

Logarithmic conformal field theory with boundaries

Ingo Runkel (Hamburg)

joint work with

Matthias Gaberdiel and Simon Wood

Outline

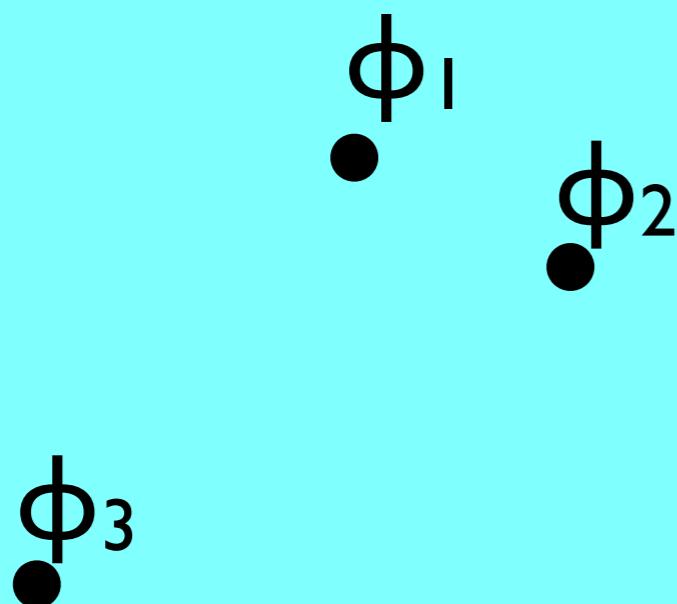
- Bulk and boundary CFT
- Algebraic reformulation
- The W_{23} -model

Bulk CFT

Vector space of fields F (typically infinite dimensional)

Correlators are smooth functions $(\mathbb{C}^n \setminus \text{diag}) \times F^n \rightarrow \mathbb{C}$
invariant under joint permutations of C 's and F 's

Notation : $\langle \phi_1(z_1) \phi_2(z_2) \dots \phi_n(z_n) \rangle$

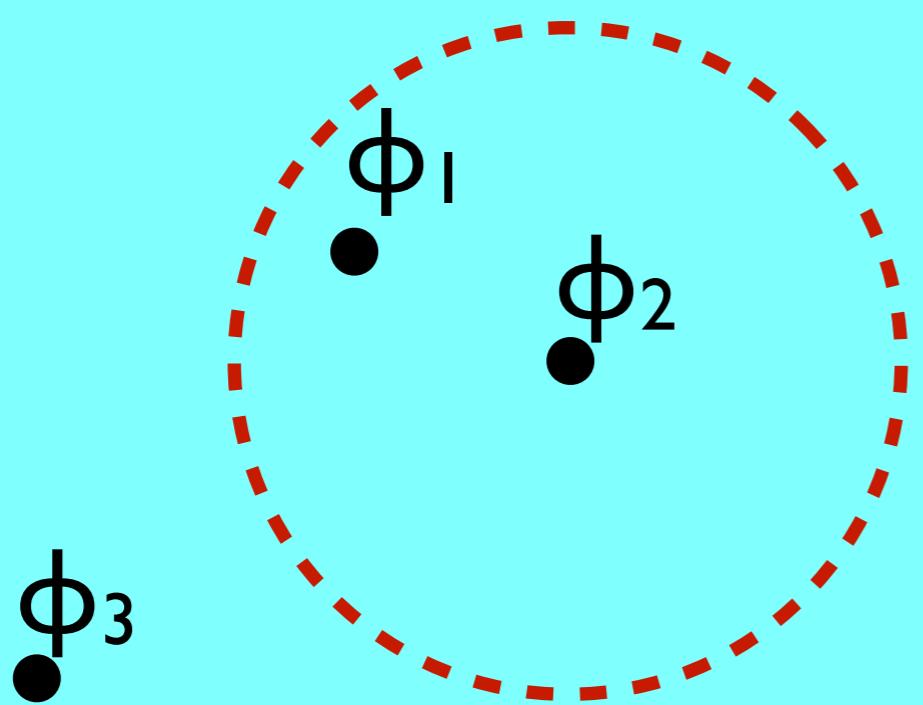


... bulk CFT

Short distance expansion / operator product expansion:

$$\langle \phi_1(z_1) \phi_2(z_2) \phi_3(z_3) \dots \phi_n(z_n) \rangle$$

$$= \sum_{\alpha} f_{12,\alpha}(z_1-z_2) \langle \varphi_{\alpha}(z_2) \phi_3(z_3) \dots \phi_n(z_n) \rangle$$



This gives a map
 $M_x : F \times F \rightarrow \bar{F}$,
the bulk OPE
(F is a direct sum of graded
components, \bar{F} the direct
product)

... bulk CFT

Out-vacuum: $\Omega^* : F \rightarrow \mathbb{C}$, $\langle \Omega^*, \phi \rangle = \langle \phi(0) \rangle$

Virasoro action: Virasoro algebra Vir

$\text{sl}(2, \mathbb{C}) \subset \text{Vir}$, generator L_{-1}, L_0, L_1 , $\text{Vir} \oplus \text{Vir}$ acts on F

Correlators are coinvariants. E.g. 2-pt correlator

$$\langle \phi(x) \psi(0) \rangle = \langle \Omega^*, M_x(\phi, \psi) \rangle$$

1) $\frac{d}{dx} \langle \Omega^*, M_x(\phi, \psi) \rangle = \langle \Omega^*, M_x(L_{-1}\phi, \psi) \rangle$

2) $\langle \Omega^*, M_x(L_{-1}\phi, \psi) \rangle$

$$= -x^{-1} \langle \Omega^*, M_x \circ (L_0 \otimes \text{id} + \text{id} \otimes L_0) (\phi, \psi) \rangle$$

(+ many more)

... bulk CFT

Logarithms: Solution to differential equation is

$$\langle \phi(x) \psi(0) \rangle$$

$$= \langle \Omega^*, M_1 \circ e^{-(L_0 \otimes id + id \otimes L_0) \ln x - (\bar{L}_0 \otimes id + id \otimes \bar{L}_0) \ln x^*} (\phi, \psi) \rangle$$

L_0, \bar{L}_0 diagonal : $x^{-h(\phi)-h(\psi)} (x^*)^{-\bar{h}(\phi)-\bar{h}(\psi)}$

L_0, \bar{L}_0 have Jordan blocks : nilpotent part gives $\ln(x)$

... bulk CFT

Data

F , the space of states, a $\text{Vir} \oplus \text{Vir}$ -module

$M : \mathbb{C}^\times \times F \times F \rightarrow \overline{F}$, the bulk OPE

Ω^* , the out vacuum

Conditions (for theory on complex plane):

- Existence of correlators which are coinvariants and consistent with OPE
- Non-degeneracy of 2-pt correlator

... bulk CFT

Non-degeneracy of 2-pt correlator : Let

$$F_0 = \{ \phi \in F \mid \langle \phi(x) \psi(0) \rangle = 0 \text{ for all } \psi \in F \}$$

then

- F_0 is independent of x
- F_0 is an ideal under OPE
- every correlator vanishes if a single field is from F_0

Can replace F by F / F_0 .

Modular invariance

So far : CFT on complex plane

Can demand : CFT well-defined on a torus.

