1$ Compactified Boson Revisited

- The $c=1$ boson on the circle of compactification radius $R = \sqrt{2p'/p}$, where p, p' are coprime integers, exhibits an extended symmetry with $2n = 2pp'$ primary operators.
- The conformal weights and $u(1)$ characters are

$$\Delta_j = \min \left[\frac{j^2}{4n}, \frac{(2n-j)^2}{4n} \right], \quad \varkappa_j^n(q) = \varkappa_{2n-j}^n(q) = \frac{1}{\eta(q)} \sum_{k \in \mathbb{Z}} q^{(j+2kn)^2/4n}, \quad j = 0, 1, \dots, 2n$$

- The **\mathcal{W} -projective characters** are expressible in terms of the $u(1)$ characters

$$\chi[\mathcal{G}_{r,s}](q) = d_{r,s} \varkappa_{r,s}^n(q), \quad \varkappa_{r,s}^n(q) = \frac{1}{2} [\varkappa_{rp'-sp}^n(q) + \varkappa_{rp'+sp}^n(q)], \quad 0 \leq r \leq p; \quad 0 \leq s \leq p'$$

- The modular transformations and modular matrix S^{Circ} are

$$\varkappa_j^n(e^{-2\pi i/\tau}) = \sum_{k=0}^{2n-1} S_{jk}^{\text{Circ}} \varkappa_k^n(e^{2\pi i\tau}), \quad S_{jk}^{\text{Circ}} = \frac{1}{\sqrt{2n}} e^{-\pi i j k / n}$$

- For each pair p, p' , there is a modular invariant partition function

$$Z_{p,p'}^{\text{Circ}}(q) = \sum_{j=0}^{2n-1} \varkappa_j^n(q) \varkappa_{\omega_0 j}^n(\bar{q}), \quad \omega_0 = r_0 p' + s_0 p \pmod{2n}$$

- The Bezout pair (r_0, s_0) and Bezout number ω_0 are uniquely determined by

$$r_0 p' - s_0 p = 1, \quad 1 \leq r_0 \leq p-1, \quad 1 \leq s_0 \leq p'-1, \quad p s_0 < p' r_0$$

- The Bezout number ω_0 acts as a conjugation on characters

$$\varkappa_{\omega_0(rp' \pm sp)}^n(q) = \varkappa_{rp' \mp sp}^n(q), \quad r = 0, 1, \dots, p; \quad s = 0, 1, \dots, p'$$

$A_n^{(2)}$ Graph Fusion Algebra, I

- The $c=1$ boson fusion algebra is associated with the cyclic directed graph \mathbb{Z}_{2n} with $2n$ nodes

$$\phi_i \times \phi_j = \sum_{k=0}^{2n-1} N_{ij}^k \phi_k, \quad N_{ij}^k = \delta_{i+j,k}^{(2n)}$$

where i, j, k and their sums are interpreted as integers mod $2n$.

- This algebra is realized by powers of the cyclic shift matrix Ω^ω where ω is coprime to $2n = 2pp'$ and $\Omega^{2n} = I$.
- Consider the composites $\phi_r + \phi_{-r} = 2 \cos(r\varphi/\sqrt{n})$, $r \neq 0, n$. Setting $X = N_1 = \Omega^\omega + \Omega^{-\omega}$ etc, the corresponding algebra

$$\langle N_r = \frac{1}{2} d_r^{(n)} (\Omega^{r\omega} + \Omega^{-r\omega}), r = 0, 1, \dots, n \rangle$$

is realized by

$$N_r = d_r^{(n)} T_r\left(\frac{X}{2}\right), \quad 0 \leq r \leq n; \quad T_{n+1}\left(\frac{X}{2}\right) - T_{n-1}\left(\frac{X}{2}\right) = 0$$

where $T_r(X)$ is the r 'th Chebyshev polynomial of the first kind.

