Quantum Hall Interferometry: Status and Outlook

Steven H. Simon

Collaborators: Woowon Kang, Bernd Rosenow

+ Ady Stern, Bert Halperin, Eytan Grosfeld, Curt von Keyserlingk

Why are we interested in Fractional Quantum Hall ?

Realization of interesting CFTs in condensed matter

(Moore-Read, Wen, ...)

2+0 dimensional Bulk Wavefunction \leftrightarrow CFT Correlator 1+1 dimensional Edge Theory \leftrightarrow CFT

Many Theoretical Predictions (mainly regarding edge properties) Are based on CFT Calculations:

Kane and Fisher (Various Edge Transport Properties) Ludwig, Fendley, Saleur (Noise at 1/3, Exact Calculation) Chamon, et al (Interferometry at 1/3) Stern Halperin; Shtengel, Bonderson, Kitaev (Interferometry at 5/2)+ many many more...

Experimental Situation:

Much less clear than one would hope

Par Exemple :

 1984: Prediction that quasiparticles of V=1/3 have fractional statistics (Halperin; Arovas Schrieffer, Wilczek)

There is general agreement that as of today no published experiment has ever demonstrated fractional statistics.

How would you do it in principle?

The Quantum Hall Fabry-Perot Interferometer

Hoping to prove fractional statistics

Theory: Chamon, Wen, et al 1997 + many many others

Experiment: Goldman Group; Willett Group; Kang Group; Marcus Group; Heiblum Group

Beam Splitter

Mirror

interference of two partial waves

VERY LONG HISTORY TO EXPERIMENTAL EFFORTS TO DEMONSTRATE FRACTIONAL STATISTICS THIS WAY

Complication #1: How do you know when you added a qp? (a) Addition of flux (b) Change of voltage

0

Complication #2: Can you add a qp without deforming the "dot"

Area of dot changes to accommodate qps

Electrostatics of buried LL's matter

Aharonov-Bohm Regime vs. Coulomb Dominated Regime (Can be very complicated)

Theory: Rosenow, Halperin; Halperin, Stern, Neder, Rosenow Exp: Y. Zhang et al (Marcus); N. Ofek et al (Heiblum); Godfrey et al (Kang)

Telegraph Noise

Slowish time scale = caused by glassy motion of dopant impurities

side gate voltage

Telegraph Noise

Slowish time scale = caused by glassy motion of dopant impurities

That is all I have to say about Abelian Quantum Hall Effect

(take a deep breath)

... and on to the presumed Non-Abelian v=5/2

The Fundamental Principles of 5/2 Nonabelions

(Presumed Moore-Read or AntiPfaffian)

For each *pair* of e/4 qps there is a single *two state system*.
 called: a "neutral (dirac) fermion" or a "qubit"

(i.e, each qp associated with a majorana)

- Braiding a third qp through the two flips the state of the qubit
- A phase of π is accumulated going around a neutral fermion

5/2 state interference experiment

Nayak, Wilczek; Stern, Halperin; Bonderson, Shtengel, Kitaev; Das Sarma, Nayak, Freedman

With even number of quasiparticles

Can get π phase shift Depending on even/odd neutral fermions

5/2 state interference experiment

Nayak, Wilczek; Stern, Halperin; Bonderson, Shtengel, Kitaev; Das Sarma, Nayak, Freedman With odd number of quasiparticles

5/2 state interference experiment Nayak, Wilczek; Stern, Halperin; Bonderson, Shtengel, Kitaev; Das Sarma, Nayak, Freedman With odd number of quasiparticles

No Interference!

side gate voltage

5/2 state interference experiment

Summary of Orthodox Theory:

- If an odd # of qps are in the interferometer, no interference
- If an even # of qps are in the interferometer, yes interference

Phase = 0 if even # of neutral fermions Phase = π if odd # of neutral fermions

plus interference of e/2 particles occurs all the time

- half gate-voltage period
- expect lower amplitude

Willett's Picture (Halperin, Stern; Bonderson, Kitaev, Shtengel)

R. L. Willett, L. N. Pfeiffer, and K. W. West Phys. Rev. B **82**, 205301 (2010)

Willett's Picture (Halperin, Stern; Bonderson, Kitaev, Shtengel)

Adding 19 Gauss of Flux (presumed 1 qh) changes even to odd

Is this validation of the "Orthodox" theory?

- (1) Is the data convincing?
- (2) Why is e/2 so strong? Why does it come and go?
- (3) Why does this appear to be Aharonov-Bohm and not Coulomb Dominated?
- (4) How reproducible is it?
- (5) Why does no other group observe this.

LET'S BELIEVE THE EVEN-ODD EFFECT HAS BEEN SEEN

PROBLEM:

ORTHODOX THEORY SHOULD NOT HOLD!