- 1-point amplitude on torus

$$Z(\phi; \tau) := \text{tr}_F \left(e^{2\pi i \tau (L_0 - c/24)} e^{-2\pi i \tau^* (\bar{L}_0 - \bar{c}/24)} \phi(0) \right)$$

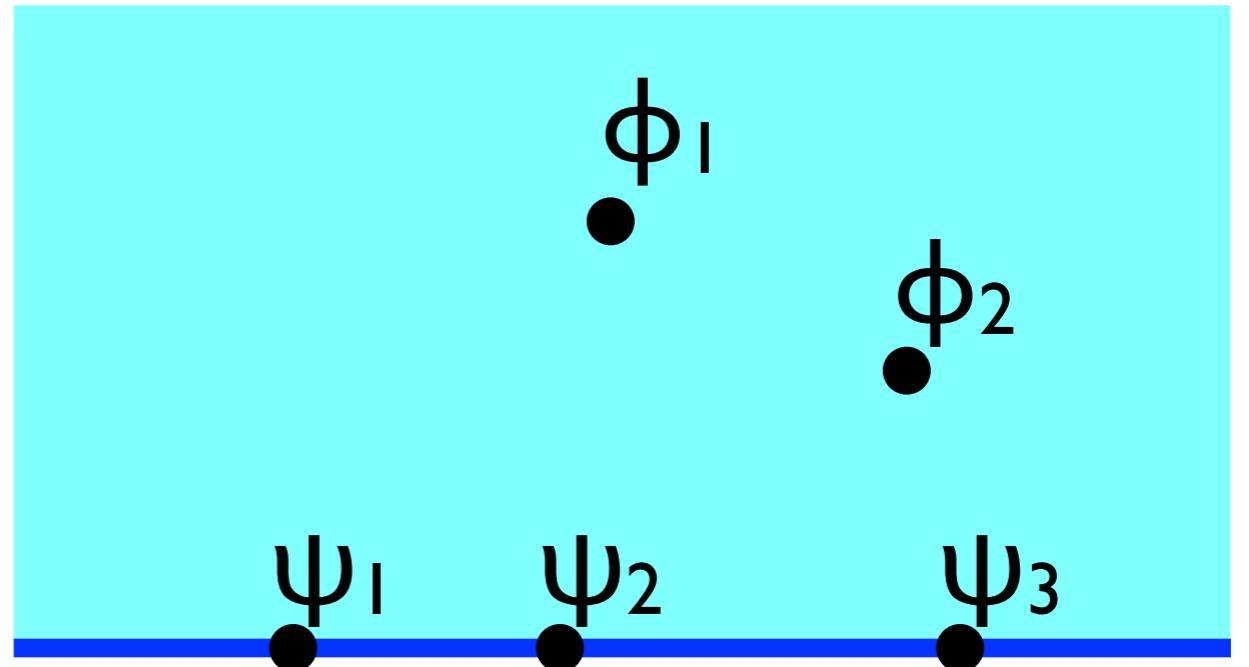
- modular invariance

$$Z(\phi; \tau) = Z(\phi; \tau + 1) = Z(\phi'; -1/\tau)$$

Rule of thumb :

modular invariant bulk CFTs are all ‘equally big’.

Boundary CFT



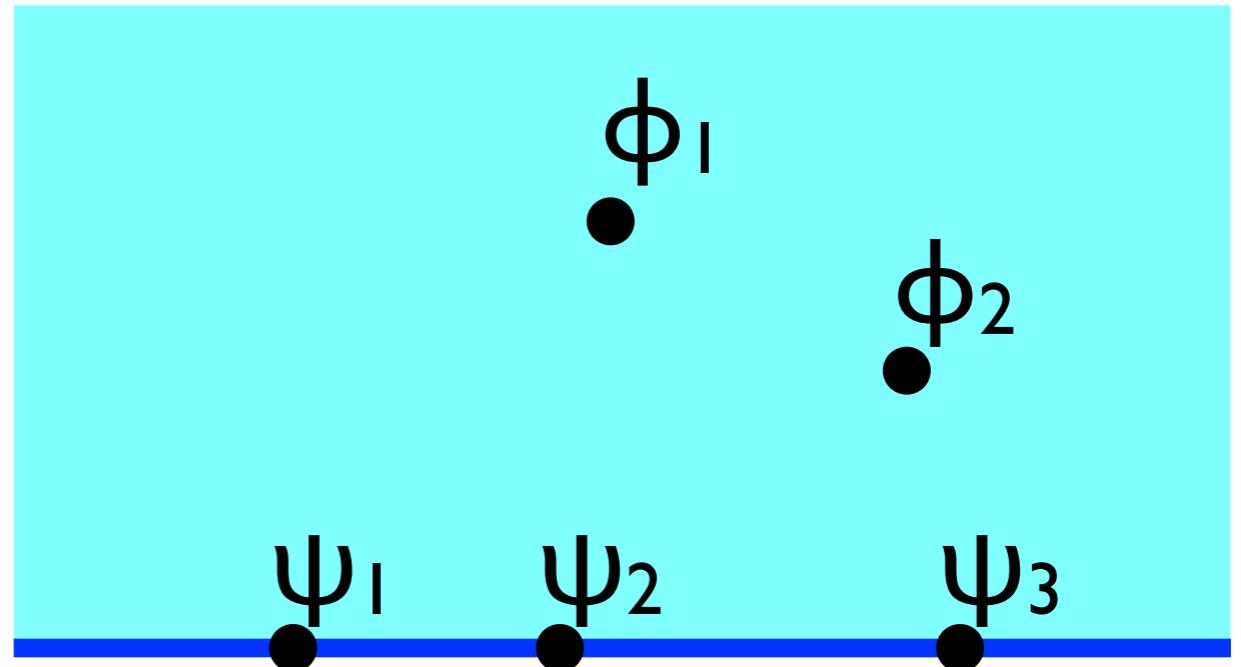
F - space of bulk fields , $\phi_1, \dots \in F$

B - space of boundary fields, $\Psi_1, \dots \in B$

Correlators on upper half plane

$$\langle \phi_1(z_1) \phi_2(z_2) \dots \Psi_1(x_1) \Psi_2(x_2) \dots \rangle$$

... boundary CFT



Data:

