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Bulk CFT

Vector space of fields  F  (typically infinite dimensional)

Correlators are smooth functions (Cn∖diag) × Fn → C 
invariant under joint permutations of C’s and F’s

Notation : 〈 ϕ1(z1) ϕ2(z2) . . . ϕn(zn) 〉

ϕ1

ϕ2

ϕ3



ϕ1

ϕ2

ϕ3

. . . bulk CFT

Short distance expansion / operator product expansion:

〈 ϕ1(z1) ϕ2(z2) ϕ3(z3) . . . ϕn(zn) 〉

  =  ∑α  f12,α(z1-z2) 〈 φα(z2) ϕ3(z3) . . . ϕn(zn) 〉

This gives a map

Mx : F × F → F ̅ ,
the bulk OPE
(F is a direct sum of graded
components, F ̅ the direct 
product)



. . . bulk CFT

Out-vacuum :  Ω* : F → C , 〈 Ω* , ϕ 〉=〈 ϕ(0) 〉

Virasoro action :   Virasoro algebra Vir 
sl(2,C) ⊂ Vir , generator L-1, L0, L1 ,  Vir⊕Vir acts on F

Correlators are coinvariants. E.g. 2-pt correlator

  〈 ϕ(x) ψ(0) 〉 = 〈 Ω* , Mx(ϕ, ψ) 〉

1)  d/dx 〈 Ω* , Mx(ϕ, ψ) 〉 = 〈 Ω* , Mx(L-1ϕ, ψ) 〉

2)〈 Ω* , Mx(L-1ϕ, ψ) 〉
      = - x-1〈 Ω* , Mx o (L0⊗id + id⊗L0) (ϕ, ψ) 〉
(+ many more)



. . . bulk CFT

Logarithms:  Solution to differential equation is 

L0 , L ̅0 diagonal : 

L0 , L ̅0 have Jordan blocks : nilpotent part gives ln(x)

�φ(x) ψ(0) �

= �Ω∗ , M1 ◦ e−(L0⊗id+id⊗L0) ln x−(L̄0⊗id+id⊗L̄0) ln x∗(φ, ψ)�

x−h(φ)−h(ψ)(x∗)−h̄(φ)−h̄(ψ)



. . . bulk CFT

Data 
  F , the space of states, a Vir⊕Vir-module

  M : C× × F × F →  F ̅ , the bulk OPE

  Ω* , the out vacuum

Conditions (for theory on complex plane): 
• Existence of correlators which are coinvariants and 
  consistent with OPE
• Non-degeneracy of 2-pt correlator



. . . bulk CFT

Non-degeneracy of 2-pt correlator : Let

   F0 = { ϕ ∈ F |〈 ϕ(x) ψ(0) 〉= 0 for all ψ ∈ F }

then
• F0 is independent of x
• F0 is an ideal under OPE
• every correlator vanishes if a single field is from F0

Can replace F by F / F0 .



Modular invariance

So far : CFT on complex plane

Can demand : CFT well-defined on a torus. 

• 1-point amplitude on torus

• modular invariance

Rule of thumb : 
modular invariant bulk CFTs are all `equally big’.

Z( φ ; τ) := trF

�
e2πiτ(L0−c/24)e−2πiτ∗(L̄0−c̄/24) φ(0)

�

Z( φ ; τ) = Z( φ ; τ + 1) = Z( φ� ; −1/τ)



Boundary CFT

F - space of bulk fields , ϕ1, ... ∈ F

B - space of boundary fields, ψ1, ... ∈ B

Correlators on upper half plane

〈 ϕ1(z1) ϕ2(z2) . . . ψ1(x1) ψ2(x2) . . . 〉

ϕ1

ϕ2

ψ1 ψ2 ψ3



. . . boundary CFT

Data:
(F, M, Ω*) , a bulk CFT
B , boundary fields (a Vir-module)
βy : F→B̅ , bulk-boundary OPE

mx : B × B →  B ̅ , boundary OPE

ω* : B→C , out-vacuum on upper half plane

ϕ1

ϕ2

ψ1 ψ2 ψ3



. . . boundary CFT

Conditions (for theory on upper half plane): 
• Existence of correlators which are coinvariants and 
  consistent with all three OPEs
• Non-degeneracy of 2-pt correlator

ϕ1

ϕ2

ψ1 ψ2 ψ3



. . . boundary CFT

The basic class of examples : Virasoro minimal models
  Ri : finite set of irreducible Vir-modules (i∈I)

  R0 : vacuum module - a vertex operator algebra
Cardy case:
  F = ⊕i Ri ⊗ R ̅i*  (* not necessary in Vir)

  B = R0

Other choices of B are U ⊗f U* 
(U is R0-module, ⊗f is fusion tensor product)

Note: R0 ⊗ R ̅0* ⊂ F is subtheory (closed under OPE), 
but it is not modular invariant.