- The multiplication rules are given explicitly by

$$N_r N_{r'} = \sum_{r''=0}^n N_{rr'}^{r''} N_{r''} = \frac{d_r^{(n)} d_{r'}^{(n)}}{2} \left(\frac{1}{d_{|r-r'|}^{(n)}} N_{|r-r'|} + \frac{1}{d_{n-|n-r-r'|}^{(n)}} N_{n-|n-r-r'|} \right), \quad 0 \leq r, r' \leq n$$

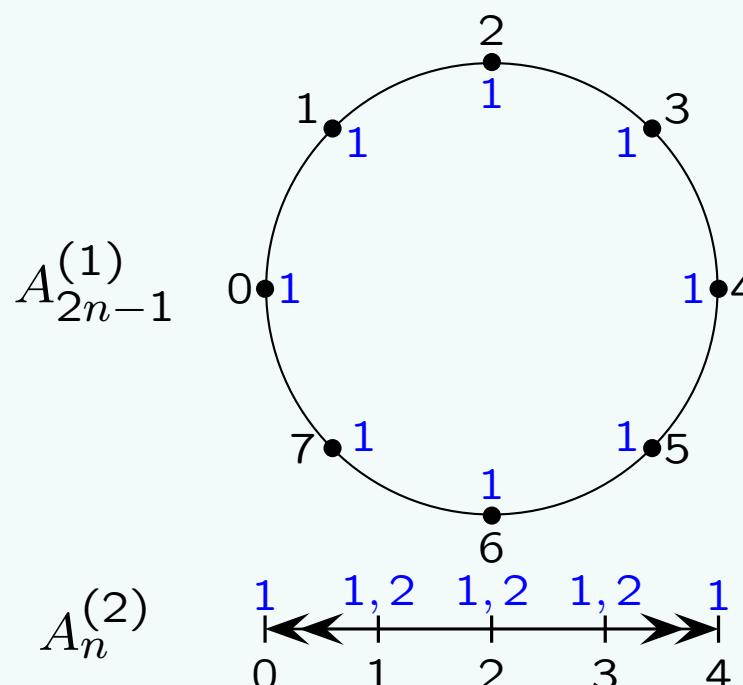
$A_n^{(2)}$ Graph Fusion Algebra, II

Regular representation

$$N_1 = \begin{pmatrix} 0 & 1 & & & & & \\ 2 & 0 & 1 & & & & \\ & 1 & \cdot & \cdot & & & \\ & & \cdot & \cdot & \cdot & & \\ & & & 1 & 1 & & \\ & & & & 1 & 0 & 2 \\ & & & & & 1 & 0 \end{pmatrix} = \text{asymmetric}, \quad \lambda_r^{(n)} = 2 \cos \frac{r\pi}{n} = \text{eigvals}, \quad r = 0, 1, \dots, n$$

Twisted $A_n^{(2)}$ graph

- The fundamental generator X can be viewed as the adjacency matrix for the **twisted** affine Dynkin diagram $A_n^{(2)}$. The latter can be obtained by folding the affine Dynkin diagram $A_{2n-1}^{(1)}$ with $2n$ nodes



$$C = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \quad A_{2n-1}^{(1)} C = C A_n^{(2)}$$

[Left/Right Perron-Frobenius eigenvectors indicated]

- $2I - N_1^T$ is a generalized, **symmetrizable** Cartan matrix. So $D^{1/2}N_1^T D^{-1/2}$ is symmetric and $A = N_1^T$ is similar to a real symmetric matrix with real eigenvalues and eigenvectors

$$D = \text{diag}(d_0, d_1, \dots, d_n) = \text{diag}(1, 2, 2, \dots, 2, 1), \quad d_r = a_r = \text{Coxeter labels}$$

Coset Graph $A_{p,p'}^{(2)}$

Definition [The \mathbb{Z}_2 quotient is taken with respect to the \mathbb{Z}_2 Kac-table symmetry, cf. p.0-14]

$$A_{p,p'}^{(2)} = A_p^{(2)} \otimes A_{p'}^{(2)} / \mathbb{Z}_2, \quad \frac{1}{2}(p+1)(p'+1) \text{ nodes}$$