(F, M, Ω^*) , a bulk CFT

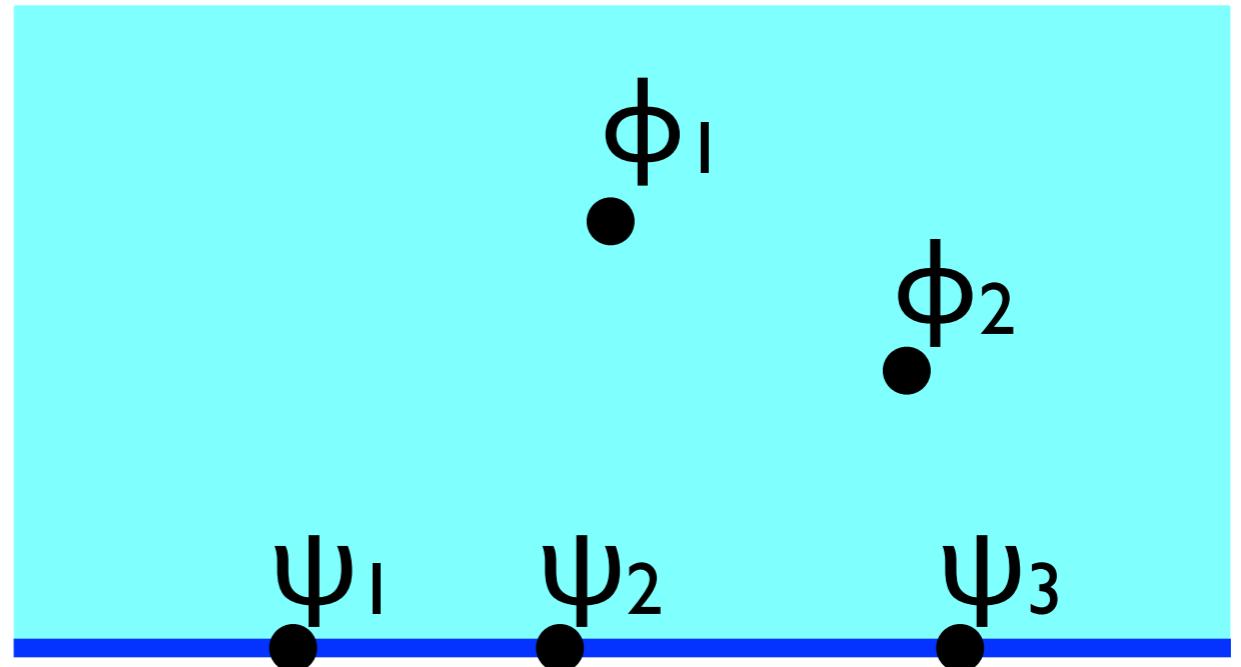
B , boundary fields (a Vir-module)

$\beta_y : F \rightarrow \bar{B}$, bulk-boundary OPE

$m_x : B \times B \rightarrow \bar{B}$, boundary OPE

$\omega^* : B \rightarrow \mathbb{C}$, out-vacuum on upper half plane

... boundary CFT



Conditions (for theory on upper half plane):

- Existence of correlators which are coinvariants and consistent with all three OPEs
- Non-degeneracy of 2-pt correlator

... boundary CFT

The basic class of examples :Virasoro minimal models

R_i : finite set of irreducible Vir-modules ($i \in I$)

R_0 : vacuum module - a vertex operator algebra

Cardy case:

$F = \bigoplus_i R_i \otimes \bar{R}_i^*$ (* not necessary in Vir)

$B = R_0$

Other choices of B are $U \otimes_f U^*$

(U is R_0 -module, \otimes_f is fusion tensor product)

Note: $R_0 \otimes \bar{R}_0^* \subset F$ is subtheory (closed under OPE),
but it is not modular invariant.

... boundary CFT

The basic class of examples : Virasoro minimal models

R_i : finite set of irreducible Vir-modules ($i \in I$)

R_0 : vacuum module - a vertex operator algebra

Cardy case:

$$F = \bigoplus_i R_i \otimes \bar{R}_i^* \quad (* \text{ not necessary in Vir})$$

$$B = R_0$$

Other choices of B are $U \otimes_f U^*$

(U is R_0 -module, \otimes_f is fusion tensor product)

Note: $R_0 \otimes \bar{R}_0^* \subset F$ is subtheory (closed under OPE),
but it is not modular invariant.

From boundary to bulk

Fuchs, Schweigert, IR '02
Gaberdiel, IR '07

Call (B, m, ω^*) a *theory on the boundary*.

Aim: Try to construct (F, M, Ω^*) starting from an 'easy' theory on the boundary.

Idea: Take the 'biggest space' F which fits to theory on the boundary.

...from boundary to bulk

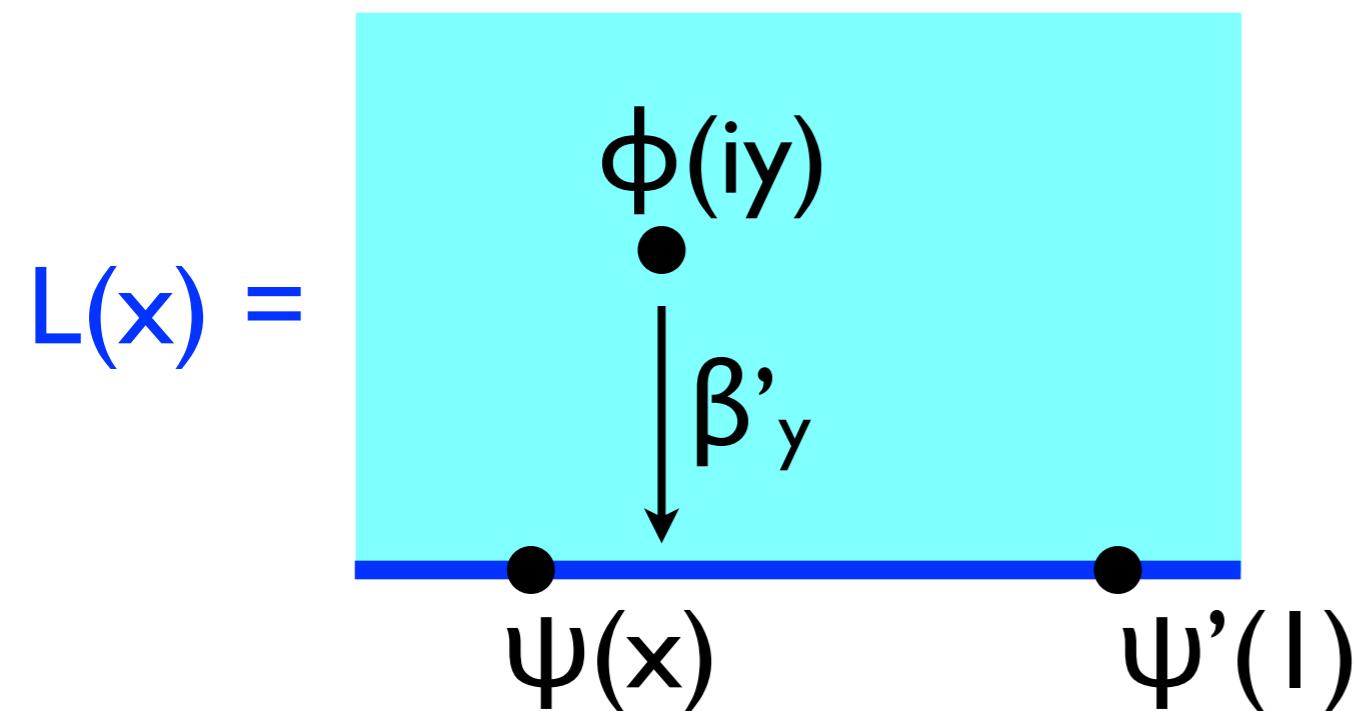
Fix a theory on the boundary (B, m, ω^*) .

