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Dimers : a classical problem

Example of dimer covering of 9 x 18 grid :
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There are 4.653 x 10'® other possible ones ...

ACFTA — Paris — Oct 2011

E:




The counting solved in 60s : Kasteleyn, Fisher, Temperley, Stephenson, Lieb,
Ferdinand, Wu, Hartwig,

Various methods, among which Lieb’s formulation in terms of Transfer Matrix.
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Solution of the Dimer Problem by the Transfer Matrix Method

Eruiorr H, Ligs*
Physics Department, Northeastern University, Boston, Massachusetts

(Received 25 May 1967)

It is shown how the monomer-dimer problem can be formulated in terms of a transfer matrix, and
hence in terms of simple spin operators as was originally done for the Ising problem. Thus, we rederive
the solution to the pure dimer problem without using Pfaffians. The solution is extremely simple once one

sees how to formulate the transfer matrix,

1. INTRODUCTION

INCE Onsager's solution' of the two-dimensional
Ising model in 1944, there has been a great deal of
activity in the general area of nearest neighbor planar
lattice problems. Basically, two approaches have been
used.? One is the “algebraic” or “transfer matrix”
method (used by Onsager) which focuses attention on
the manner in which two neighboring rows are
connected to each other. The second is the so-called
“combinatorial method” whereby one studies graphs
on the lattice as a whole. This was first used by Kac
and Ward?® for the Ising problem.

While Pfaffians have been used to rederive the
solution to the Ising problem,® no one has yet taken
the complementary step of solving the dimer problem
by the transfer matrix method. The purpose of this
note is to eliminate this gap. Elsewhere,® it has been
shown how the transfer matrix method for Ising-like
problems can be reduced to a few simple steps involv-
ing only fermion creation and annihilation operators.
The dimer problem is likewise simple, using the
transfer matrix. We also show how the more difficult
and unsolved monomer-dimer problem can be
formulated this way. The analogy with the problem
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The counting solved in 60s : Kasteleyn, Fisher, Temperley, Stephenson, Lieb,
Ferdinand, Wu, Hartwig, ...

Various methods, among which Lieb’s formulation in terms of Transfer Matrix.

Replace dimers by arrows attached to sites :
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Up | arrow means presence of a dimer pointing upward
Down | arrow means absence of a dimer pointing up
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Transfer matrix

Attach each site an arrow, | = (é) or | = (?)

Every site carries space C? :

afz((f é):T\il, o = (8 é) L1, agz((f 8):T~w

Row of size N carries (C?)®" : row-to—row transfer matrix is 2/N-dimensional,

V=1L (1+ao,0,,) [[or on (C3)*

o ° \‘l
NTLE 03892

o =0
o =0

vy
+a4¢

0= 0

by T

Thus : Vittorn =1, Vi1 =«
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Partition function

The Transfer Matrix
V() —exp( Z o, azﬂ) Ha

builds all possible arrow/dimer configs of a row from previous row; its entries are
monomials in a with Veonfig2 configl = a® if config2 has k horizontal dimers.

Likewise, from initial row config, V' constructs all possible configs m rows higher,
including multiplicities; entries of V" are N-polynomials in a.

Note : exp (« Zf;l ...) and exp (« Z,f\:ll ...) mean periodic resp. open b.c. horiz.

Depending on vertical b.c.,
periodic vert. :  ZyN(Q) =3 qier coy. @70 =Tr VM (torus/cyl)

open vert. : ZM,N(OZ) — Zdimer v a#hor

=3 iy (b LIV i) = (L LIV L) (eyl/rect)
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We are in business ... for dimers

This Transfer Matrix is good starting point to study the dimer model itself, believed
to be described by CFT with ¢ = —2, see later.

Don't know, however note that V' («) for general « is not hermitian (nor normal),

T
Via)t = lexp (a Z az-_ai;l) Haf]
— 1_[(7:;.’j exp (a* Z aja;;l)
— exp (a* o, UZ“) Ha

)

But V() is real symmetric for real «, hence fully diagonalizable ... (

)
Note also : [V («), V(a")] # 0 ...
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... hot for trees !

We are primarily interested in spanning trees !

