Non-Abelian Spin Textures

Kareljan Schoutens Institute for Theoretical Physics University of Amsterdam ACFTA IHP, Paris November 4, 2011

Mathematics Genealogy Project

Henri Poincaré

Biography MathSciNet

Ph.D. Université de Paris 1879

Advisor: Charles Hermite

Students: Click <u>here</u> to see the students listed in chronological order.

Name	School	Year Descendants		
Louis Bachelier		1900		
Théophile De Donder	Université Libre de Bruxelles	1901	524	
<u>Mihailo Petrović</u>	University of Belgrade			
Dimitrie Pompeiu	Université de Paris	1905	77	
Kyrille Popoff	Université de Paris	1912		

According to our current on-line database, Henri Poincaré has 5 <u>students</u> and 606 <u>descendants</u>. We welcome any additional information.

Search

Home

Extrema

About MGP

Links

FAQs

Posters

Submit Data

Mirrors

A service of the <u>NDSU</u> <u>Department of</u> <u>Mathematics</u>, in association with the <u>American</u> <u>Mathematical Society</u>.

Please <u>email us</u> with feedback.

Mathematics Genealogy Project

Bernard de Wit

Search

Home

Extrema

About MGP

Links

FAQs

Posters

Submit Data

Mirrors

A service of the <u>NDSU</u> <u>Department of</u> <u>Mathematics</u>, in association with the <u>American</u> <u>Mathematical Society</u>.

Please <u>email us</u> with feedback.

<u>MathSciNet</u>

Ph.D. Universiteit Utrecht 1973

Dissertation: Field-Theoretical Approach to Symmetry Aspects of the Weak and Electromagnetic Interactions

Mathematics Subject Classification: 81-Quantum Theory

Advisor: Martinus Justinus Godefridus Veltman

Students: Click <u>here</u> to see the students listed in chronological order.

Name	School	Year	Descendants
Eric Bergshoeff	Universiteit Leiden	1983	9
<u>Jacob Goeree</u>	Universiteit Utrecht	1993	
Kasper Peeters	Universiteit Utrecht	1998	
<u>Kareljan Schoutens</u>	Universiteit Utrecht	1989	
<u>Jan-Willem van Holten</u>	Universiteit Leiden	1980	
<u>Erik Verlinde</u>	Universiteit Utrecht	1988	4

Home

Search

Extrema

About MGP

Links

FAQs

Posters

Submit Data

Mirrors

A service of the <u>NDSU</u> <u>Department of</u> <u>Mathematics</u>, in association with the <u>American</u> <u>Mathematical Society</u>.

Please <u>email us</u> with feedback.

Mathematics Genealogy Project

Martinus Justinus Godefridus Veltman

MathSciNet

Ph.D. Universiteit Utrecht 1963

Dissertation: Intermediate Particles in S-matrix Theory and Calculation of Higher Order Effects in the Production of Intermediate Vector Bosons

Advisor: Léon Charles Prudent Van Hove

Students: Click <u>here</u> to see the students listed in chronological order.

Name	School	Year	Descendants
<u>Bernard de Wit</u>	Universiteit Utrecht	1973	19
<u> Michel Lemoine</u>	Universiteit Utrecht	1979	
<u>Christianus Otten</u>	Universiteit Utrecht	1978	
Johannes Reiff	Universiteit Utrecht	1971	
<u> Gerardus 't Hooft</u>	Universiteit Utrecht	1972	24
<u>Jochum van der Bij</u>	Universiteit Utrecht	1983	
<u>Peter van Nieuwenhuizen</u>	Universiteit Utrecht	1971	3

Mathematics Genealogy Project

Léon Charles Prudent Van Hove

Docteur en Sciences Université Libre de Bruxelles 1946

Dissertation: Sur les conditions du second ordre du calcul des variations

Advisor: Théophile De Donder

Students: Click <u>here</u> to see the students listed in chronological order.

Name	School	Year	Descendants		
<u>Nicolaas Hugenholtz</u>	Universiteit Utrecht	1957	21		
<u>Theodorus Ruijgrok</u>	Universiteit Utrecht	1958	16		
Willem van Haeringen	Universiteit Utrecht	1960	12		
Martinus Veltman	Universiteit Utrecht	1963	52		
Edward Verboven	Universiteit Utrecht	1961	1		

According to our current on-line database, Léon Van Hove has 5 <u>students</u> and 107 <u>descendants</u>. We welcome any additional information.