Consider pairs (F', β') such that

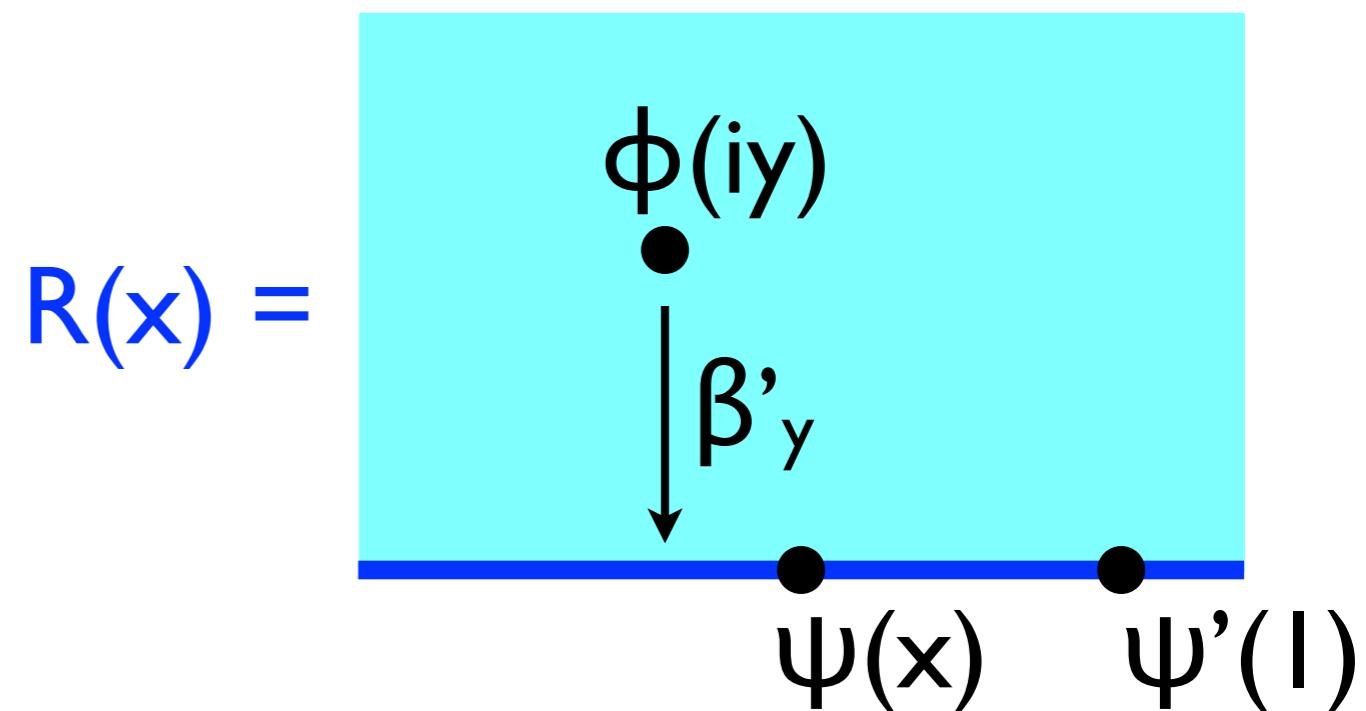
- 0) F' is $\text{Vir} \oplus \text{Vir}$ module (later : $V \otimes V$ -module for V a VOA)
- 1) $\beta'_y : F \rightarrow \overline{B}$ satisfies coinv. condition (for Vir , later for V)
- 2) β' is central

...from boundary to bulk

For $x < 0$:



For $x > 0$:



β' is *central* if for all $\Psi, \Psi' \in B$, $\phi \in F'$ and $y > 0$:

$$\lim_{x \nearrow 0} L(x) = \lim_{x \searrow 0} R(x)$$

...from boundary to bulk

A morphism of pairs $(F', \beta') \rightarrow (F'', \beta'')$ is a $\text{Vir} \oplus \text{Vir}$ intertwiner $f: F' \rightarrow F''$ such that the diagram on the right commutes.

$$\begin{array}{ccc} F' & \xrightarrow{f} & F'' \\ \beta'_y \searrow & & \swarrow \beta''_y \\ & \bar{B} & \end{array}$$

We make the ansatz that the space of bulk fields $(F(B), \beta(B))$ induced by the theory B on the boundary is the terminal object in the category of such pairs.

If it exists, $(F(B), \beta(B))$ is unique up to unique isomorphism.

...from boundary to bulk

Remark: $\beta(B)_y : F(B) \rightarrow \bar{B}$ is injective

Let F_0 be its kernel. By coinv. condition, F_0 is $\text{Vir} \oplus \text{Vir}$ module.

Then the embedding $F_0 \subset F$ is arrow
in the category of pairs.

But also $0 : F_0 \rightarrow F$ is an arrow.

By uniqueness, the embedding map
of the kernel is 0 .

$$\begin{array}{ccc} F_0 & \xrightarrow{\text{embed}} & F(B) \\ & \searrow 0 & \swarrow \beta(B)_y \\ & \bar{B} & \end{array}$$

...from boundary to bulk

Let (F', β') be another pair with β' injective.

Then $F' \rightarrow F(B)$ is injective.

In this sense $F(B)$ is *maximal* space of bulk fields that fits to (B, m, ω^*)

What about M and Ω^* in data (F, M, Ω^*) for bulk theory?

Is the resulting bulk theory modular invariant?

→ algebraic reformulation

Algebra in braided monoidal categories

Let V be a VOA such that Huang-Lepowski-Zhang tensor product theory applies. Then $C = \text{Rep } V$ is a \mathbb{C} -linear abelian braided monoidal category.

Work with category C (not necessarily $\text{Rep } V$) such that (automatic for $C = \text{Rep } V$?)

- braided abelian monoidal \mathbb{C} -linear
- right exact tensor product
- finite # of isoclasses of simple obj., finite dim. Hom
- simple objects have projective covers
- $(-)^*$ involutive functor together with a natural iso.
 $\text{Hom}(A, B) \rightarrow \text{Hom}(A \otimes B^*, I^*)$

... algebra in braided monoidal categories

Aside: For $C = \text{Rep } V$,

$(-)^*$ is contragredient representation

$\text{Hom}(A, B) \rightarrow \text{Hom}(A \otimes B^*, I^*)$ comes from isomorphism of 3pt blocks on P^2 :

- A at 0 , V at x , B^* at ∞
- A at 0 , V at ∞ , B^* at x

... algebra in braided monoidal categories

Do *not* assume (all properties below fail in W_{23})

- semi-simple
- tensor unit simple
- rigid
- exact tensor product

... algebra in braided monoidal categories

Translate theory on boundary (B, m, ω^*) to C :

- $B \in C$,
- $m : B \otimes B \rightarrow B$ associative product,
- $\varepsilon : B \rightarrow I^*$ such that $\varepsilon \circ m$ is a non-degenerate pairing
(its preimage under $\text{Hom}(B, B^*) \rightarrow \text{Hom}(B \otimes B, I^*)$
is an isomorphism)
- may demand in addition choice of unit $\eta : I \rightarrow B$
($C = \text{Rep } V$: boundary condition respects V -symmetry)

... algebra in braided monoidal categories

Translate pairs (F', β') to C :

Notation:

- \bar{C} is C with inverse braiding
- $C \boxtimes \bar{C}$ is Deligne product
- $T : C \boxtimes \bar{C} \rightarrow C$ is induced by tensor product
(takes $U \boxtimes V$ to $U \otimes V$ - uses right exactness of \otimes)

Then $F' \in C \boxtimes \bar{C}$, $\beta' : T(F') \rightarrow B$.