. . . boundary CFT

The basic class of examples : Virasoro minimal models
  Ri : finite set of irreducible Vir-modules (i∈I)

  R0 : vacuum module - a vertex operator algebra
Cardy case:
  F = ⊕i Ri ⊗ R ̅i*  (* not necessary in Vir)

  B = R0

Other choices of B are U ⊗f U* 
(U is R0-module, ⊗f is fusion tensor product)

Note: R0 ⊗ R ̅0* ⊂ F is subtheory (closed under OPE), 
but it is not modular invariant.

big
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From boundary to bulk

Call (B, m, ω*) a theory on the boundary.

Aim:  Try to construct (F, M, Ω*) starting from an ‘easy’ 
theory on the boundary.

Idea: Take the `biggest space’ F which fits to theory on 
the boundary.

Fuchs, Schweigert, IR ‘02
 Gaberdiel, IR ‘07



. . . from boundary to bulk

Fix a theory on the boundary (B, m, ω*).

Consider pairs (F,’ β’) such that

0) F’ is Vir⊕Vir module (later :  V⊗V-module for V a VOA)

1) β’y : F→B̅ satisfies coinv. condition (for Vir, later for V)

2) β’ is central



. . . from boundary to bulk

β’ is central if for all ψ,ψ’∈B , ϕ∈F’ and y>0 :

ϕ(iy)

ψ(x) ψ’(1)

β’y
L(x) = 

ϕ(iy)

ψ(x) ψ’(1)

β’y
R(x) = 

For x<0 : For x>0 :

lim
x�0

L(x) = lim
x�0

R(x)

Lewellen ’92



. . . from boundary to bulk

A morphism of pairs  (F’, β’)→(F”, β”) 
is a Vir⊕Vir intertwiner f : F’→F” such 
that the diagram on the right commutes.

We make the ansatz that the space of bulk fields 
(F(B), β(B)) induced by the theory B on the boundary 
is the terminal object in the category of such pairs.

If it exists, (F(B), β(B)) is unique up to unique 
isomorphism.

F � f ��

β�
y ���

��
��

� F ��

β��
y����

��
��

B̄



. . . from boundary to bulk

Remark:   β(B)y : F(B) → B ̅ is injective

Let F0 be its kernel. By coinv. condition,  F0 is Vir⊕Vir module. 

Then the embedding F0⊂F is arrow 

in the category of pairs.

But also 0 : F0 →F is an arrow. 
By uniqueness, the embedding map 
of the kernel is 0.

F0
embed ��

0
���

��
��

��
F (B)

β(B)y����
��

��
�

B̄



. . . from boundary to bulk

Let (F’, β’) be another pair with β’ injective. 

Then F’→F(B) is injective. 

In this sense F(B) is maximal space of bulk fields that 

fits to (B, m, ω*)

What about M and Ω* in data (F, M, Ω*) for bulk theory?
Is the resulting bulk theory modular invariant?

→ algebraic reformulation



Let V be a VOA such that Huang-Lepowski-Zhang tensor
product theory applies. Then C = Rep V is a C-linear 
abelian braided monoidal category.

Work with category C (not necessarily Rep V) such that 
(automatic for C=RepV?)

• braided abelian monoidal C-linear
• right exact tensor product
• finite # of isocl. of simple obj., finite dim. Hom
• simple objects have projective covers
• (-)* involutive functor together with a natural iso.
  Hom( A , B ) → Hom( A ⊗ B*,1* )

Algebra in braided monoidal categories



Aside: For C = Rep V , 

(-)* is contragredient representation

Hom( A , B ) → Hom( A ⊗ B*,1* ) comes from 
isomorphism of 3pt blocks on P2 :
  •  A at 0 ,  V at x , B* at ∞
  •  A at 0 ,  V at ∞ , B* at x

. . . algebra in braided monoidal categories



. . . algebra in braided monoidal categories

Do not assume (all properties below fail in W23)
• semi-simple
• tensor unit simple
• rigid
• exact tensor product



. . . algebra in braided monoidal categories

Translate theory on boundary (B, m, ω*) to C :

• B ∈ C , 

• m : B ⊗ B → B associative product, 

• ε : B →1* such that ε o m is a non-degenerate pairing
  (its preimage under Hom( B , B* ) → Hom( B ⊗ B , 1* )
    is an isomorphism)

• may demand in addition choice of unit η : 1→ B
   (C = Rep V : boundary condition respects V-symmetry)

Fuchs, Schweigert, IR ’02
Kong ’06

 Gaberdiel, IR ‘07



. . . algebra in braided monoidal categories

Translate pairs (F’, β’) to C :

Notation: 
• C ̅ is C with inverse braiding

• C⊠C ̅ is Deligne product

• T : C⊠C ̅ → C is induced by tensor product 
   (takes U⊠V to U⊗V - uses right exactness of ⊗)

Then  F’ ∈ C⊠C ̅  ,  β’ : T(F’) → B .



