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Motivations : Topological insulators

An insulator has a (large) gap separating a fully filled valence band
and an empty conduction band

Atomic insulator : solid
argon

Semiconductor : Si

How to define equivalent insulators ? Find a continuous
transformation from one Bloch Hamiltonian H0(~k) to another
H1(~k) without closing the gap

Vacuum is the same kind of insulator than solid argon with a
gap 2mec

2

Are all insulators equivalent to the vacuum ? No



Motivations : Topological insulators

What is topological order ?

cannot be described by symmetry breaking (cannot use
Ginzburg-Landau theory)
some physical quantities are given by a “topological invariant”
(think about the surface genus)
a bulk gapped system (i.e. insulator) system feeling the
topology (degenerate ground state, cannot be lifted by local
measurement).
naive picture : normal strip versus Moebius strip
a famous example : Quantum Hall Effect (QHE)

TI theoretically predicted and experimentally observed in the past
4 years missed by decades of band theory

2D TI :
3D TI :



Motivations : FTI

A rich physics emerge when turning on strong interaction in QHE

What about Topological insulators ?
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Fractional Quantum Hall Effect



Landau level
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Cyclotron frequency : ωc = eB
m

Filling factor : ν = hn
eB = N

Nφ

At ν = n, n completely filled levels
and a energy gap ~ωc

Integer filling : a (Z) topological
insulator with a perfectly flat band
/ perfectly flat Berry curvature !

Partial filling + interaction →
FQHE

Lowest Landau level (ν < 1) :
zm exp

(
−|z |2/4l2

)
N-body wave function :
Ψ = P(z1, ..., zN) exp(−∑ |zi |2/4)



The Laughlin wave function

A (very) good approximation of the ground state at ν = 1
3

ΨL(z1, ...zN) =
∏
i<j

(zi − zj)
3e−

P
i
|zi |2
4l2

x

ρ

The Laughlin state is the unique (on genus zero surface)
densest state that screens the short range (p-wave) repulsive
interaction.

Topological state : the degeneracy of the densest state
depends on the surface genus (sphere, torus, ...)



The Laughlin wave function : quasihole

Add one flux quantum at z0 = one quasi-hole

Ψqh(z1, ...zN) =
∏
i

(z0 − zi ) ΨL(z1, ...zN)

ρ

x

Locally, create one quasi-hole with fractional charge +e
3

“Wilczek” approach : quasi-holes obey fractional statistics

Adding quasiholes/flux quanta increases the size of the droplet

For given number of particles and flux quanta, there is a
specific number of qh states that one can write

These numbers/degeneracies can be classified with respect
some quantum number (angular momentum Lz) and are a
fingerprint of the phase (related to the statistics of the
excitations).



Fractional Chern Insulator



Interacting Chern insulators

A Chern insulator is a zero magnetic field version of the QHE
(Haldane, 88)

Basic building block of 2D Z2 topological insulator (half of it)

Is there a zero magnetic field equivalent of the FQHE ? →
Fractional Chern Insulator

Several proposals for a CI with nearly flat band (K. Sun et al.,
Neupert et al., E. Tang et al.) that may lead to FCI

But “nearly” flat band is not crucial for FCI like flat band is
not crucial for FQHE (think about disorder)



The checkerboard lattice model

t1 -t2

t2

-t2

t2

K. Sun, Z.C. Gu, H. Katsura, S. Das
Sarma, Phys. Rev. Lett. 106, 236803
(2011).

H1 =
∑

k(c†kA, c
†
kB)h1(k)(ckA, ckB)T

h1(k) =
∑

i di (k)σi

dx(k) =
4t1 cos(φ) cos(kx/2) cos(ky/2)

dy (k) = 4t1 sin(φ) sin(kx/2) sin(ky/2)

dz(k) = 2t2(cos(kx)− cos(ky ))

φ, t1 and t2 parameters (plus second
NNN) can be optimized to get a
nearly flat band



The flat band limit
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The checkerboard lattice model
has a nearly flat valence band.