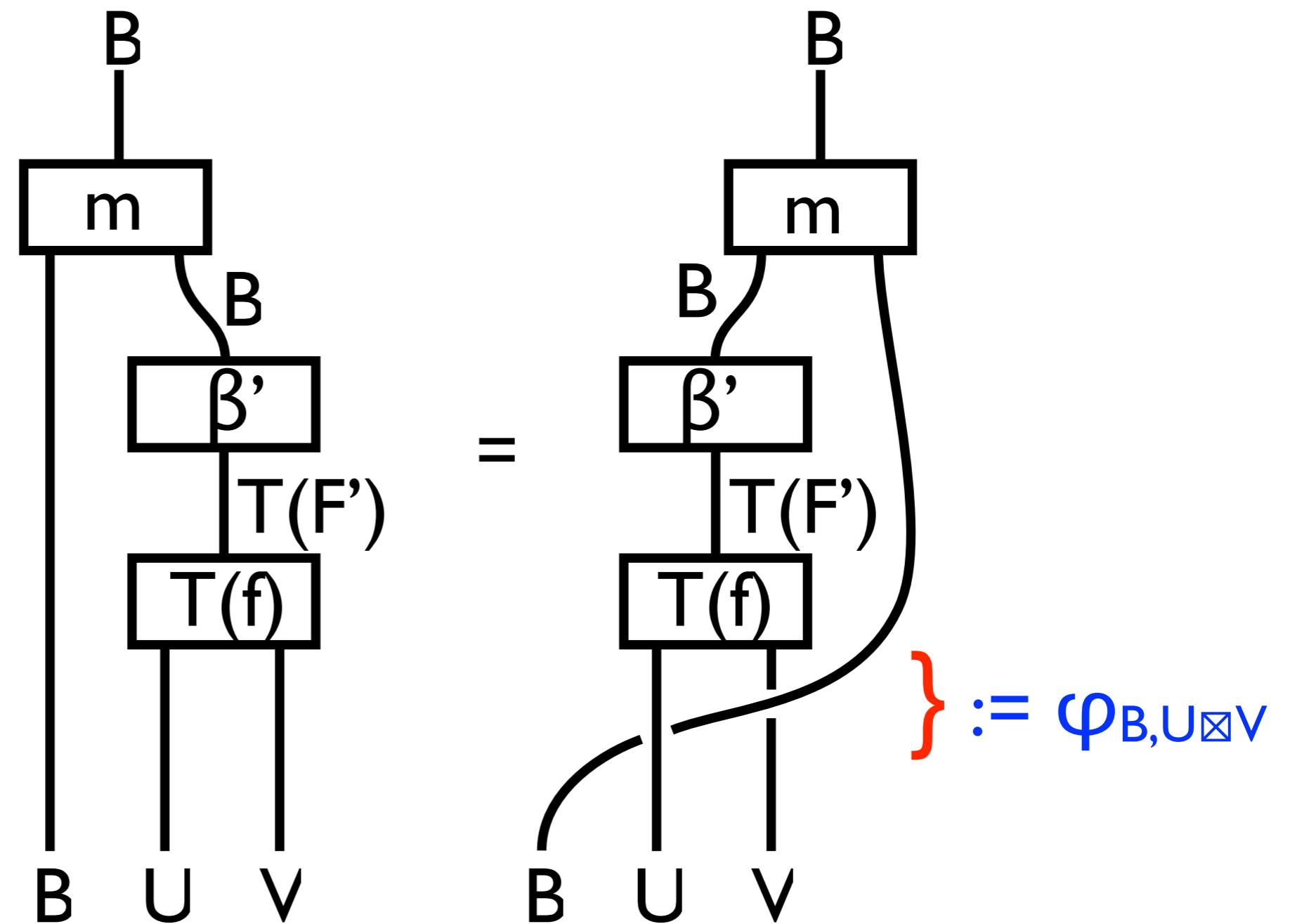
... algebra in braided monoidal categories

Translate centrality condition for $\beta' : T(F') \rightarrow B :$

For all

$f : U \otimes V \rightarrow F'$

have



... algebra in braided monoidal categories

Def: Let A be an algebra in C .

The *full centre of A in $C \otimes \bar{C}$* is a pair $(Z(A), z)$, which is terminal among pairs $(Y \in C \otimes \bar{C}, u: T(Y) \rightarrow A)$ such that

$$\begin{array}{ccc}
 T(Y) \otimes A & \xrightarrow{u \otimes id} & A \otimes A \\
 \downarrow \varphi_{T(Y), A} & & \swarrow m \quad \searrow m \\
 A \otimes T(Y) & \xrightarrow{id \otimes u} & A \otimes A \xrightarrow{m} A
 \end{array}$$

commutes.

... algebra in braided monoidal categories

Thm:

- $Z(A)$ exists.
- There exists a unique algebra structure on $Z(A)$ such that $z : T(Z(A)) \rightarrow A$ is an algebra map.
- With this algebra structure, $Z(A)$ is commutative.
If A is unital, so is $Z(A)$.

Non-logarithmic rational CFT

Huang '05

$C = \text{Rep } V$ is a modular category.

Fuchs, Schweigert, IR '02
Fjelstad, Fuchs, Schweigert, IR '06
Kong, IR '08

Theory on the boundary is a symmetric Frobenius algebra A in C .

The bulk theory is the full centre $Z(A)$, a commutative symmetric Frobenius algebra in $C \otimes \bar{C}$.

$Z(A)$ is modular invariant.

E.g. : $Z(I) = \sum_i U_i \otimes U_i^*$

... non-logarithmic rational CFT

Thm:

All modular invariant commutative Frobenius algebras Z with $\dim \text{Hom}(I, Z) = I$ are given by $Z(A)$ for some Frobenius algebra A .

Furthermore, $Z(A) = Z(B)$ iff A and B are Morita equivalent.

$W_{\mathbb{I}_P}$ models

Kausch '91, Gaberdiel, Kausch '96
Fuchs, Hwang, Semikhatov, Tipunin '03
Adamovic, Milas '07
...

$C = \text{Rep } V$ is (conjecturally) a finite tensor category.

- $Z(\mathbb{I}) = \sum_i P_i \boxtimes P_i^* / N$ Quella, Schomerus '07
Gaberdiel, IR '07
- as $\mathbb{R} \times \mathbb{R}$ graded vector space have $Z(\mathbb{I}) = \sum_i U_i \boxtimes P_i^*$
(graded by generalised L_0 and \bar{L}_0 eigenspaces)
- $Z(\mathbb{I})$ gives a modular invariant torus partition function.

The W_{23} model

Feigin, Gainutdinov,
Semikhatov, Tipunin '06

- Virasoro Verma module for $h=0$ and $c=0$:
two independent null vectors

$$N_1 = L_{-1}\Omega$$

$$N_2 = (L_{-2} - \frac{3}{2}L_{-1}L_{-1})\Omega$$

- Divide by N_1 and N_2 : get

$$\mathcal{V}(0) = \mathbb{C} \cdot \Omega$$

- Divide by N_1 but not by N_2 :
get quasi-rational, but not rational theory

... the W_{23} model

- Extend by 3 fields with $h=15$, get VOA W

- W is indecomposable but not irreducible

C = Rep V supposedly

- abelian, braided, \otimes right exact, $(-)^*$, finiteness...

but not

- semi-simple, rigid, simple \mathfrak{l} , \otimes exact

... the W_{23} model

Feigin, Gainutdinov,
Semikhatov, Tipunin '06
Adamovic, Milas '09

Irreducible representations are:

	$s = 1$	$s = 2$	$s = 3$
$r = 1$	$0, 2, 7$	$0, 1, 5$	$\frac{1}{3}, \frac{10}{3}$
$r = 2$	$\frac{5}{8}, \frac{33}{8}$	$\frac{1}{8}, \frac{21}{8}$	$-\frac{1}{24}, \frac{35}{24}$