. . . algebra in braided monoidal categories

Translate centrality condition for β’ : T(F’) → B :

For all 
f : U⊠V→F’ 

have B

T(f)

m

β’
T(F’)

B

B U V

B

T(f)

m

β’
T(F’)

B

B U V

=

Kong ’06
 Gaberdiel, IR ‘07

} := φB,U⊠V



Def: Let A be an algebra in C. 

The full centre of A in C⊠C ̅ is a pair ( Z(A) , z ), which is 

terminal among pairs (  Y∈C⊠C ̅  ,  u:T(Y)→A  ) such 

that 

commutes. 

. . . algebra in braided monoidal categories
Fjelstad, Fuchs, Schweigert, IR ’06

Davydov ’09

T (Y )⊗A
u⊗id ��

ϕT (Y ),A

��

A⊗A
m

���������

A

A⊗ T (Y ) id⊗u �� A⊗A
m

���������



. . . algebra in braided monoidal categories

Thm: 
• Z(A) exists.

• There exists a unique algebra structure on Z(A) such
  that z : T(Z(A))→A is an algebra map. 

• With this algebra structure, Z(A) is commutative.
  If A is unital, so is Z(A).



Non-logarithmic rational CFT

C = Rep V is a modular category.

Theory on the boundary is a symmetric Frobenius 
algebra A in C. 

The bulk theory is the full centre Z(A), a commutative 
symmetric Frobenius algebra in C⊠C ̅.

Z(A) is modular invariant.

E.g. : Z(1) = ∑i Ui ⊠ Ui*

Fuchs, Schweigert, IR ’02
Fjelstad, Fuchs, Schweigert, IR ‘06

 Kong, IR ‘08

Huang ’05



. . . non-logarithmic rational CFT

Thm:
All modular invariant commutative Frobenius algebras 
Z with dim Hom(1,Z)=1 are given by Z(A) for some 
Frobenius algebra A.
Furthermore, Z(A) = Z(B) iff A and B are Morita 
equivalent.



W1p models

C = Rep V is (conjecturally) a finite tensor category.

• Z(1) = ∑i Pi ⊠ Pi* / N

• as R × R graded vector space have Z(1) = ∑i Ui ⊠ Pi*

  (graded by generalised L0 and L ̅0 eigenspaces)

• Z(1) gives a modular invariant torus partition function.

Quella, Schomerus ’07
Gaberdiel, IR ‘07

Kausch ’91, Gaberdiel, Kausch ’96
Fuchs, Hwang, Semikhatov, Tipunin ’03

Adamovic, Milas ’07
. . .



• Virasoro Verma module for h=0 and c=0: 
  two independent null vectors

• Divide by N1 and N2 : get 

• Divide by N1 but not by N2 : 
  get quasi-rational, but not rational theory

The W23 model

V(0) = C · Ω

N1 = L−1Ω N2 = (L−2 − 3
2L−1L−1)Ω

Feigin, Gainutdinov, 
Semikhatov, Tipunin ‘06



• Extend by 3 fields with h=15 , get VOA  W

• W is indecomposable but not irreducible

C = Rep V supposedly
  • abelian, braided, ⊗ right exact, (-)*, finiteness...

but not
  • semi-simple, rigid, simple 1, ⊗ exact

. . . the W23 model

0 −→W(2) −→W −→W(0) −→ 0
irreducible 

sub-representation
irreducible 
quotient



Irreducible representations are:

The tensor unit W does not have a non-degenerate 
pairing. The simplest theory on the boundary is:

. . . the W23 model

2
�� ���

��
����

�

7
���

��
0
��

7
����

�

2

B := W(5/8) ⊗f  W(5/8) = 

theory based on the abstract theory of internal Homs and dual objects in tensor categories,
and Section 4 contains our conclusions. In Appendix A we list the characters of the W2,3-
representations, their embedding diagrams, and their fusion rules. We also spell out the
dictionary between our notation and that of [6, 21], see Appendix A.2. Finally Appendix B
contains some technicalities needed in Section 3.