Home

Search

Extrema

About MGP

Links

FAQs

Posters

Submit Data

Mirrors

A service of the <u>NDSU</u> <u>Department of</u> <u>Mathematics</u>, in association with the <u>American</u> <u>Mathematical Society</u>.

Please <u>email us</u> with feedback.

Mathematics Genealogy Project

Théophile De Donder

MathSciNet

Docteur en Sciences Université Libre de Bruxelles 1901

Dissertation: Etude sur les invariants intégraux

Advisor 1: Henri Poincaré

Students: Click <u>here</u> to see the students listed in chronological order.

Name	School	Year	Descendants
Raymond Coutrez	Université Libre de Bruxelles 194	1	1
<u>Jules Géhéniau</u>	Université Libre de Bruxelles 193	1, 1938	38
Théophile Lepage	Université Libre de Bruxelles 192	9	305
Maurice Nuyens	Université Libre de Bruxelles		15
<u>Ilya Prigogine</u>	Université Libre de Bruxelles 194	1	52
<u>Léon Van Hove</u>	Université Libre de Bruxelles 194	6	107

According to our current on-line database, Théophile De Donder has 6 <u>students</u> and 524 <u>descendants</u>. We welcome any additional information.

Search

Home

Extrema

About MGP

Links

FAQs

Posters

Submit Data

Mirrors

A service of the <u>NDSU</u> <u>Department of</u> <u>Mathematics</u>, in association with the <u>American</u> <u>Mathematical Society</u>.

Please <u>email us</u> with feedback.

5/2 state

non-Abelian qH state?

5/2 state

Physics 3, 93 (2010)

Viewpoint

Non-Abelian anyons: New particles for less than a billion?

Kirill Shtengel Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA Published November 1, 2010

The potential discovery of anyons in a fractional quantum Hall device tests the limits of what is known about particles confined to two dimensions.

Subject Areas: Semiconductor Physics, Quantum Mechanics, Strongly Correlated Materials

A Viewpoint on: Alternation and interchange of e/4 and e/2 period interference oscillations consistent with filling factor 5/2 non-Abelian quasiparticles R. L. Willett, L. N. Pfeiffer and K. W. West *Phys. Rev. B* 82, 205301 (2010) – Published November 1, 2010

Spin at 5/2

• is the v=5/2 qH state spin polarized?

If yes:

• do fundamental excitations (charge e/4) involve spin: CST - charged spin textures ?

If yes:

 do these e/4 charged spin textures bind into charge e/2 (anti-)skyrmions?

> Dimov, Halperin, Nayak, PRL 2008 Feiguin, Rezayi, Yang, Nayak, Das Sarma, PRB 2009 Wójs, Möller, Simon, Cooper, PRL 2010

Spin at 5/2 – new results

- charged spin textures (CST) over MR state studied through algebraic approach
- fundamental CST identified as polar core vortex

Jesper Romers, Liza Huijse, KjS, NJP 2011 see also: Dimov, Nayak, unpublished

• explicit relation between spin texture of fused CST and underlying fusion path

Jesper Romers, KjS, to appear

Jesper Romers PhD thesis 2012

Skyrmions @ v=1

polarization vs filling in Lowest
 Landau Level for both spins

Skyrmions over iqH state at v=1

At $N_{\phi} = N-1$: spin polarized iqH state

$$\Psi_{iqH}^{\nu=1}(z_1,..,z_N) = \prod_{i < j} (z_i - z_j)$$

At $N_{\phi} = N$: skyrmion wave function

$$\Psi_{\text{Skyrmion}} = \Psi_B \times \Psi_{\text{iqH}}^{\nu=1}$$

View Ψ_B as spin-full wavefunction for *N* bosonic spin-1/2 particles in two orbitals z^o and z^1

MacDonald, Fertig, Brey, 1996

In 2nd quantization $(0\uparrow, 0\downarrow, 1\uparrow, 1\downarrow)$

In 2nd quantization $(0 \uparrow, 0 \downarrow, 1 \uparrow, 1 \downarrow)$

N=1 particle: 4 states form L=1/2, S=1/2

In 2nd quantization $(0 \uparrow, 0 \downarrow, 1 \uparrow, 1 \downarrow)$

N=1 particle: 4 states form L=1/2, S=1/2

N bosons

no. states =
$$\binom{N+3}{3}$$

= $\sum_{K=0}^{N/2} (L = K, S = K)$
= irrep (N00) of SU(4

In 2nd quantization $(0 \uparrow, 0 \downarrow, 1 \uparrow, 1 \downarrow)$

N=1 particle: 4 states form L=1/2, S=1/2

$$N=4$$

N bosons

no. states =
$$\binom{N+3}{3}$$

= $\sum_{K=0}^{N/2} (L = K, S = K)$
= irrep (N00) of SU(4

	S=0	S=1	S=2
L=0	1	0	0
L=1	0	1	0
L=2	0	0	1

no. states = 1 + 9 + 25 = 35 irrep (400) of SU(4)

