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Dimers : a classical problem
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Find all ways to cover a domain in Z
2 by rods/dimers, each covering 2 sites.

Example of dimer covering of 9× 18 grid :

There are 4.653× 1018 other possible ones ...
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The counting solved in 60s : Kasteleyn, Fisher, Temperley, Stephenson, Lieb,
Ferdinand, Wu, Hartwig, ...

Various methods, among which Lieb’s formulation in terms of Transfer Matrix.
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The counting solved in 60s : Kasteleyn, Fisher, Temperley, Stephenson, Lieb,
Ferdinand, Wu, Hartwig, ...

Various methods, among which Lieb’s formulation in terms of Transfer Matrix.

Replace dimers by arrows attached to sites :

Up ↑ arrow means presence of a dimer pointing upward
Down ↓ arrow means absence of a dimer pointing up



Transfer matrix
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Attach each site an arrow, ↑ ≡
(

1
0

)

or ↓ ≡
(

0
1

)

.

Every site carries space C2 :

σx
i =

(

0 1
1 0

)

: ↑⇋ ↓ , σ+
i =

(

0 1
0 0

)

: ↓ ↑ , σ−
i =

(

0 0
1 0

)

: ↑ ↓

Row of size N carries (C2)⊗N : row–to–row transfer matrix is 2N -dimensional,

V =
∏

i (1 + α σ
−
i σ

−
i+1)

∏

i σ
x
i on (C2)⊗N

−→ = −→ + α = + α

Thus : V↓↑↑ , ↑↓↓ = 1 , V↓↓↓ , ↑↓↓ = α



Partition function
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The Transfer Matrix

V (α) = exp
(

α
∑

i

σ−
i σ−

i+1

)

∏

i

σx
i

builds all possible arrow/dimer configs of a row from previous row; its entries are
monomials in α with Vconfig2,config1 = αk if config2 has k horizontal dimers.

Likewise, from initial row config, V m constructs all possible configs m rows higher,
including multiplicities; entries of V m are N-polynomials in α.

Note : exp (α
∑N

i=1 . . .) and exp (α
∑N−1

i=1 . . .) mean periodic resp. open b.c. horiz.

Depending on vertical b.c.,

periodic vert. : ZM,N (α) =
∑

dimer cov. α#hor = Tr V M (torus/cyl)

open vert. : ZM,N (α) =
∑

dimer cov. α#hor

=
∑

|in〉 〈↓ . . . ↓ |V M−1|in〉 = 〈↓ . . . ↓ |V M | ↓ . . . ↓〉 (cyl/rect)



We are in business ... for dimers
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This Transfer Matrix is good starting point to study the dimer model itself, believed
to be described by CFT with c = −2, see later.

Log CFT ??????

Don’t know, however note that V (α) for general α is not hermitian (nor normal),

V (α)† =

[

exp
(

α
∑

i

σ−
i σ−

i+1

)

∏

i

σx
i

]†

=
∏

i

σx
i exp

(

α∗
∑

i

σ+
i σ+

i+1

)

= exp
(

α∗
∑

i

σ−
i σ−

i+1

)

∏

i

σx
i = V (α∗)

But V (α) is real symmetric for real α, hence fully diagonalizable ... (L0 may still
have Jordan cells but here ??)

Note also : [V (α), V (α′)] 6= 0 ...



... not for trees !
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We are primarily interested in spanning trees !

Main motivation :

◦ sandpile model is usually defined in terms of height variables, but completely
equivalent formulation in terms of spanning trees

◦ we know of lattice bulk observables which form log pairs in scaling limit;
otherwise field content is poorly understood

◦ which types of indecomposable reps appear ?

Main question is :

Can we cook up a cylinder transfer matrix for spanning trees ?