Main motivation :

o sandpile model is usually defined in terms of height variables, but completely
equivalent formulation in terms of spanning trees

o we know of lattice bulk observables which form log pairs in scaling limit;
otherwise field content is poorly understood

o which types of indecomposable reps appear ?

Main question is :
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Dimers and trees ...

Well-known relation between dimers and spanning trees (Temperley, 1974).
For simplicity, take an even—by—even grid, f.i. 8 x 10.
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Dimers and trees ...

Well-known relation between dimers and spanning trees (Temperley, 1974).
For simplicity, take an even—by—even grid, f.i. 8 x 10.

e
=0330000
=i=p={p

-/

R N W ks OO N

123 45 6 7 8 910
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Dimers and trees ...

Well-known relation between dimers and spanning trees (Temperley, 1974).
For simplicity, take an even—by—even grid, f.i. 8 x 10.
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Dimers and trees ...

Well-known relation between dimers and spanning trees (Temperley, 1974).
For simplicity, take an even—by—even grid, f.i. 8 x 10.
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Dimers and trees ...

Well-known relation between dimers and spanning trees (Temperley, 1974).
For simplicity, take an even—by—even grid, f.i. 8 x 10.

N W ks OOy N

1 23 45 6 7 8 910

ﬁ

\/
ﬁ

-/

*on Lodd
(wired /open b.c. on top and right,
closed on bottom and left)

* Loops would encircle odd number of sites on original lattice
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Dimers and trees ...

Well-known relation between dimers and spanning trees (Temperley, 1974).
For simplicity, take an even—by—even grid, f.i. 8 x 10.

[ -
.---
=Vogg

N W ks OOy N

1 23 45 6 7 8 910

rooted spanning tree on Leyen
(wired /open b.c. on bottom and left,
closed on top and right)
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Dimers and trees ...

Well-known relation between dimers and spanning trees (Temperley, 1974).

For simplicity, take an even—by—even grid, f.i. 8 x 10.
( < j |

=U80=007
Q%J

U &b &b @&
e Parities of M, N determine the b.c.'s : «— closed and < open

=99000000
=1=1=0

-/

+L+

N W ks OOy N

1 23 45 6 7 8 910

e Can use either blue or red trees/dimers :

(blue lines and red lines cannot cross)
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What on a cylinder ?

Take even—by—even 2M x 2N grid, with horizontal periodicity.
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What on a cylinder ?

Take even—by—even 2M x 2N grid, with horizontal periodicity.

=005,
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R N W ks OO0 N @
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What on a cylinder ?

Take even—by—even 2M x 2N grid, with horizontal periodicity.

1 2345678 9 10 O
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What on a cylinder ?

Take even—by—even 2M x 2N grid, with horizontal periodicity.

=msSE ey
6 O.--- ,.( ..... o G-t .
i UIU 4/ I e
3 .O.:C J’(j
i C)OC)'C)V. T f
12345678910 O
e the roots are on and bottom
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What on a cylinder ?

Take even—by—even 2M x 2N grid, with horizontal periodicity.

=msSE ey
6 O.--- ,.( ..... o G-t .
i UIU -4 NI e
3 .O.:C J’J
i C)OC)'C)V. T f
12345678910 O
e the roots are on and bottom

e no longer trees : non-contractible loops, winding number = +1 —
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What on a cylinder ?

Take even—by—even 2M x 2N grid, with horizontal periodicity.
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e the roots are on

and bottom
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e no longer trees : non-contractible loops, winding number = +1 —

e two intertwining spanning webs, one blue, one red
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What on a cylinder ?

Take even—by—even 2M x 2N grid, with horizontal periodicity.
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e no longer trees : non-contractible loops, winding number = +1 —

e two intertwining spanning webs, one blue, one red

e arrows flow to roots or to loops

—
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What on a cylinder ?

Take even—by—even 2M x 2N grid, with horizontal periodicity.

- S00S052 T LTNTE
6 O.---U. ,.( ..... o G-t .
i UlU -4 NI e
3 .O.:C J’J
i C)OC)'C)V. T f
12345678910 O
e the roots are on and bottom

e no longer trees : non-contractible loops, winding number = +1 —
e two intertwining spanning webs, one blue, one red
e arrows flow to roots or to loops —

e spanning web of one colour fixes the other colour up to orientation of loops
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What on a cylinder ?