Spin factor in Skyrmion wavefunction

N bosons

no.states =
$$\binom{N+3}{3}$$

= $\sum_{K=0}^{N/2} (L = K, S = K)$

Spin factor built as weighted sum over diagonal terms

$$\Psi_B = \sum_{K=0}^{N/2} \lambda^K \left| L = \frac{N}{2} - K, S = \frac{N}{2} - K \right\rangle^{\text{HW}}$$

LLL lift and size- λ skyrmions

LLL lift from $N_{\phi} = 1$ to $N_{\phi} = N$

$$\Psi_{\text{Skyrmion}} = \Psi_B \prod_{i < j} (z_i - z_j)$$

Size- λ skyrmion

$$\Psi_{\text{Skyrmion}}^{(\lambda)} = \sum_{K=0}^{N/2} \lambda^{K} \left| L = \frac{N}{2} - K, S = \frac{N}{2} - K \right\rangle^{\text{HW}} \prod_{i < j} (z_{i} - z_{j})$$
$$\cong \prod_{m=0}^{\infty} \left[\lambda \left| \downarrow_{m} \right\rangle + z_{m} \left| \uparrow_{m} \right\rangle \right] \prod_{i < j} (z_{i} - z_{j})$$

iqH skyrmions

iqH skyrmion

$$\Psi_{\text{Skyrmion}}^{(\lambda)} \cong \prod_{m=0}^{\infty} \left[\lambda \left| \downarrow_m \right\rangle + z_m \left| \uparrow_m \right\rangle \right] \prod_{i < j} \left(z_i - z_j \right)$$

Continuum limit agrees with expression from sigma-model

$$\vec{S}(r,\phi) = (\sqrt{1-\sigma^2}\cos\phi, -\sqrt{1-\sigma^2}\cos\phi, \sigma)$$
$$Q_{\text{topo}} = Q_{\text{electric}} = -1$$

Charged spin textures over MR state

Strategy for numerical analysis (Wójs et al)

- working in spherical geometry, use orbital angular momentum *L* and spin *S* to arrange states in (*L*,*S*) multiplets with (2L+1)(2S+1) degenerate states; single particle gives $L = N_{\phi}/2$, S = 1/2
- hamiltonian: Coulomb w/t corrections for finite thickness w
- zoom in on $N_{\phi} = N_{\phi}^{MR} \pm 1$ and for given *S* find (*L*,*S*) multiplet lowest in energy

Spherical geometry

- N_{\uparrow} , N_{\downarrow} fermions on sphere
- N_{ϕ} magnetic flux quanta
- LLL orbitals: eigenstates of orbital angular momentum localized on latitude lines,

$$L_z = l - N_{\phi}/2, \ l = 0, 1, ..., N_{\phi}$$

MR: skyrmions and 2CST

Results for N=12, where $N_{\phi}^{MR}=21$

MR: skyrmions and 2CST

Results for *N*=12, where N_{ϕ}^{MR} =21

MR: skyrmions ands 2CST

• (*S*=0,*L*=0) groundstate at N_{ϕ}^{MR} -1 has respectable overlap with standard skyrmion Ansatz

$$\Psi_{\rm skyrmion} = \Psi_{\rm B} \times \Psi_{\rm MR}$$

• no such Ansatz available for 2CST states

Skyrmions in spherical geometry

Strategy for analytical study

- restrict analysis to LLL states with MR pairing condition
- simplify further by analyzing bosonic case with MR at filling v=1 and NASS at v=4/3
- use Ansatz wavefunctions of form
- $\Psi = \operatorname{Symm}_{\{I,II\}} \left[\Psi_{I} \Psi_{II} \right]$
- obtain $\Psi_{I,II}$ via group theoretical analysis at $N_{\phi} = 1$ and successive lift into the LLL