Dimers and trees ...
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Well-known relation between dimers and spanning trees (Temperley, 1974).
For simplicity, take an even–by–even grid, f.i. 8× 10.
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Well-known relation between dimers and spanning trees (Temperley, 1974).
For simplicity, take an even–by–even grid, f.i. 8× 10.
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Well-known relation between dimers and spanning trees (Temperley, 1974).
For simplicity, take an even–by–even grid, f.i. 8× 10.
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Well-known relation between dimers and spanning trees (Temperley, 1974).
For simplicity, take an even–by–even grid, f.i. 8× 10.
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Dimers and trees ...
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Well-known relation between dimers and spanning trees (Temperley, 1974).
For simplicity, take an even–by–even grid, f.i. 8× 10.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 rooted spanning tree∗ on Lodd

(wired/open b.c. on top and right,

closed on bottom and left)

∗ Loops would encircle odd number of sites on original lattice



Dimers and trees ...
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Well-known relation between dimers and spanning trees (Temperley, 1974).
For simplicity, take an even–by–even grid, f.i. 8× 10.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

rooted spanning tree on Leven

(wired/open b.c. on bottom and left,

closed on top and right)



Dimers and trees ...
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Well-known relation between dimers and spanning trees (Temperley, 1974).
For simplicity, take an even–by–even grid, f.i. 8× 10.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

• Can use either blue or red trees/dimers : one colour completely fixes the other !

(blue lines and red lines cannot cross)

• Parities of M, N determine the b.c.’s : open ↔ closed and closed ↔ open



What on a cylinder ?
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Take even–by–even 2M × 2N grid, with horizontal periodicity.
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Take even–by–even 2M × 2N grid, with horizontal periodicity.
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Take even–by–even 2M × 2N grid, with horizontal periodicity.
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What on a cylinder ?
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Take even–by–even 2M × 2N grid, with horizontal periodicity.
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1 2 3 4 5 6 7 8 9 10

• the roots are on top and bottom



What on a cylinder ?
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Take even–by–even 2M × 2N grid, with horizontal periodicity.
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1 2 3 4 5 6 7 8 9 10

• the roots are on top and bottom

• no longer trees : non-contractible loops, winding number = ±1 −→ Spanning Webs
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Take even–by–even 2M × 2N grid, with horizontal periodicity.
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• the roots are on top and bottom

• no longer trees : non-contractible loops, winding number = ±1 −→ Spanning Webs

• two intertwining spanning webs, one blue, one red
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Take even–by–even 2M × 2N grid, with horizontal periodicity.
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• the roots are on top and bottom

• no longer trees : non-contractible loops, winding number = ±1 −→ Spanning Webs

• two intertwining spanning webs, one blue, one red

• arrows flow to roots or to loops =⇒ #{blue loops} = #{red loops}



What on a cylinder ?
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Take even–by–even 2M × 2N grid, with horizontal periodicity.

1
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1 2 3 4 5 6 7 8 9 10

• the roots are on top and bottom

• no longer trees : non-contractible loops, winding number = ±1 −→ Spanning Webs

• two intertwining spanning webs, one blue, one red

• arrows flow to roots or to loops =⇒ #{blue loops} = #{red loops}
• spanning web of one colour fixes the other colour up to orientation of loops



What on a cylinder ?
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Take even–by–even 2M × 2N grid, with horizontal periodicity.
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1 2 3 4 5 6 7 8 9 10

• the roots are on top and bottom

• no longer trees : non-contractible loops, winding number = ±1 −→ Spanning Webs

• two intertwining spanning webs, one blue, one red

• arrows flow to roots or to loops =⇒ #{blue loops} = #{red loops}
• spanning web of one colour fixes the other colour up to orientation of loops



Counting the loops
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Dimers on 2M × 2N lattice L −→ blue spanning web on Lodd (or red on Leven).

Group configs according to number of loops 2L (L blue and L red) :

Zdimers
2M,2N = total number of dimer configs

=

M
∑

L=0

#{dimer configs on 2M × 2N , with 2L loops}

=

M
∑

L=0

2L ·#{blue spanning webs on M ×N , with L loops}

=

M
∑

L=0

2L · ZSW
M,N (L)

Need to disantengle the various contributions for fixed L ...