Eigenvalues of adjacency matrix

$$\lambda_{r,s}^{p,p'} = \lambda_{p-r,p'-s}^{p,p'} = 4 \cos \frac{r\pi}{p} \cos \frac{s\pi}{p'}, \quad r = 0, 1, \dots, p; \quad s = 0, 1, \dots, p'$$

$A_{p,p'}^{(2)}$ **graph fusion algebra** [generated by $\frac{1}{2}(p+1)(p'+1)$ matrices, where $X = N_{1,0}$, $Y = N_{0,1}$]

$$N_{r,s} N_{r',s'} = \sum_{r'',s''} N_{rs,r's'}^{r''s''} N_{r'',s''}, \quad N_{r,s} = N_{p-r,p'-s} = d_{r,s} T_r(\frac{X}{2}) T_s(\frac{Y}{2}), \quad 0 \leq r \leq p; \quad 0 \leq s \leq p'$$

where $T_{p+1}(\frac{X}{2}) - T_{p-1}(\frac{X}{2}) = T_{p'+1}(\frac{Y}{2}) - T_{p'-1}(\frac{Y}{2}) = T_p(\frac{X}{2}) - T_{p'}(\frac{Y}{2}) = 0$.

- Explicitly

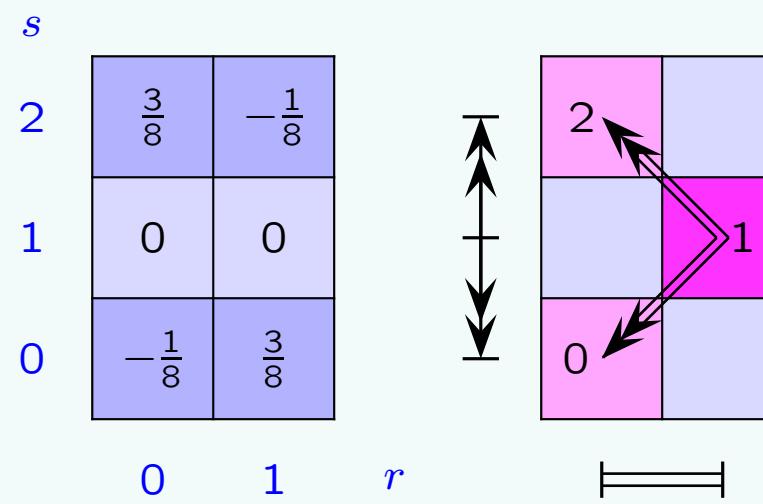
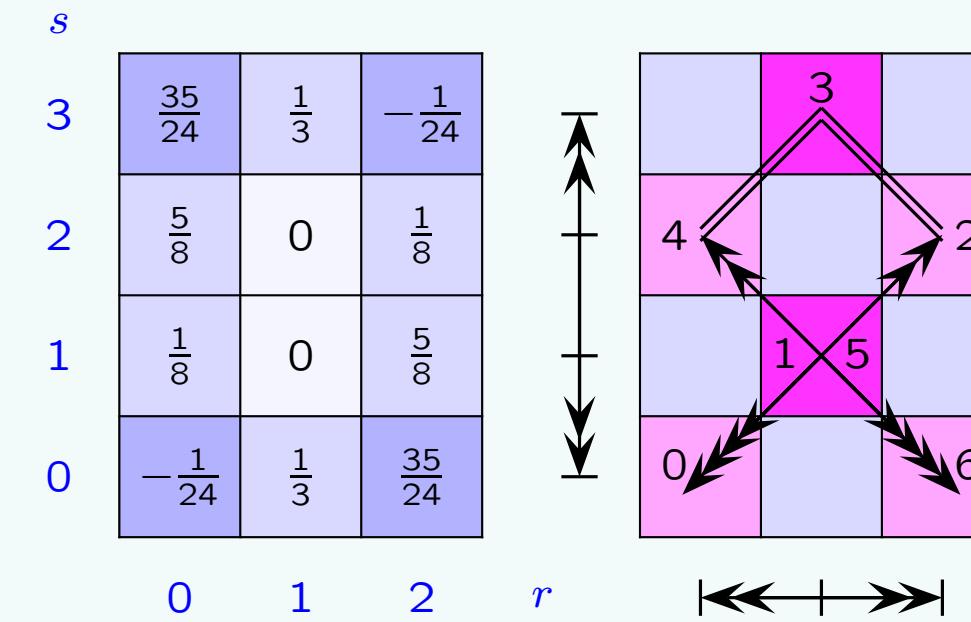
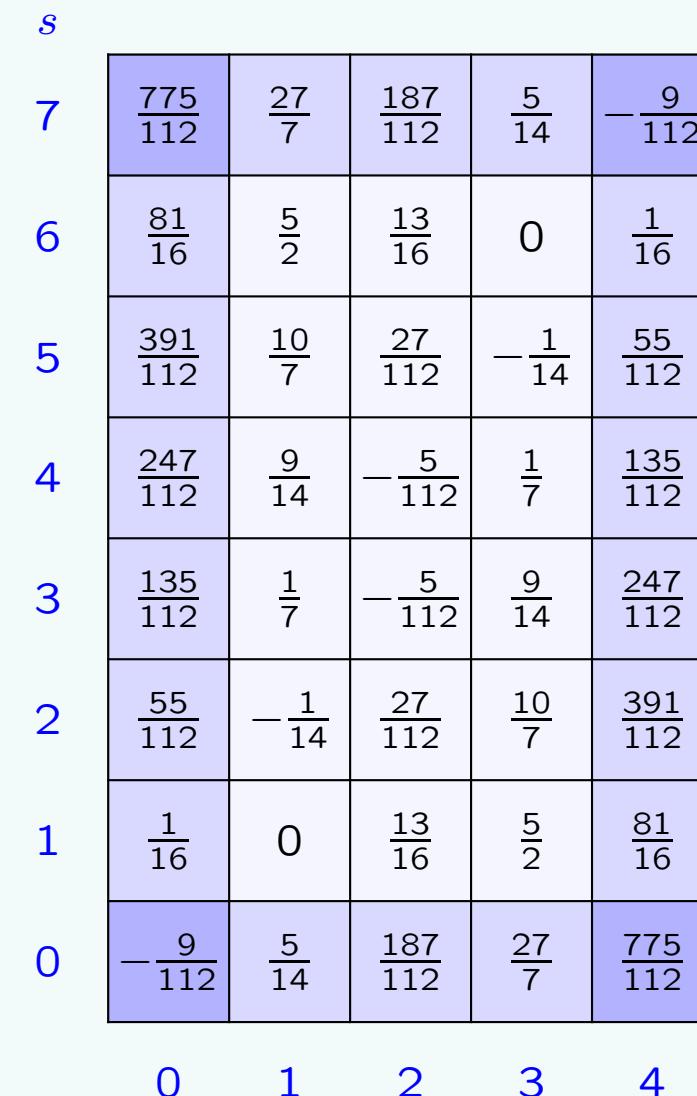
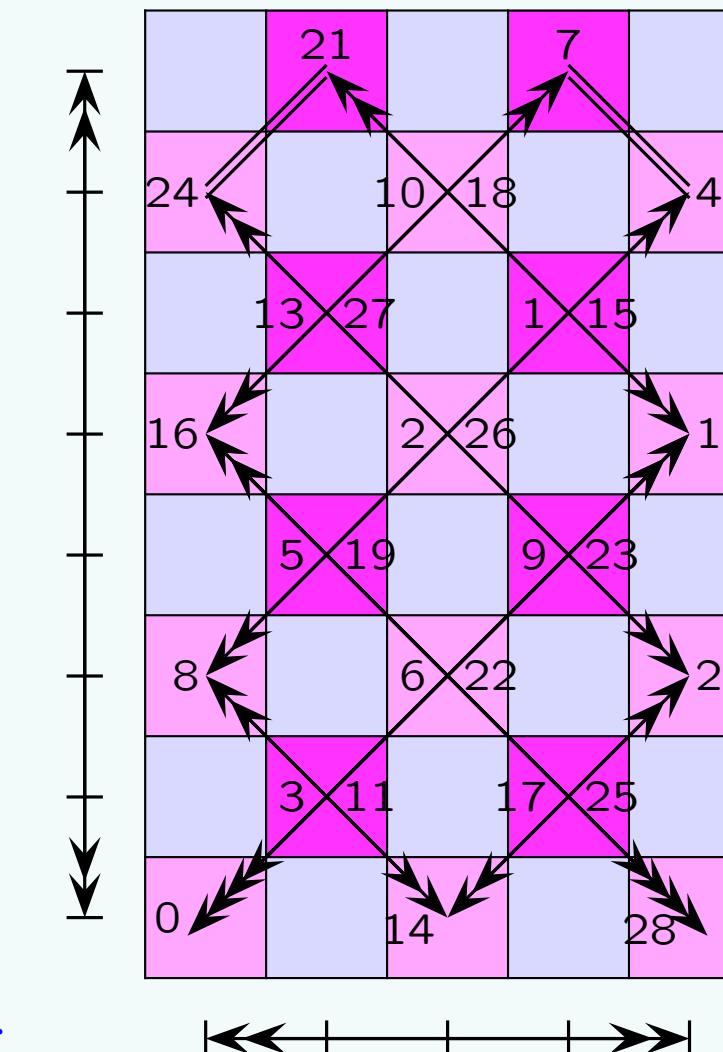
$$N_{rs,r's'}^{r''s''} = \frac{d_{r,s} d_{r',s'}}{4 d_{r'',s''}} \left(\delta_{r'',|r-r'|} + \delta_{r'',p-|p-r-r'|} \right) \left(\delta_{s'',|s-s'|} + \delta_{s'',p'-|p'-s-s'|} \right)$$