Moore-Read pairing condition

$$\Psi_{MR}(z_1,..,z_N) = \Psi_{\text{boson}}(z_1,..,z_N) \prod_{i < j} (z_i - z_j)^M \exp\left(-\frac{|z|^2}{4l^2}\right)$$

$$\Psi_{\text{boson}}(z_1,..,z_N) = \text{Pf}\left(\frac{1}{z_i - z_j}\right) \prod_{i < j} (z_i - z_j)$$

Moore-Read pairing condition

$$\Psi_{MR}(z_1,..,z_N) = \Psi_{\text{boson}}(z_1,..,z_N) \prod_{i < j} (z_i - z_j)^M \exp\left(-\frac{|z|^2}{4l^2}\right)$$

$$\Psi_{\text{boson}}(z_1,..,z_N) = \text{Pf}\left(\frac{1}{z_i - z_j}\right) \prod_{i < j} (z_i - z_j)$$

Pairing property

$$z_1 = z_2 \qquad \Psi_{\text{boson}} \neq 0$$
$$z_1 = z_2 = z_3 \qquad \Psi_{\text{boson}} = 0$$

Spin @ v = 5/2

look for spin excitations within subspace of LLL states subject to MR pairing condition

$$H_{\text{pair}}\Psi_{\text{boson}} = 0$$

Spin @ v = 5/2

• polarization vs. filling in LLL for fermions with both spins, subject to MR pairing condition

Spin @ v=5/2

 polarization vs. filling in LLL for both spins, subject to MR pairing condition

Spin @ v=5/2

• polarization vs. filling in LLL for both spins, subject to MR pairing condition

Spin @ v = 5/2

• polarization vs. filling in LLL for both spins, subject to MR pairing condition

Spherical geometry: state counting

• NASS: unique paired state w/t (*L*=*o*, *S*=*o*) at

$$N_{\phi}^{\rm NASS} = \frac{7}{4}N - 3$$

- excess flux gives rise to qh over NASS state, their numbers are set by $n_{\uparrow} + n_{\downarrow} = 4(N_{\phi} - N_{\phi}^{\text{NASS}})$ $n_{\uparrow} + N_{\uparrow} = n_{\downarrow} + N_{\downarrow}$
- partition sum at excess flux

$$Z_{\rm qh}(q) = \sum_{\substack{F_1, F_2 \\ N_{\uparrow} + N_{\downarrow} = N \\ n_{\uparrow} + n_{\downarrow} = n}} q(F_1^2 + F_1^2 - F_1F_2) / 2 \left(\frac{n_{\uparrow} + F_2}{2} \\ F_1\right)_q \left(\frac{n_{\downarrow} + F_1}{2} \\ F_2\right)_q \left(\frac{n_{\downarrow} - F_1}{2} \\ R_2\right)_q \left(\frac{n_{\uparrow} - F_1}{2} + n_{\uparrow} \\ n_{\uparrow}\right)_q \left(\frac{n_{\downarrow} - F_2}{2} + n_{\downarrow} \\ n_{\downarrow}\right)_q \right)_q$$

Ardonne, Read, Rezayi, KjS, NPB 1999

Skyrmions in spherical geometry

Strategy for analytical study

- restrict analysis to LLL states with MR pairing condition
 - simplify further by analyzing bosonic case with MR at

filling v = 1 and NASS at v = 4/3

- use Ansatz wavefunctions of form
- $\Psi = \operatorname{Symm}_{\{I,II\}} \left[\Psi_{I} \Psi_{II} \right]$
- obtain $\Psi_{I,II}$ via group theoretical analysis at $N_{\phi} = 1$ and successive lift into the LLL

Bosonic Moore-Read state at v =1

Bosonic MR state written in form

$$\Psi = \operatorname{Symm}_{\{I,II\}} \left[\Psi_{I} \Psi_{II} \right]$$

$$\Psi_{MR}^{\nu=1}(z_1,..,z_N) = \Pr\left(\frac{1}{z_i - z_j}\right) \prod_{i < j} (z_i - z_j)$$
$$= \operatorname{Symm}_{\{I,II\}} \left[\prod_{i < j \in I} (z_i - z_j)^2 \prod_{k < l \in II} (z_k - z_l)^2 \right]$$

rationale: combinatorics or bosonization of underlying Ising CFT 2-group expression MR from bosonization