δ � Ec � ∆ (Ec being the
interaction energy scale)

We can deform continuously the
band structure to have a
perfectly flat valence band

and project the system onto the
lowest band, similar to the
projection onto the lowest
Landau level



Two body interaction and the checkerboard lattice

Our goal : stabilize a Laughlin-like state at ν = 1/3.
A key property : the Laughlin state is the unique densest state
that screens the short range repulsive interaction.

Hint =
∑
<i ,j>

ninj

A nearest neighbor repulsion
should mimic the FQH
interaction.

We give the same energy
penalty to any of these
Red-Blue clusters

Sheng et al. Nature
Communications 2, 389 (2011),
Neupert et al. Phys. Rev. Lett.
106, 236804 (2011)



The ν = 1/3 filling factor

An almost threefold degenerate ground state as you expect for the
Laughlin state on a torus (here lattice with periodic BC)
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But 3fold degeneracy is not enough to prove that you have
Laughlin-like physics there.



FCI vs FQHE
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FQHE on torus

The degeneracy is not perfect. The Berry curvature density is not
flat and thus we don’t have an exact magnetic translation algebra
(see S. A. Parameswaran, R. Roy, S. L. Sondhi, arXiv :1106.4025)



Gap

Many-body gap can actually increase with the number of
particles due to aspect ratio issues.

Finite size scaling not and not monotonic reliable because of
aspect ratio in the thermodynamic limit.

The 3-fold degeneracy at filling 1/3 in the continuum exists
for any potential and is not a hallmark of the FQH state. On
the lattice, 3-fold degeneracy at filling 1/3 means more than
in the continuum, but still not much
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Quasihole excitations

The form of the groundstate of the Chern insulator at filling
1/3 is not exactly Laughlin-like. However, the universal
properties SHOULD be.
The hallmark of FQH effect is the existence of fractional
statistics quasiholes.
In the continuum FQH, Quasiholes are zero modes of a model
Hamiltonians - they are really groundstates but at lower filling.
In our case, for generic Hamiltonian, we have a gap from a low
energy manifold (quasihole states) to higher generic states.
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Direct comparison

Question : “Why not using overlaps ?”
Possible answers :

high overlaps do not guarantee that you are in the same phase

we don’t know how to write the Laughlin state on such a
lattice

we don’t know if there is an exact hamiltonian for the
Laughlin state on such a lattice

we cannot compute an overlap but we can compute an
entanglement spectrum...



Particle entanglement spectrum

Particle cut : start with the ground state Ψ for N particles,
remove N − NA, keep NA

ρA(x1, ..., xNA
; x ′1, ..., x

′
NA

)

=

∫
...

∫
dxNA+1...dxN Ψ∗(x1, ..., xNA

, xNA+1, ..., xN)

× Ψ(x ′1, ..., x
′
NA
, xNA+1, ..., xN)

“Textbook expression” for the reduced density matrix.
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Laughlin ν = 1/3 state N = 8,
NA = 4

The particle ES reveals the
fingerprint of the phase.

This information that comes from
the bulk excitations is encoded
within the groundstate !

If the FCI at ν = 1/3 is a
Laughlin-like phase, we should
observe the Laughlin counting.



Particle entanglement spectrum
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PES for N = 12, NA = 4, 58905 states below the gap as expected



From topological to trivial insulator

One can go to a trivial insulator, adding a +M potential on A sites
and −M potential on B sites. A perfect (atomic) insulator if
M →∞.
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Emergent Symmetries in the Chern Insulator

In FCIs, there is in principle no exact
degeneracy (apart from the lattice
symmetries).

But both the low energy part of the
energy and entanglement spectra exhibit
an emergent translational symmetry.

The momentum quantum numbers of the
FCI can be deduced by folding the FQH
Brillouin zone.