- The coset graphs $A_{p,p'}^{(2)}$ are symmetrizable, with degrees

$$d_{r,s} = d_r^{(p)} d_s^{(p')} = \begin{cases} 1, & (r,s) \text{ is a corner} \\ 2, & (r,s) \text{ is on an edge} \\ 4, & (r,s) \text{ is in the interior} \end{cases} \quad D = \text{diag}(\dots, d_{r,s}, \dots) = \text{graph valencies}$$

- The ranks of projective representations are thus related (through the Coxeter labels) to data of twisted affine Dynkin graphs.

Projective Grothendieck Kac Tables as Coset Graphs



Building Coset Graphs from $A_n^{(2)}$ Graphs

- The coset graph $A_{p,p'}^{(2)}$ can be built from the linear $A_{pp'}^{(2)}$ graph by folding and gluing pairs of nodes together. [cf. p.0-14]

Intertwining similarity relation

$$A_{p,p'}^{(2)} = A_p^{(2)} \otimes A_{p'}^{(2)} / \mathbb{Z}_2 = 2C_L A_{pp'}^{(2)} C_R, \quad C_L C_R = I$$

- The **intertwining matrices** C_L and C_R are **rectangular**, not square. It is an intertwining relation since the common eigenvalues of $A_{p,p'}^{(2)}$ and $2A_{pp'}^{(2)}$ are intertwined. It is a similarity in the sense that C_L and C_R are generalized inverses.

Eigenvalues of the coset graph $A_{p,p'}^{(2)}$

$$\lambda_{r,s}^{p,p'} = 4 \cos \frac{r\pi}{p} \cos \frac{s\pi}{p'} = 2 \cos \frac{(rp' - sp)\pi}{pp'} + 2 \cos \frac{(rp' + sp)\pi}{pp'} = \lambda_{rp'-sp}^{pp'} + \lambda_{rp'+sp}^{pp}$$

- A node is labelled by a pair of Bezout conjugate integers associated to $\varkappa_{k(p'-p)}^n(q)$ and $\varkappa_{\omega_0 k(p'-p)}^n(q)$, $k = 0, 1, \dots, n = pp'$, or equivalently to $\lambda_{rp'-sp}^{pp'}$ and $\lambda_{rp'+sp}^{pp}$.