Managing the loops
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Assign alternating weights a = w1/N and a−1 = w−1/N to horizontal dimers, as :

a a a a a

a a a a a

a a a a a

a−1 a−1 a−1 a−1 a−1

a−1 a−1 a−1 a−1 a−1

a−1 a−1 a−1 a−1 a−1

a−1 a−1 a−1 a−1 a−1

a−1 a−1 a−1 a−1 a−1

a a a a a

a a a a a

2N

2M

Dimer/arrow pointing to

{

right
left

}

gets weight

{

w1/N

w−1/N

}

, whether blue or red

=⇒ a loop oriented

{

left → right
left ← right

}

gets a weight

{

w
w−1

}

!
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Moreover, horizontal dimers/arrows not in loops, bring total contribution equal to 1 !

A

Left blue arrows and right red arrows must alternate vertically (and vice-versa) :
as they carry inverse weights, their contributions cancel out.



Counting the loops (cont’d)
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Dimers on 2M × 2N lattice L −→ blue spanning web on Lodd (or red on Leven).

Group configs according to number of loops 2L (L blue and L red) :

Zdimers
2M,2N = total number of dimer configs

=

M
∑

L=0

#{dimer configs on 2M × 2N , with 2L loops}

=

M
∑

L=0

2L ·#{blue spanning webs on M ×N , with L loops}

=

M
∑

L=0

2L · ZSW
M,N (L)



Counting the loops (cont’d)
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Dimers on 2M × 2N lattice L −→ blue spanning web on Lodd (or red on Leven).

Group configs according to number of loops 2L (L blue and L red) :

Zdimers
2M,2N (w) = total number of dimer configs appropr. weighted

=

M
∑

L=0

#{weighted dimer configs, with 2L loops}

=

M
∑

L=0

{

#
[

configs 2L loops,

all left-right

]

· w2L + #
[

configs 2L loops,

all but 1 left-right

]

· w2L−2

+ #
[

configs 2L loops,

all but 2 left-right

]

· w2L−4 + . . .

}

=
M
∑

L=0

#
[

configs 2L loops,

all left-right

]

·
{

w2L +
(

2L
1

)

w2L−2 +
(

2L
2

)

w2L−4 + . . .
}

=

M
∑

L=0

#[configs 2L loops]

22L
·(w+w−1)2L =

M
∑

L=0

#
[

blue SW with

L loops

]

·
(w + w−1

√
2

)2L



Partition functions for loops
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Gives the partition functions for spanning webs with fixed number loops in terms of
dimer configurations on (two times) denser grid:

Zdimers
2M,2N (w) =

M
∑

L=0

#
[

blue SW with

L loops

]

·
(w + w−1

√
2

)2L
=

M
∑

L=0

ZSW
M,N (L) ·

(w + w−1

√
2

)2L

• Dimer partition function (lhs) can be computed in terms of a transfer matrix.

• Allows to compute all fixed-number-of-loops partition functions for spanning webs,

but no specific transfer matrix for fixed L.

• The choice w = i kills all loops !!

Transfer matrix for weighted dimers becomes transfer matrix for spanning trees ...

• Keep general weight w and set w = exp iπz :

z = 0 −→ usual dimer model

z = 1
2 −→ spanning trees



Transfer matrix for weighted dimers
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a a a a a

a a a a a

a−1 a−1 a−1 a−1 a−1

a−1 a−1 a−1 a−1 a−1

a−1 a−1 a−1 a−1 a−1a a a a a a = w1/N = eiπz/N

2N

Two-step transfer matrix is 4N × 4N : T (w) = V (w−1) V (w) with

V (w) = exp
h

a σ−
1 σ−

2 + a−1 σ−
2 σ−

3 + . . .
i

2N
Y

i=1

σx
i = exp

„ 2N
X

i=1

a(−1)i+1

σ−
i σ−

i+1

« 2N
Y

i=1

σx
i

Hence

T (w) = exp
(

2N
∑

i=1

a(−1)i

σ−
i σ−

i+1

)

exp
(

2N
∑

i=1

a(−1)i+1

σ+
i σ+

i+1

)



Spectrum
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Transfer matrix T (w) = V (w−1) V (w) Hermitian (diagonalizable) for w on unit circle

T †(w) = [V (w−1) V (w)]† = V †(w) V †(w−1) = V (w∗) V (w∗−1)

Away from unit circle, no longer Hermitian nor even normal, but fully diagonalizable,
except at a finite set of isolated points.