Gaberdiel, Wood, IR '09

The tensor unit W does not have a non-degenerate pairing. The simplest theory on the boundary is:

$$B := W(5/8) \otimes_f W(5/8) = \begin{array}{ccc} & 2 & \\ & \downarrow & \\ 7 & 0 & 7 \\ & \downarrow & \\ & 2 & \end{array}$$

$B := W(5/8) \otimes_f W(5/8) =$

... the W_{23} model

Gaberdiel, Wood, IR '10

- We could not compute $Z(B)$ for this algebra.
Instead, we compute (without full proof) $Z(W^*)$ for the commutative algebra W^* .
- $Z(W^*)$ is (conjecturally) a commutative algebra.
But it has no unit (just as W^*).
- As $\mathbb{R} \times \mathbb{R}$ graded vector space: $Z(W^*) = \sum_i U_i \boxtimes P_i^*$
Gives modular invariant partition function, can be expressed (up to a constant) via $c=1$ free boson partition functions (Pearce, Rasmussen '10) and has appeared in context of dilute polymers (Saleur '91) .

Composition series of $Z(W^*)$ in integer weight-sector

	0	1	2	5	7
0	1				
1		1			
2			1		
5				1	
7					1

	0	1	2	5	7
0	1	1	1		
1	1			2	2
2	1			2	2
5		2	2		
7		2	2		

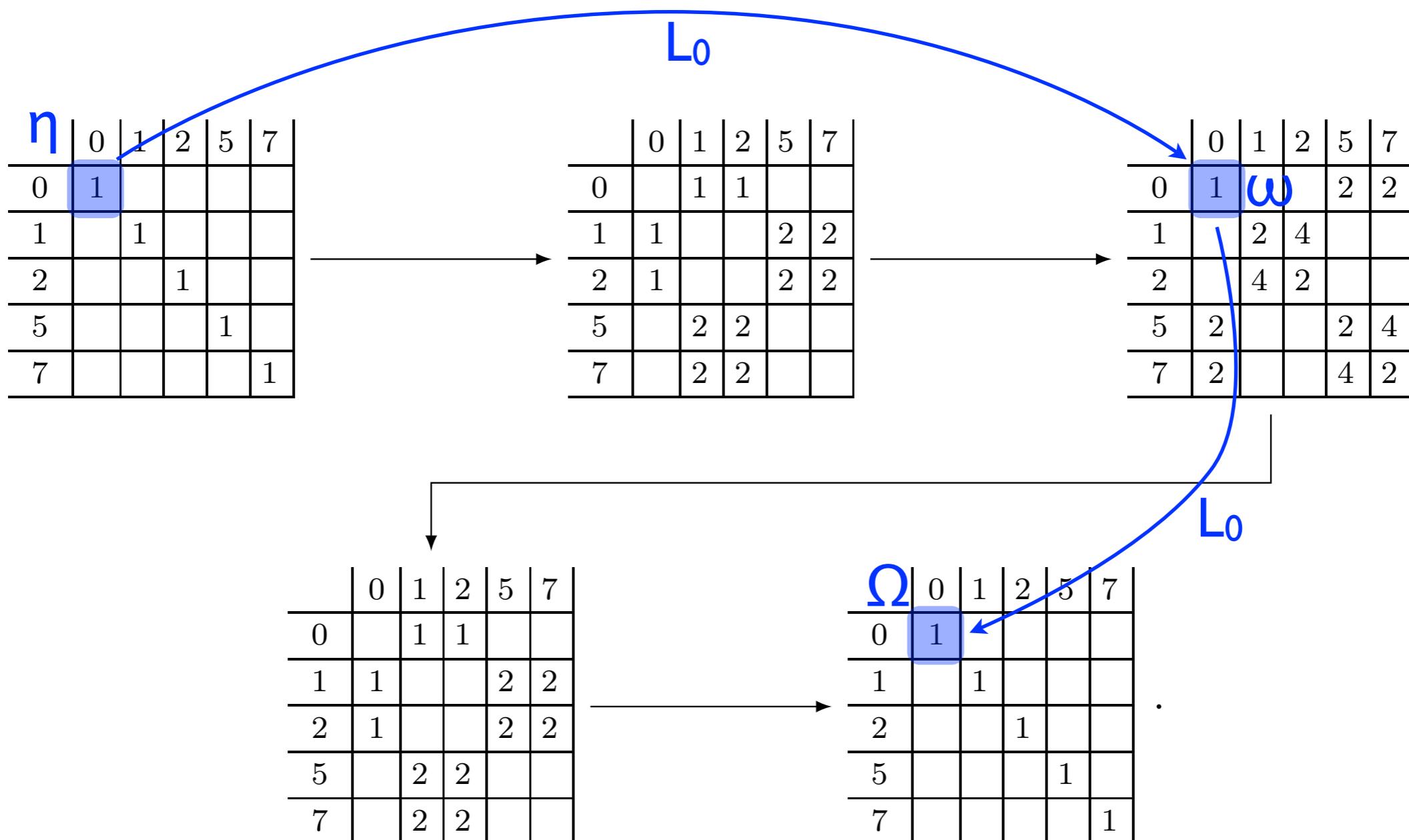
	0	1	2	5	7
0	1			2	2
1		2	4		
2		4	2		
5	2			2	4
7	2			4	2