1.1 W-representations and fusion rules

Let us begin by reviewing the structure of the underlying Virasoro theory. Recall that the
Virasoro minimal models have central charge

cp,q = 1 − 6
(p − q)2

pq
, (1.1)

where p and q are a pair of positive coprime integers. The vacuum representation is the
irreducible representation based on the highest weight state Ω with h = 0. The corresponding
Verma module has two independent null vectors: the null vector N1 = L−1Ω of conformal
dimension h = 1 and a null vector N2 of conformal dimension h = (p − 1) · (q − 1). Setting
N1 and N2 to zero we obtain the irreducible vacuum representation based on Ω. The highest
weight representations of the corresponding vertex operator algebra are the representations
of the Virasoro algebra for which the modes Vn(N1) and Vn(N2) act trivially. They have
conformal weights

hr,s =
(ps − qr)2 − (p − q)2

4pq
, (1.2)

where 1 ≤ r ≤ p − 1, 1 ≤ s ≤ q − 1 and we have the identification

hr,s = hp−r,q−s . (1.3)

We shall be mainly interested in the case (p, q) = (2, 3) for which c2,3 = 0. In this
case, the null vector N2 of the vacuum representation is just the vector N2 = L−2Ω, and
thus the irreducible vacuum representation V(0) only consists of the vacuum state Ω itself.
Furthermore, there is only one representation in (1.2), namely the vacuum representation
V(0) itself. This is clearly a very trivial and boring theory.

The logarithmic theory we are interested in is obtained in a slightly different fashion.
Instead of taking the vertex operator algebra to be V(0), we consider the vertex operator
algebra V that is obtained from the Verma module based on Ω by dividing out N1 = L−1Ω,
but not N2 ≡ T = L−2Ω. This leads to a logarithmic conformal field theory, but not to
one that is rational. In order to make the theory rational we then enlarge the chiral algebra
by three fields of conformal dimension 15. The resulting vertex operator algebra will be
denoted by W2,3 or just W, and it defines the so-called W2,3 model [18]. Its irreducible
representations are described by the finite Kac table:

s = 1 s = 2 s = 3

r = 1 0, 2, 7 0, 1, 5 1
3 ,

10
3

r = 2 5
8 ,

33
8

1
8 ,

21
8 − 1

24 ,
35
24

(1.4)

5 Gaberdiel, Wood, IR ‘09

Feigin, Gainutdinov, 
Semikhatov, Tipunin ’06

Adamovic, Milas ’09



• We could not compute Z(B) for this algebra.
  Instead, we compute (without full proof) Z(W*) 
  for the commutative algebra W*.

• Z(W*) is (conjecturally) a commutative algebra. 
  But it has no unit (just as W*).

• As R × R graded vector space: Z(W*) = ∑i Ui ⊠ Pi*

  Gives modular invariant partition function, can be
  expressed (up to a constant) via c=1 free boson
  partition functions (Pearce, Rasmussen ’10) and has 
  appeared in context of dilute polymers (Saleur ’91) .

. . . the W23 model Gaberdiel, Wood, IR ’10



Composition series of Z(W*) in integer weight-sector

where we have written the composition series vertically. This is easier to visualise if we represent
each direct sum by a little table where we indicate the multiplicity of each term W(h) ⊗C W̄(h̄).
For example, the composition series for H1/8 is then written as

1
8

33
8

1
8 1 0
33
8 0 1

−→

1
8

33
8

1
8 0 2
33
8 2 0

−→

1
8

33
8

1
8 1 0
33
8 0 1

. (1.18)

Here the horizontal direction gives h and the vertical direction h̄. The picture for H5/8 and H1/3

looks the same, with {1
8 ,

33
8 } replaced by {5

8 ,
21
8 } and {1

3 ,
10
3 }, respectively. For H0 the composition

series is more complicated,

0 1 2 5 7

0 1

1 1

2 1

5 1

7 1

0 1 2 5 7

0 1 1

1 1 2 2

2 1 2 2

5 2 2

7 2 2

0 1 2 5 7

0 1 2 2

1 2 4

2 4 2

5 2 2 4

7 2 4 2

0 1 2 5 7

0 1 1

1 1 2 2

2 1 2 2

5 2 2

7 2 2

0 1 2 5 7

0 1

1 1

2 1

5 1

7 1

.

(1.19)

All empty entries are equal to ‘0’.
Adding all the tables in a composition series reproduces the multiplicities given in the partition

function for each Hh from (1.13). The complete partition function turns out to be modular
invariant, as must be the case for a consistent conformal field theory. This represents a non-trivial
consistency check on our analysis.