Take even—by—even 2M x 2N grid, with horizontal periodicity.

8 -U.U-.-
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e the roots are on and bottom
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e no longer trees : non-contractible loops, winding number = +1 —

e two intertwining spanning webs, one blue, one red

e arrows flow to roots or to loops

e spanning web of one colour fixes the other colour up to orientation of loops
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Counting the loops

Dimers on 2M x 2N lattice L — blue spanning web on L,qq (or red on Leyen)-

Group configs according to number of loops 2L (L blue and L red) :

ZS}\?ZI}% = total number of dimer configs

M
= Z #{dimer configs on 2M x 2N, with 2L loops}
L=0
M
= Z oL . #{blue spanning webs on M x N, with L loops}
L=0

M
— Z 2t . Z]SWV,VN(L)
L=0

Need to disantengle the various contributions for fixed L ...
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Managing the loops

Assign alternating weights a = w'/" and a=! = w= " to horizontal dimers, as :

o a a_lo a a_lo a a_lo a a_lo a a1

a,_l. a a,_l. a a_]‘. a a_]‘. a a,_l. a

oM o a a_lo a a_lo a a_lo a a_lo a a1

a,_l. a a,_l. a a_l. a a_l. a a,_l. a

o a a_lo a a_lo a a_lo a a_lo a a1

2N
: . right : wt/N
Dimer/arrow pointing to oft ( 8EtS weight w—1/N [ whether blue or red

—> a loop oriented left — right ets a weight v '
P ofl left <+ right & & w
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Moreover, horizontal dimers/arrows not in loops, bring total contribution equal to 1 !

N —

— 27

Left blue arrows and right red arrows must alternate vertically (and vice-versa) :
as they carry inverse weights, their contributions cancel out.
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Counting the loops (cont’d)

Dimers on 2M x 2N lattice L — blue spanning web on L,qq (or red on Leyen)-

Group configs according to number of loops 2L (L blue and L red) :

ZS}\?SI}% = total number of dimer configs

M
= Z #{dimer configs on 2M x 2N, with 2L loops}
L=0
M
= Z oL . #{blue spanning webs on M x N, with L loops}
L=0

M
— Z 2t . Z]SWV,VN(L)
L=0
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Counting the loops (cont’d)

Dimers on 2M x 2N lattice L — blue spanning web on L,qq (or red on Leyen)-
Group configs according to number of loops 2L (L blue and L red) :

Zgﬁ%lﬁ(w) = total number of dimer configs appropr. weighted

M-

#{weighted dimer configs, with 2L loops}

I
@)

Ms

configs 2L loops, configs 2L loops, B
#{ | } w?l o { _ } p2L2
all left-right all but 1 left-right

configs 2L loops, .
+#[ _ }-w2L4+...
all but 2 left-right

I
)

M=

configs 2L loops, 2L , (2Ly, 2L—2 | (2L\  2L—4
#| Pt () w2 () wE
all left-right

h
I

0

1

-

L loops

I
@}

M
#[configs 2L Ioops] _1\2L blue SW with w+w
L=0

ACFTA — Paris — Oct 2011

13



Partition functions for loops

Gives the partition functions for spanning webs with fixed number loops in terms of
dimer configurations on (two times) denser grid:

M
imers blue SW with +w™ +w™
ZERw) =3 # 7 o (e =3 AN ()

e Dimer partition function (lhs) can be computed in terms of a transfer matrix.

e Allows to compute all fixed-number-of-loops partition functions for spanning webs,

but

e [he choice w =1 kills all loops !!
Transfer matrix for weighted dimers becomes transfer matrix for spanning trees ...

e Keep general weight w and set w = expinz :

z2=0 —— usual dimer model

1 '
Z = 5 — spanning trees
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Transfer matrix for weighted dimers

a a | a a — . 1/N _ _irz/N
@ @ @ @ @ a=w — €

Two-step transfer matrix is 4 x 4Y:  T(w) =V (w™ 1) V(w)  with

2N 2N - 2N
V(w) = exp [aal_ag +a tos o5 +. ] H o; = exp (Z al=1 02._07;1) H oy
=1 =1 =1
Hence
2N 2N
_ —1)" - - —1) 4+
T(w) = exp (Z o=V o (7z'+1) exp (Z o=V o (77;+1>
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Spectrum

Transfer matrix T'(w) = V(w™1!) V(w) Hermitian (diagonalizable) for w on unit circle
TH(w) = [V(w™) V(w)]' = V(w) Vi(w™) = V(w) V(e

Away from unit circle, no longer Hermitian nor even normal, but fully diagonalizable,
except at a finite set of isolated points.