FQH : m = GCD(N,Nφ = Nx × Ny ),
FCI : nx = GCD(N,Nx),
ny = GCD(N,Ny )

FQHE BZ

K  =(0,...,m-1)x

K  =(0,...,m-1)y

FCI BZ

K  =(0,...,n  -1)x

K  =(0,...,n  -1)y

x

y

FOLDING



FQHE vs FCI



Some questions about the FCIs

What is specific about the checkerboard lattice model ?

What are the important ingredients ?

Any evidence for other fractions ?

p/2p + 1 series ? Composite fermions ?
Moore-Read / Read-Rezayi states

Is there any FQHE feature missing on the FCI side ?



Four other models
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FCI on the Haldane model

ν = 1/3 on the Haldane model with short range repulsion.
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We can tune t1, t2 and Φ to make a
flat band model (Neupert et al.)
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FCI on the Haldane model

How does the flatness of the Berry curvature affects the FCI
spectrum ?
Look at N = 8, ν = 1/3, tuning Φ tracking σB, the deviation to
the average Berry curvature (1/2π)
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The flatness of the Berry curvature helps but not as much as
expected



Benchmarking the FCIs
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show a weak FCI phase at ν = 1/3
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exhibit a clear Laughlin like phase.

Two versions of the Kagome model : the
one with the flattest band (with NNN) is
the weakest FCI.

A flat band model is not a guarantee to
get a good FCI
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The Moore-Read state

Prototype of the non-abelian state that may describe the
incompressible fraction ν = 5/2. In the FQHE, the MR state can
be exactly produced using a three-body interaction.
What about the FCI ?

Two types of nearest neighbor
3 particle cluster :

Blue-Blue-Red

Red-Red-Blue

We give the same energy
penalty to any of these clusters



The Moore-Read state

Energy spectrum at ν = 1/2 for N = 12,Nx = 6,Ny = 4
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6-fold almost degenerate groundstate (2 at kx = ky = 0, 4 at
kx = 0, ky = 4), as predicted by the FQHE to FCI mapping !



The Moore-Read state

Particle entanglement spectrum at ν = 1/2 for
N = 12,Nx = 6,Ny = 4,NA = 5
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1277 states in each momentum sector below the dotted line.



The Moore-Read state

Energy spectrum at ν = 1/2 + one flux quantum for
N = 12,Nx = 5,Ny = 5
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7 states in each momentum sector below the dotted line.
Can we stabilize the MR state with a two-body interaction ? Work
in progress...



The Read-Rezayi states

RRk=3

RRk=4

MR

Lg

We can cook-up an interaction
for each RR states.

works like a charm for the
RR k = 3.

not completely clear for
the RR k = 4. Finite size
effect ?

MR do not show up in the
Haldane and 1/2 HgTe
models

Strong MR phase in the
Kagome and ruby models.



Particle-hole symmetry

An important feature of the FQHE (with a two body interaction) :
ν = 1/3↔ ν = 2/3
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The p-h symmetry is absent from the FCI model, it might be
restored at large N

FCI are not as boring as expected



Some questions about the FCI

What is specific about the checkerboard lattice model ? not
really

What are the important ingredients ? Don’t know

Any evidence for other fractions ?

p/2p + 1 series ? Composite fermions ? TODO
Moore-Read / Read-Rezayi states yes !

Is there any FQHE feature missing on the FCI side ?
particle-hole symmetry



Conclusion

Fractional topological insulator at zero magnetic field exists as
a proof of principle.

There is a counting principles for the groundstate and the
excitations.

Beyond ν = 1/3 : ν = 1/5, “ν = 5/2” (at least with three
body interaction). Other fractions ?

What are the good ingredients for an FCI ?

First time entanglement spectrum is used to find information
about a new state of matter whose ground-state wavefunction
is not known.

Entanglement spectrum powerful tool to understand strongly
interacting phases of matter.

Roadmap : find one such insulator experimentally, 2D-3D
fractional topological insulators ?