It is also worth mentioning that a non-degenerate bulk two-point function requires that Hbulk

is isomorphic to its conjugate representation H∗
bulk. A necessary condition for this is that the

composition series does not change when reversing all arrows, which indeed holds for the series
given above and provides another consistency check of our construction.

1.4 The boundary states

With the detailed knowledge of the proposed bulk theory at hand we can study whether the
boundary conditions of [41] can actually be described in terms of appropriate boundary states.
More specifically, we can ask whether we can reproduce the annulus partition functions of [41] in
terms of suitable boundary states of our proposed bulk theory.

The first step of this analysis can be done without any detailed knowledge of the bulk theory.
The proposal of [41] for the boundary conditions makes a prediction for the various annulus

9
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All empty entries are equal to ‘0’.
Adding all the tables in a composition series reproduces the multiplicities given in the partition

function for each Hh from (1.13). The complete partition function turns out to be modular
invariant, as must be the case for a consistent conformal field theory. This represents a non-trivial
consistency check on our analysis.

It is also worth mentioning that a non-degenerate bulk two-point function requires that Hbulk

is isomorphic to its conjugate representation H∗
bulk. A necessary condition for this is that the

composition series does not change when reversing all arrows, which indeed holds for the series
given above and provides another consistency check of our construction.

1.4 The boundary states

With the detailed knowledge of the proposed bulk theory at hand we can study whether the
boundary conditions of [41] can actually be described in terms of appropriate boundary states.
More specifically, we can ask whether we can reproduce the annulus partition functions of [41] in
terms of suitable boundary states of our proposed bulk theory.

The first step of this analysis can be done without any detailed knowledge of the bulk theory.
The proposal of [41] for the boundary conditions makes a prediction for the various annulus

9
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All empty entries are equal to ‘0’.
Adding all the tables in a composition series reproduces the multiplicities given in the partition

function for each Hh from (1.13). The complete partition function turns out to be modular
invariant, as must be the case for a consistent conformal field theory. This represents a non-trivial
consistency check on our analysis.
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composition series does not change when reversing all arrows, which indeed holds for the series
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Composition series of Z(W*) in integer weight-sector

where we have written the composition series vertically. This is easier to visualise if we represent
each direct sum by a little table where we indicate the multiplicity of each term W(h) ⊗C W̄(h̄).
For example, the composition series for H1/8 is then written as

1
8

33
8

1
8 1 0
33
8 0 1

−→

1
8

33
8

1
8 0 2
33
8 2 0

−→

1
8

33
8

1
8 1 0
33
8 0 1

. (1.18)

Here the horizontal direction gives h and the vertical direction h̄. The picture for H5/8 and H1/3

looks the same, with {1
8 ,

33
8 } replaced by {5

8 ,
21
8 } and {1

3 ,
10
3 }, respectively. For H0 the composition

series is more complicated,

0 1 2 5 7

0 1

1 1

2 1

5 1

7 1

0 1 2 5 7

0 1 1

1 1 2 2

2 1 2 2

5 2 2

7 2 2

0 1 2 5 7

0 1 2 2

1 2 4

2 4 2

5 2 2 4

7 2 4 2

0 1 2 5 7

0 1 1

1 1 2 2

2 1 2 2

5 2 2

7 2 2

0 1 2 5 7

0 1

1 1

2 1

5 1

7 1

.

(1.19)

All empty entries are equal to ‘0’.
Adding all the tables in a composition series reproduces the multiplicities given in the partition

function for each Hh from (1.13). The complete partition function turns out to be modular
invariant, as must be the case for a consistent conformal field theory. This represents a non-trivial
consistency check on our analysis.

It is also worth mentioning that a non-degenerate bulk two-point function requires that Hbulk

is isomorphic to its conjugate representation H∗
bulk. A necessary condition for this is that the

composition series does not change when reversing all arrows, which indeed holds for the series
given above and provides another consistency check of our construction.

1.4 The boundary states
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So that’s your theory?

• Z(            ) will have better properties, in particular 
                    an embedding of  W⊠W (and a vacuum
  and a stress tensor). Please compute it for us.

• Z(W*) as some properties not seen before, e.g. an
  OPE preserving projection 
      Z(W*) → Z(W(0)) = W(0)⊠W(0)
   All correlators transform under conformal maps, 
  yet the theory has no stress tensor.

• The space of modular invariant bilinear combinations
  of the 13 characters of irreducibles is 2-dimensional. 
  It is spanned by the characters of Z(W*) and Z(W(0)).
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