Standard techniques to diagonalize (Jordan-Wigner, see Lieb):

N-1
yodd — H [1 or 1 or (ozk+\/1+oz,2€)2 or (ozk—\/l%—oz,%)ﬂ
odd
k=0
N-1 ; ;
rever =TT [1 or 1 or (B +4/1+6)" or (B, —/1+67) }
E—0 even
with o, = sin Z%22) and 8, = sin W(k+]\7+%). (Remember a = w'/N and w = €'™*))

OK for all w, z provided o7 # —1 and 37 # —1.
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Spectrum generating functions

Want to form : Z(z) =S M =% e ME - ()\odd)M LY ()\even)M

and look at universal part when M, N — oc.

Odd part reads (o, = sin 7T”HZ))

N—-1
zoU(z) = H{1+1—|—<ak+\/1+0z2)2M+(ak—\/1+a%)2M}
k=0

4GMN) 2 03(q%|q) + 03 (q%|q) _ oxMN
q 5 (g=e )-
n%(q)

odd

— exp(
s

Even part follows from z — z + %

4GMN> .2 03(q%|q) + 03 (q%|q)
q 2
n%(q)

Where 61 (y|q) = —i\/gql/8 anl(l —q") ano (1—yg" ™)1 -y tg™) ...

zeven (Z) — exp (
s
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Spectrum generating functions

Full conformal spectrum generating function thus reads

2 0% + 05 + 03 + 6% (o)
21?2 '

Z(zlq) = q

Expanding

Z(z Z Z5W(L; q) (wH“ Z Z5W(L; q) (V2 cosz) "
L=0

allows to compute

Z°W(L; q) = spectrum generating function for spanning webs containing
exactly L non-contractible loops, wrapping once around

perimeter of cylinder.

Two simple cases: z = 0 for dimers, and z = % for spanning trees.
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Dimers

One recovers well-known result (Ferdinand 1967)

02 + 92 + 02
= 2T )
n

Zdimers (Q)

e Fully modular invariant: Z9™ers is the partition function for dimer model

on torus with module 7 =iM/N.

e Reproduces partition function for symplectic fermions (Gaberdiel-Kausch 1996)

ZUMS(q) = X (_18.-1/8) T X(3/8.3/8) T X

But not clear that equivalent : no trace here of Jordan ?

Lieb's transfer matrix is rich enough 7
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Spanning trees

Spectrum generating function reads

05 + 05 — 0%

Ztrees (q) — 2772

()

e Not modular invariant, as expected. Loops have been killed in one direction
but not in the other. Not a torus partition function for spanning trees (cannot be).

Partition function for something else ...

e In terms of W-characters at c = —2
7' (q) = X(-1/8,3/8) T X(3/8,—1/8) T X®r
appears as Zo-twisted partition function of Zdimers = 277
ZpPP = X(—1/8,—1/8) T X(3/8,3/8) T XR> ZpA = X(—1/8,—1/8) T X(3/8,3/8) — XR

ZAP = X(—1/8,3/8) T X(3/8,-1/8) T Xr>  ZaA = —X(—1/8,3/8) ~ X(3/8,-1/8) T X%
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Conclusion

o Lieb’s old transfer matrix revisited and adapted to keep track of loops

o Weighted TM shows no trace of Jordan cell, despite degeneracies at

finite size match expected degeneracies from logCFT (for dimers)

o Spanning trees (= sandpile): no modular invariance, as expected, but
surprising appearance of Zs-twisted partition function Z4p.

Physical meaning 77

o Weighted TM useful on cylinder: allows to compute partition functions

for fixed number of loops, but complicated expressions.
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