Projection

- The **\mathcal{W} -projective characters** are expressible in terms of the $c=1$ $u(1)$ characters [$n = pp'$]

$$\chi[\mathcal{G}_{r,s}](q) = d_{r,s} \varkappa_{r,s}^n(q), \quad \varkappa_{r,s}^n(q) = \frac{1}{2} [\varkappa_{rp'-sp}^n(q) + \varkappa_{rp'+sp}^n(q)], \quad 0 \leq r \leq p; \quad 0 \leq s \leq p'$$

- The intertwining similarity implements a change of basis to symmetric and anti-symmetric combinations of $\varkappa_{rp'-sp}^n(q)$ and $\varkappa_{rp'+sp}^n(q)$, **projecting out** the anti-symmetric combinations

$$pp' + 1 - \frac{1}{2}(p-1)(p'-1) = \frac{1}{2}(p+1)(p'+1)$$

Verlinde Formula

- The anti-symmetric combinations are ordinary minimal Virasoro characters

$$ch_{r,s}(q) = \chi_{rp'-sp}^n(q) - \chi_{rp'+sp}^n(q)$$

- They **do** appear in the modular invariant partition functions.

Modular transformations

- The modular matrix $S = S^{p,p'} (S^2 = I, S \neq S^T)$ of the \mathcal{W} -projective characters forms a representation of the modular group. [Feigin-Gainutdinov-Semikhatov-Tipunin (2006)]

Standard Verlinde algebra

$$N_i N_j = \sum_{k=0}^{\frac{1}{2}(p+1)(p'+1)-1} N_{ij}^k N_k$$

where i, j, k run over allowed pairs (r, s) in the projective Grothendieck Kac table, while

$$N_{ij}^k = (N_i)_j^k = \sum_{m=0}^{\frac{1}{2}(p+1)(p'+1)-1} \frac{S_{im} S_{jm} S_{mk}}{S_{0m}} \in \mathbb{N}_0$$

- This is **precisely** the graph algebra of the twisted coset graph $A_{p,p'}^{(2)} = A_p^{(2)} \otimes A_{p'}^{(2)} / \mathbb{Z}_2$.
- The modular matrix **diagonalizes** the multiplication rules of the \mathcal{W} -projective Grothendieck ring.

Conformal Partition Functions Revisited

- The conformal partition functions for \mathcal{W} -projective boundary conditions are given by

$$Z_{i|j}(q) = \sum_{k=0}^{\frac{1}{2}(p+1)(p'+1)-1} N_{ij}^k (F\chi[\mathcal{G}])_k(q)$$

where

$$F = \begin{cases} \sum_{r, s \text{ odd}} N_{r,s}, & p + p' \text{ odd} \\ \sum_{\substack{r+s \text{ even} \\ s \leq (p'-1)/2}} N_{r,s}, & p + p' \text{ even} \end{cases}$$

acts on the column of characters $\chi[\mathcal{G}] = \{\chi[\mathcal{G}_{r,s}]\}$.

- Explicitly, the ‘block characters’ are

$$(F\chi[\mathcal{G}])_{r,s}(q) = \sum_{r''=\epsilon(p+r+1), \text{ by } 2}^{p-\epsilon(r+1)} \sum_{s''=\epsilon(p'+s+1), \text{ by } 2}^{p'-\epsilon(s+1)} d_{r,s} \chi[\mathcal{G}_{r'',s''}](q)$$

where ϵ is the parity

$$\epsilon(r) = r \pmod{2}$$

Bulk Modular Invariants in $\mathcal{WLM}(p, p')$

Sesquilinear form in \mathcal{W} -irreducible characters

$$Z = \sum_{i,j \in \text{Irr}} M_{ij} \chi_i(q) \chi_j(\bar{q}), \quad |\text{Irr}| = 2pp' + \frac{1}{2}(p-1)(p'-1)$$

Proposition: An S -invariant sesquilinear form in \mathcal{W} -irreducible characters can be expressed as a sesquilinear form in \mathcal{W} -projective and minimal characters.