starting from CFT expression

$$\psi_{\rm e} = \psi \, {\rm e}^{{\rm i} \varphi_c}$$

$$\Psi_{MR}^{v=1}(z_1,..,z_N) = \left\langle \psi_{\mathsf{e}}(z_1)\psi_{\mathsf{e}}(z_2)\dots\psi_{\mathsf{e}}(z_N)\psi_{\mathsf{BG}}(z_\infty) \right\rangle_{\mathsf{CFT}}$$

bosonizing

$$\psi \Leftrightarrow e^{i\varphi} + e^{-i\varphi}$$

leads to $\Psi_{MR}^{v=1}(z_1,..,z_N) = \left\langle (e^{i\varphi} + e^{-i\varphi})(z_1) \dots (e^{i\varphi} + e^{-i\varphi})(z_N) \right\rangle \prod_{i < j} (z_i - z_j)$ $\prod_{I} (z_i - z_j) \prod_{II} (z_k - z_I) \prod_{I,II} (z_i - z_k)^{-1}$ **Bosonic Moore-Read state at v =1**

Bosonic MR state written in form

$$\Psi = \operatorname{Symm}_{\{I,II\}} \left[\Psi_{I} \Psi_{II} \right]$$

$$\Psi_{MR}^{\nu=1}(z_1,..,z_N) = \Pr\left(\frac{1}{z_i - z_j}\right) \prod_{i < j} (z_i - z_j)$$
$$= \operatorname{Symm}_{\{I,II\}} \left[\prod_{i < j \in I} (z_i - z_j)^2 \prod_{k < l \in II} (z_k - z_l)^2 \right]$$

Idea: at $N_{\phi} = N_{\phi}^{MR} + 1$ introduce separate spin structures in groups *I*, *II* N=2+2: SU(4) group theory

For constructing CST wavefunctions over N=4 MR state, split as N=2+2, total no. of states becomes $10 \times_s 10 = 55$

$$(N=2)_I \qquad (N=2)_{II}$$

	i				i				S=0	S=1	S=2
	S=0	S=1			S=0	S=1					0 2
								L=O	1,1	0	1
L=O	1	Ο	×s	L=O	1	0	=	T – 1	0	11	0
L=1	0	1		I.=1	0	1		<u>17–1</u>	0	1,1	0
11-1	U	T		17-1	U	T		L=2	1	0	1

SU(4):

no. states = 35 + 20

 $(200) \otimes_{s} (200) = (400) \oplus (020)$

General N

SU(4):
$$\left(\frac{N}{2}00\right) \otimes_{s} \left(\frac{N}{2}00\right) = (N00) \oplus (N-4\ 20) \oplus \dots \left(0\frac{N}{2}0\right)$$

Interpretation: denoting orbitals as $(L_z=-1/2, L_z=1/2)$

and spins in *I* as \uparrow , \downarrow and in *II* as \Uparrow , \Downarrow

HWS for $(N \circ o)$: $(0, \uparrow_{N/2} \uparrow_{N/2})$

HWS for (O N/2 O): $(\uparrow_{N/2}, \uparrow_{N/2}) + (\uparrow_{N/2}, \uparrow_{N/2})$

two e/2 qh

charge *e* qh

MR: LLL lift

LLL lift from $N_{\phi} = 1$ to $N_{\phi} = N_{\phi}^{MR} + 1$

$$\Psi_{\text{MR}}^{\text{spin}} = \text{Symm}_{\{I,II\}} \left[\Psi_B^I \prod_{i < j \in I} (z_i - z_j)^2 \Psi_B^{II} \prod_{k < l \in II} (z_k - z_l)^2 \right]$$

LLL lift preserves the *L* and *S* quantum numbers!

N=4: skyrmion and 2CST

Skyrmions in spherical geometry

Strategy for analytical study

- restrict analysis to LLL states with MR pairing condition
 - simplify further by analyzing bosonic case with MR at
 - filling v = 1 and NASS at v = 4/3
 - use Ansatz wavefunctions of form
- $\Psi = \operatorname{Symm}_{\{I,II\}} \left[\Psi_{I} \Psi_{II} \right]$
- obtain $\Psi_{I,II}$ via group theoretical analysis at N_{ϕ} = 1 and successive lift into the LLL

$$Explicit expressions$$

$$(N \circ o) : (0, \uparrow_{N/2} \uparrow_{N/2}) \quad \text{charge } e \operatorname{CST}(\operatorname{skyrmion})$$