	0	1	2	5	7
0		1	1		
1	1			2	2
2	1			2	2
5		2	2		
7		2	2		

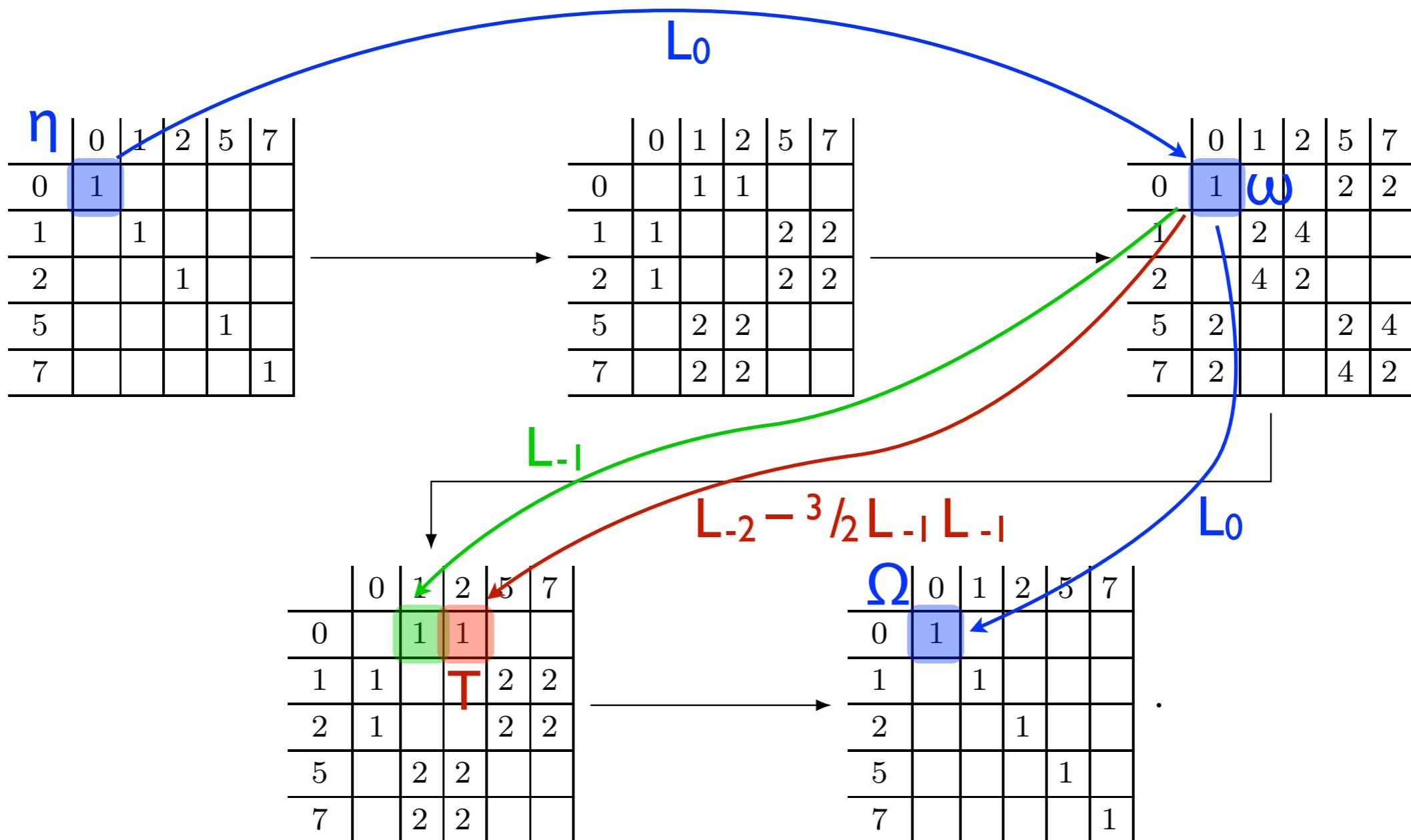
	0	1	2	5	7
0	1				
1		1			
2			1		
5				1	
7					1

.

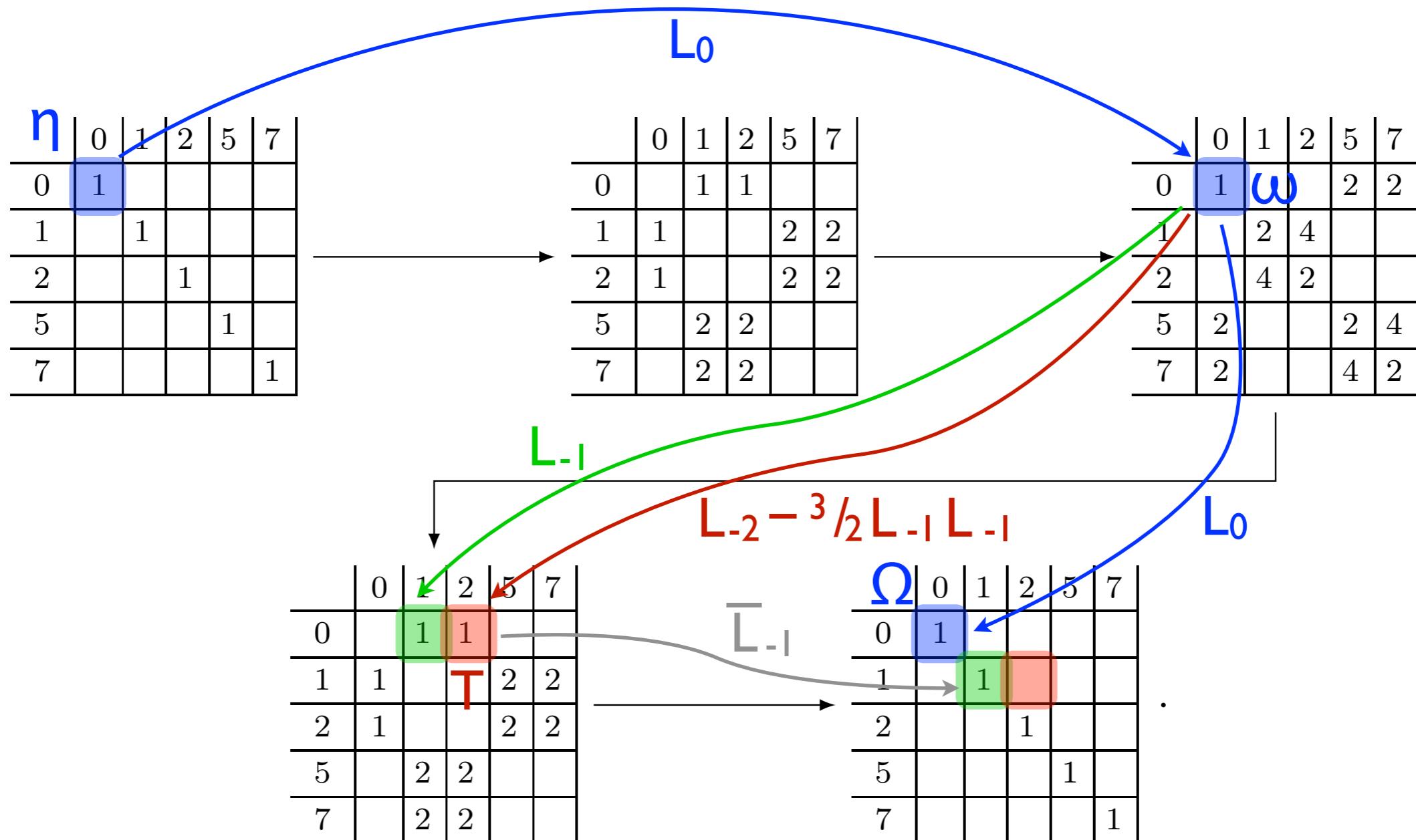
Composition series of $Z(W^*)$ in integer weight-sector