- This is equi-numerous with the linearly independent $u(1)$ characters $[c = 1, R = \sqrt{2p'/p}]$

$$pp' + 1 = \frac{1}{2}(p+1)(p'+1) + \frac{1}{2}(p-1)(p'-1)$$

Conjecture: A modular invariant sesquilinear form in \mathcal{W} -projective and minimal characters decomposes into a sum of separate modular invariant sesquilinear forms in \mathcal{W} -projective and minimal characters

$$Z = Z^{\text{Proj}} + Z^{\text{Min}}$$

Evidence: Verified for all $p < p'$ coprime satisfying $pp' \leq 225$.

Projective and Minimal A -Type Modular Invariants

Projective part

- Our coset graphs provide new expressions for the diagonal A -type modular invariants in \mathcal{W} -projective characters considered by FGST (2006) and Wood (2010)

$$Z_{p,p'}^{\text{Proj}}(q) = \frac{1}{2} \sum_{r=0}^p \sum_{s=0}^{p'} d_{r,s} |\varkappa_{r,s}^n(q)|^2 = \frac{1}{2} \sum_{r=0}^p \sum_{s=0}^{p'} \frac{1}{d_{r,s}} |\chi[\mathcal{G}_{r,s}](q)|^2 = \sum_{\hat{r}=0}^{2p-1} \sum_{\hat{s}=0}^{p'-1} \frac{1}{d_{\hat{r},\hat{s}}^2} |\chi[\hat{\mathcal{P}}_{\hat{r},\hat{s}}](q)|^2$$

The factors of $\frac{1}{2}$ in the first two double sums reflect the \mathbb{Z}_2 Kac-table symmetry, $|\varkappa_{0,0}(q)|^2$ appears with multiplicity 1 and all multiplicities are non-negative integers.

- The modular invariance of $Z_{p,p'}^{\text{Proj}}(q)$ follows from the identities

$$Z_{p,p'}^{\text{Proj}}(q) = \frac{1}{2} [Z_{1,pp'}^{\text{Circ}}(q) + Z_{p,p'}^{\text{Circ}}(q)], \quad Z_{1,p'}^{\text{Proj}}(q) = Z_{1,p'}^{\text{Circ}}(q)$$

Minimal part

- The coset graphs also encode the rational minimal A -type modular invariants

$$Z_{p,p'}^{\text{Min}}(q) = \frac{1}{2} \sum_{r=1}^{p-1} \sum_{s=1}^{p'-1} |\text{ch}_{r,s}(q)|^2 = \frac{1}{2} \sum_{r=0}^p \sum_{s=0}^{p'} |\varkappa_{rp'-sp}^n(q) - \varkappa_{rp'+sp}^n(q)|^2$$

where the factors of $\frac{1}{2}$ reflect a \mathbb{Z}_2 Kac-table symmetry. In terms of the $c = 1$ boson

$$Z_{p,p'}^{\text{Min}}(q) = \frac{1}{2} [Z_{1,pp'}^{\text{Circ}}(q) - Z_{p,p'}^{\text{Circ}}(q)], \quad Z_{1,p'}^{\text{Min}}(q) = 0$$

A-Type $\mathcal{WLM}(p, p')$ Modular Invariants

- Assuming $Z^{\text{Proj}} \neq 0$ and that the operator with minimal conformal weight enters exactly once, the A -type $\mathcal{WLM}(p, p')$ modular invariant partition functions must be of the form

$$Z_{p,p'}(q) = Z_{p,p'}^{\text{Proj}}(q) + n_{p,p'} Z_{p,p'}^{\text{Min}}(q), \quad n_{p,p'} \in \mathbb{Z}$$

- For $p = 1$

$$Z_{1,p'}^{\text{Min}}(q) = 0 \quad \Rightarrow \quad Z_{p,p'}(q) = Z_{p,p'}^{\text{Proj}}(q)$$