$$\left[\sup_{\{I,H\}} \left[\operatorname{LLL} - \operatorname{lift} \right] \sum_{K_I, K_H} \lambda_I^{K_I} \lambda_{H^H}^{K_H} \left| \downarrow_{K_I} \downarrow_{K_H}, \uparrow_{N/2 - K_I} \uparrow_{N/2 - K_H} \right\rangle \right] \quad \text{for and right } \operatorname{charge } e/2 \operatorname{CST}$$

$$\left[\sup_{\{I,H\}} \left[\operatorname{LLL} - \operatorname{lift} \right] \sum_{K_I, K_H} \lambda_I^{K_I} \lambda_{H^H}^{K_H} \left| \uparrow_{N/2 - K_I} \downarrow_{K_H}, \downarrow_{K_I} \uparrow_{N/2 - K_H} \right\rangle \right]$$

charge e/2 CST

Continuum limit is spin texture with vanishing spin vector in the core

→ polar core vortex

 $\vec{S}(r,\phi) = (\sqrt{2\rho(1-\rho)}\cos\phi, -\sqrt{2\rho(1-\rho)}\sin\phi, \rho)$

Rationale: MR pairs carry spin-1, spin-1 spinor condensate (such as BEC) has polar and polarized phases. Polar core vortex captured by CP2 spinor

$$\xi(z) = \begin{pmatrix} z \\ 1 \\ 0 \end{pmatrix}$$

fusing elementary CST

setting

- total excess flux ΔN_{ϕ} leads to $n=2\Delta N_{\phi}$ elementary CST at positions $w_1 \dots w_n$
- the fusion channel of the underlying MR quasi-holes can be characterized by the number *F* of unpaired fermions (Read-Rezayi 1996)
- upon sending all $w_i \rightarrow o$ the elementary CST merge into a composite charge ne/2 CST
- what will be the associated spin texture?

2-group expression from bosonization

starting from Read Rezayi expression

$$\Psi_{m_1m_2...m_F}^{(F)}\left(w_1,...w_n;z_1,..,z_N\right)$$

sending $w_i \rightarrow o$, taking maximal L_z

$$\Psi^{(F)}(z_1,..,z_N) \approx \left\langle \psi \partial \psi \dots \partial^{F-1} \psi(0) \psi(z_1) \psi(z_2) \dots \psi(z_N) \right\rangle_{CFT}$$

fusion product of $\sigma(o)\sigma(o)...\sigma(o)$
bosonizing
$$\Psi^{(F)} \approx \left\langle (e^{iF\varphi} + e^{-iF\varphi})(0) (e^{i\varphi} + e^{-i\varphi})(z_1) \dots (e^{i\varphi} + e^{-i\varphi})(z_N) \right\rangle$$

need (*N*-*F*)/2 particles in group *I* and (*N*+*F*)/2 in group *II*

General construction: CST[w_I,w_{II}]

$$\Psi^{(\mathrm{F})} \approx \operatorname{Symm}_{\{I,II\}} \left[\prod_{i \in I} z_i^{\Delta N_{\phi} + F} \prod_{i < j \in I} (z_i - z_j)^2 \prod_{k \in II} z_k^{\Delta N_{\phi} - F} \prod_{k < l \in II} (z_k - z_l)^2 \right]$$

leads to spin texture

$$\Psi_{\text{CST}}^{(N_{\phi},F)} = \operatorname{Symm}_{\{I,II\}} \left[\Psi_{\text{B}}^{I} \prod_{i < j \in I} (z_{i} - z_{j})^{2} \Psi_{\text{B}}^{II} \prod_{k < l \in II} (z_{k} - z_{l})^{2} \right]$$

Group *I*,*II*: texture (skyrmion) with winding numbers $w_I = \Delta N_{\phi} + F$, $w_{II} = \Delta N_{\phi} - F$

$$\Psi_{\rm B}^{(w)} = \prod_{m=0}^{\infty} \left[\lambda \left| \downarrow_m \right\rangle + z_m^w \right| \uparrow_m \right\rangle \right]$$

Ex: *N* odd, *n*=4: CST[3,1]

Ex: *N* even, *n*=4: CST[2,2]

Ex: N even, n=8: CST[4,4], CST[6,2], CST[8,0]

length scales

for Coulomb rather than ultra-local interactions:

• elementary CST, going with charge e/4 quasi-hole over the fermionic MR state, identified with polar core vortex

• the spin-texture going with the fusion product of *n* elementary CST, in fusion sector with *F* unpaired fermions, is CST[n/2+F,n/2-F]