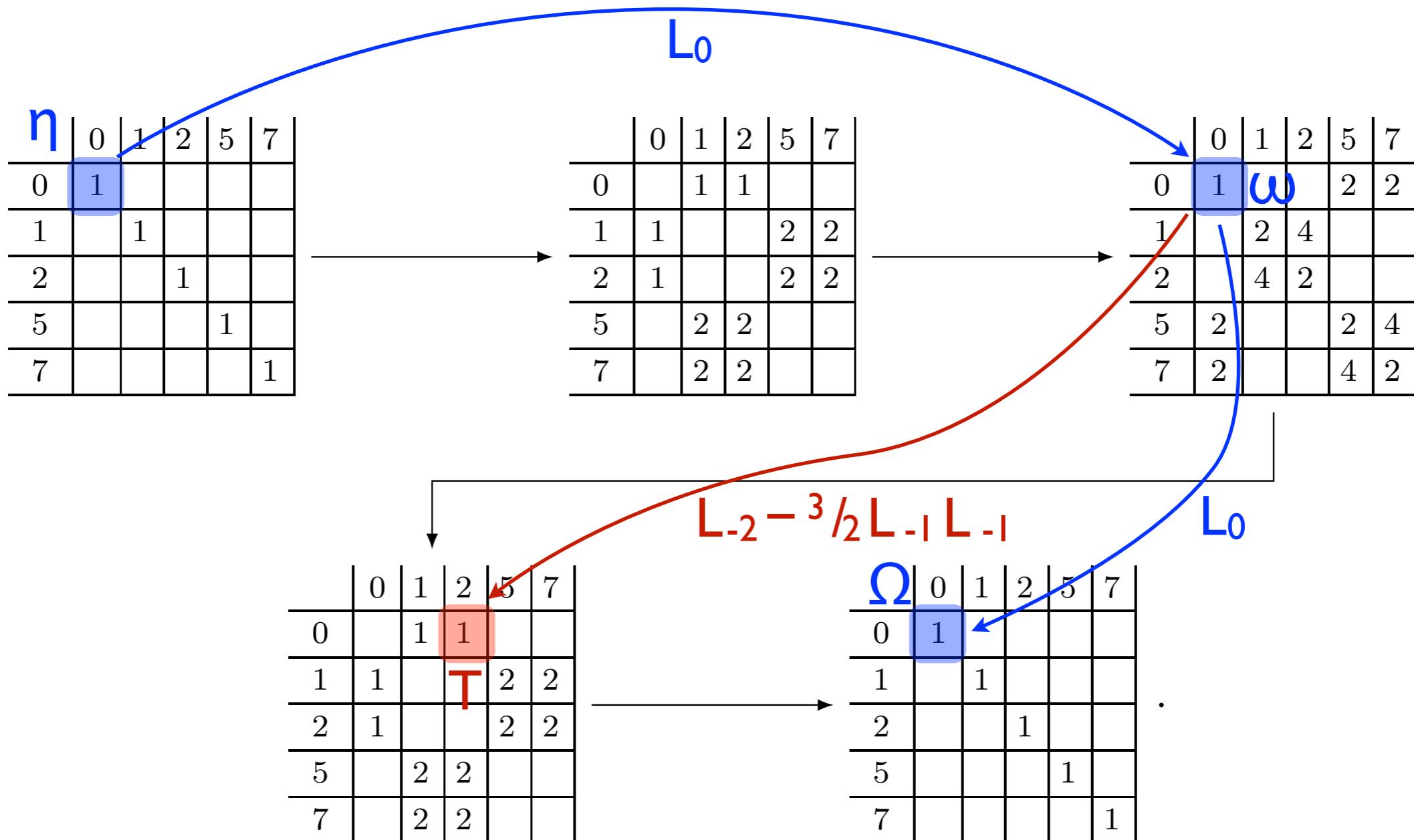
Composition series of $Z(W^*)$ in integer weight-sector



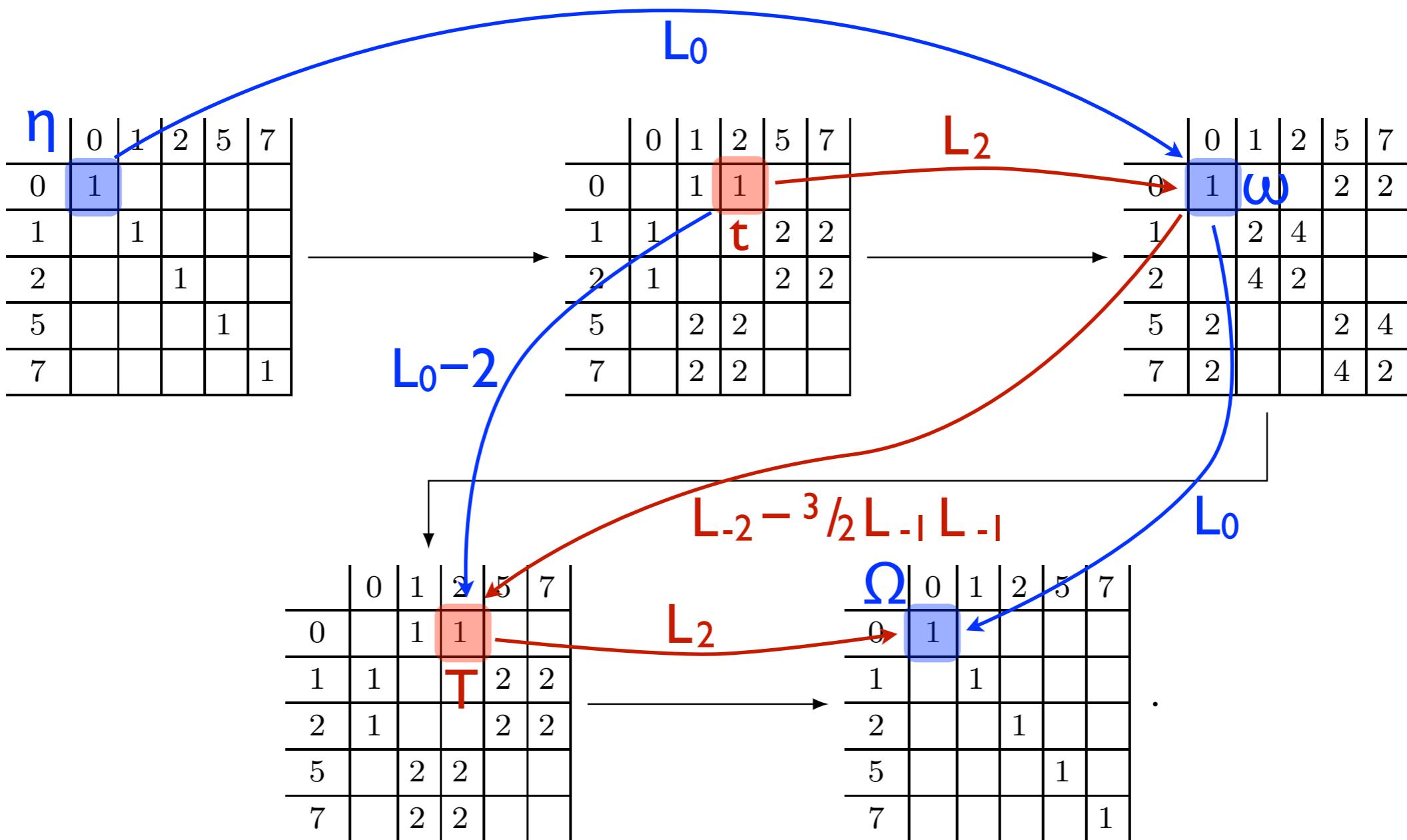
Composition series of $Z(W^*)$ in integer weight-sector



Composition series of $Z(W^*)$ in integer weight-sector



Composition series of $Z(W^*)$ in integer weight-sector



OPEs: $\Omega \Omega \sim 0$ (!) $\eta \Omega \sim \Omega$ $T T \sim 0$ (!)

$$tT \sim z^{-4} L_2 T + z^{-2} L_0 T + z^{-1} L_1 T$$

So that's your theory?

- $Z(\begin{smallmatrix} 2 & & \\ & 7 & 0 \\ & & 7 \\ & 0 & 2 \end{smallmatrix})$ will have better properties, in particular an embedding of $W \boxtimes W$ (and a vacuum and a stress tensor). Please compute it for us.
- $Z(W^*)$ as some properties not seen before, e.g. an OPE preserving projection
$$Z(W^*) \rightarrow Z(W(0)) = W(0) \boxtimes W(0)$$

All correlators transform under conformal maps, yet the theory has no stress tensor.
- The space of modular invariant bilinear combinations of the 13 characters of irreducibles is 2-dimensional. It is spanned by the characters of $Z(W^*)$ and $Z(W(0))$.