Standard techniques to diagonalize (Jordan-Wigner, see Lieb):

λodd =

N−1
∏

k=0

[

1 or 1 or
(

αk +
√

1 + α2
k

)2
or

(

αk −
√

1 + α2
k

)2
]∣

∣

∣

odd

λeven =
N−1
∏

k=0

[

1 or 1 or
(

βk +
√

1 + β2
k

)2
or

(

βk −
√

1 + β2
k

)2
]
∣

∣

∣

even

with αk = sin π(k+z)
N and βk = sin

π(k+z+ 1
2
)

N . (Remember a = w1/N and w = eiπz.)

OK for all w, z provided α2
k 6= −1 and β2

k 6= −1.



Spectrum generating functions
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Want to form : Z(z) =
∑

λM =
∑

e−ME =
∑

(

λodd
)M

+
∑

(

λeven
)M

and look at universal part when M, N →∞.

Odd part reads (αk = sin π(k+z)
N )

Zodd(z) =

N−1
∏

k=0

[

1 + 1 +
(

αk +
√

1 + α2
k

)2M
+

(

αk −
√

1 + α2
k

)2M
]∣

∣

∣

odd

→ exp
(4GMN

π

)

qz2 θ2
1(q

z|q) + θ2
2(q

z|q)
η2(q)

(q = e−2πM/N ).

Even part follows from z → z + 1
2

Zeven(z) → exp
(4GMN

π

)

qz2 θ2
3(q

z|q) + θ2
4(q

z|q)
η2(q)

Where θ1(y|q) = −i
√

y q1/8
Q

n≥1(1 − qn)
Q

n≥0 (1 − yqn+1)(1 − y−1qn) . . .



Spectrum generating functions
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Full conformal spectrum generating function thus reads

Z(z|q) = qz2 θ2
1 + θ2

2 + θ2
3 + θ2

4

2η2
(qz|q).

Expanding

Z(z|q) =
∞
∑

L=0

ZSW(L; q)
(w + w−1

√
2

)2L
=

∞
∑

L=0

ZSW(L; q)
(
√

2 cos πz
)2L

allows to compute

ZSW(L; q) = spectrum generating function for spanning webs containing

exactly L non-contractible loops, wrapping once around

perimeter of cylinder.

Two simple cases: z = 0 for dimers, and z = 1
2 for spanning trees.



Dimers
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One recovers well-known result (Ferdinand 1967)

Zdimers(q) =
θ2
2 + θ2

3 + θ2
4

2η2
(q).

• Fully modular invariant: Zdimers is the partition function for dimer model

on torus with module τ = iM/N .

• Reproduces partition function for symplectic fermions (Gaberdiel-Kausch 1996)

Zdimers(q) = χ(−1/8,−1/8) + χ(3/8,3/8) + χR.

But not clear that equivalent : no trace here of Jordan ?

Lieb’s transfer matrix is rich enough ?



Spanning trees
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Spectrum generating function reads

Ztrees(q) =
θ2
2 + θ2

3 − θ2
4

2η2
(q).

• Not modular invariant, as expected. Loops have been killed in one direction

but not in the other. Not a torus partition function for spanning trees (cannot be).

Partition function for something else ...

• In terms of W-characters at c = −2

Ztrees(q) = χ(−1/8,3/8) + χ(3/8,−1/8) + χR

appears as Z2-twisted partition function of Zdimers ... ??

ZPP = χ(−1/8,−1/8) + χ(3/8,3/8) + χR, ZPA = χ(−1/8,−1/8) + χ(3/8,3/8) − χR

ZAP = χ(−1/8,3/8) + χ(3/8,−1/8) + χR, ZAA = −χ(−1/8,3/8) − χ(3/8,−1/8) + χR



Conclusion
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◦ Lieb’s old transfer matrix revisited and adapted to keep track of loops

◦ Weighted TM shows no trace of Jordan cell, despite degeneracies at

finite size match expected degeneracies from logCFT (for dimers)

◦ Spanning trees (≡ sandpile): no modular invariance, as expected, but

surprising appearance of Z2-twisted partition function ZAP .

Physical meaning ??

◦ Weighted TM useful on cylinder: allows to compute partition functions

for fixed number of loops, but complicated expressions.
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