Conjecture: For $p > 1$, the physical modular invariants of A -type $\mathcal{WLM}(p, p')$ are given by

$$n_{p,p'} = 2$$

- Examples of modular invariant partition functions

$$Z_{1,2}(q) = |\varkappa_{-\frac{1}{8}}(q)|^2 + 2|\varkappa_0(q)|^2 + |\varkappa_{\frac{3}{8}}(q)|^2$$

$$Z_{2,3}(q) = |\varkappa_{-\frac{1}{24}}(q)|^2 + |\varkappa_0(q) + \varkappa_1(q)|^2 + 2|\varkappa_{\frac{1}{8}}(q)|^2 + 2|\varkappa_{\frac{1}{3}}(q)|^2 + 2|\varkappa_{\frac{5}{8}}(q)|^2 + |\varkappa_{\frac{35}{24}}(q)|^2 + 2|\text{ch}_0(q)|^2$$

$$Z_{3,4}(q) = |\varkappa_{-\frac{1}{48}}(q)|^2 + |\varkappa_0(q) + \varkappa_1(q)|^2 + |\varkappa_{\frac{1}{16}}(q) + \varkappa_{\frac{33}{16}}(q)|^2 + 2|\varkappa_{\frac{1}{6}}(q)|^2 + 2|\varkappa_{\frac{5}{16}}(q)|^2$$

$$+ |\varkappa_{\frac{1}{2}}(q) + \varkappa_{\frac{5}{2}}(q)|^2 + 2|\varkappa_{\frac{35}{48}}(q)|^2 + 2|\varkappa_{\frac{21}{16}}(q)|^2 + 2|\varkappa_{\frac{5}{3}}(q)|^2 + |\varkappa_{\frac{143}{48}}(q)|^2$$

$$+ 2 \{ |\text{ch}_0(q)|^2 + |\text{ch}_{\frac{1}{16}}(q)|^2 + |\text{ch}_{\frac{1}{2}}(q)|^2 \}$$

Supporting Evidence

- For $n_{2,3} = 2$, we recover the $\mathcal{WLM}(2,3)$ modular invariant partition function of Gaberdiel-Runkel-Wood (2011).
- As in the $\mathcal{WLM}(2,3)$ case of GRW 2011, we find generally that for $n_{p,p'} = 2$

$$Z_{p,p'}(q) = \sum_{i \in \text{Irr}} \chi_i(q) \chi[\mathcal{P}_i](\bar{q})$$

where the sum is over all \mathcal{W} -irreducible representations. As demonstrated above, this partition function is in fact left-right symmetric when expanded in $u(1)$ characters.

- In terms of the $c = 1$ boson

$$Z_{p,p'}(q) = Z_{1,pp'}^{\text{Circ}}(q) + (n_{p,p'} - 1) Z_{p,p'}^{\text{Min}}(q)$$

Our conjecture thus yields a **minimal extension** of the compactified boson $Z_{1,pp'}^{\text{Circ}}(q)$ by adding the partition function for the **rational minimal model** with coefficient

$$n_{p,p'} - 1 = 1$$

as encoded in the coset graph viewed as a folded $A_{pp'}^{(2)}$ graph.

Summary and Open Questions

- Infinite series of Yang-Baxter integrable lattice models of non-local statistical mechanics.
- Description in terms of planar Temperley-Lieb algebras.
- Logarithmic CFTs with infinitely many indecomposable (higher-rank) representations.
- \mathcal{W} -projective representations emerge as **building blocks** akin to the role played by irreducible representations in rational CFTs.
- The \mathcal{W} -projective Grothendieck ring leads to a **standard** Verlinde-like formula involving **twisted** affine coset graphs.
- Compact formulas for the conformal partition functions with \mathcal{W} -projective boundary conditions.
- A -type $\mathcal{WLM}(p, p')$ modular invariants encoded by twisted affine coset graphs.
- The **boundary and bulk** A -type logarithmic minimal models are ‘classified’ by the **same** twisted affine coset graphs.

- Will an extension of Gaberdiel-Runkel-Wood for $c = 0$ confirm $n_{p,p'} = 2$?
- A - D - E classification of the logarithmic Verlinde graph fusion algebras à la Behrend-Pearce-Petkova-Zuber?
- A - D - E classification of the logarithmic modular invariant partition functions à la Cappelli-Itzykson-Zuber?
- Logarithmic coset construction à la Goddard-Kent-Olive?
- D - and E -type logarithmic minimal models on the lattice?