Area Estimate = $0.2 \ \mu m^2$

PROBLEM = *DEVICE IS SMALL....*

qps (qubits) in the dot
must be strongly
coupled to each other,
and to the edge...
By majorana hopping!

VERY UNLIKE ORTHODOX THEORY

Energy Scales

- (1) T ≈ V ≈ 10 mK ≈ 200 MHz
- (2) qp-qp majorana coupling
- (3) qp-edge majorana coupling

All Potentially Similar Order Estimate from Trial Wavefunction Monte-Carlo for tunneling (Baraban, Zikos, Bonesteel, Simon):

Two qps a distance d apart (4 qps in the calculation=2 fusion channels)

Area Estimate = $0.2 \ \mu m^2$

PROBLEM = *DEVICE IS SMALL....*

qps (qubits) in the dot
must be strongly
coupled to each other,
and to the edge...
By majorana hopping!

VERY UNLIKE ORTHODOX THEORY

Energy Scales

- (1) T ≈ V ≈ 10 mK ≈ 200 MHz
- (2) qp-qp majorana coupling
- (3) qp-edge majorana coupling

(4) 1/(Time of Experiment) = Hz = Tiny.

For orthodox interpretation to hold, need qp-edge coupling << 1 / (Time Scale of Experiment)

All Potentially

Similar Order

Why is edge-qp coupling a problem

Overbosch and Wen; Rosenow, Halperin, Simon, Stern; Bishara and Nayak

Path length (side gate voltage)

Energy Scales

- (1) T ≈ V ≈ 10 mK ≈ 200 MHz
- (2) qp-qp majorana coupling
- (3) qp-edge majorana coupling

(4) 1/(Time of Experiment) = Hz = Tiny.

For orthodox interpretation to hold, need

qp-edge coupling << 1 / (Time Scale of Experiment)</pre>

All Potentially

Similar Order

Modified (reform) interpretation, can save even-odd effect if

qp-qp coupling > T

Why does qp-qp coupling help?

Energy of $|0\rangle$ and $|1\rangle$ are split by *E* (qp-qp coupling)

If T < E, qubit freezes into a single state. Does not fluctuate between two out of phase signals

Interference is then seen!...and even-odd effect! ... but not a good "qubit"

(actually need T< E_{min} of band of majoranas)

Energy Scales

- (1) T ≈ V ≈ 10 mK ≈ 200 MHz
- (2) qp-qp majorana coupling
- (3) qp-edge majorana coupling

(4) 1/(Time of Experiment) = Hz = Tiny.

For orthodox interpretation to hold, need

qp-edge coupling << 1 / (Time Scale of Experiment)</pre>

All Potentially

Similar Order

Modified (reform) interpretation, can save even-odd effect if

qp-qp coupling > T

How can qp-edge coupling stop even-odd?

Overbosch and Wen; Rosenow, Halperin, Simon, Stern; Bishara and Nayak

For "odd" to kill interference, lone qp must be decoupled from edge

If a qp is coupled strongly to the edge, it becomes part of the edge \Rightarrow Nothing encircles it

 $\mathcal{L}_{charge} = \frac{1}{4\pi\nu} \partial_x \varphi(v_c \partial_x \pm i \partial_\tau) \varphi$ $\mathcal{L}_{neutral} = \psi(v_n \partial_x \pm \partial_t) \psi$ $\mathcal{L}_{qps} = \Gamma_\alpha \partial_\tau \Gamma_\alpha$ $\mathcal{L}_{edge-qp} = \lambda \Gamma_\alpha \psi(x_\alpha)$ $\hat{T}(x) = t \ \sigma_u(x) \sigma_d(x) \left[e^{\frac{i}{\sqrt{8}}(\phi_u - \phi_d)} + h.c. \right]$

Edge charge mode (bosons) Edge neutral (majorana) fermi mode Vortex core (majorana) zero modes Edge to bulk coupling Point Contacts Moves charge across

Edge neutral mode

2. Exact

Interference Term =
$$\operatorname{Re} \int_{\tau} e^{iV\tau} \langle \hat{T}_1(\tau) \ \hat{T}_2(0) \rangle$$

Rosenow, Halperin, Simon, Stern : Non-CFT Solution (Majorana theories are quadratic Hamiltonians)

How can qp-edge coupling stop even-odd?

Overbosch and Wen; Rosenow, Halperin, Simon, Stern; Bishara and Nayak

For "odd" to kill interference, lone qp must be decoupled from edge

If a qp is coupled strongly to the edge,

it becomes part of the edge \Rightarrow Nothing encircles it

But also need to freeze qubit

T < qp-qp coupling

Detailed Electrostatic Simulation (w/ von Keyserlingk)

Energy Scales(1) $T \approx V \approx 10 \text{ mK} \approx 200 \text{ MHz}$ (2) qp-qp coupling(3) qp-edge coupling(4) 1/(Time of Experiment) = Hz = Tiny.

For orthodox interpretation to hold, need

qp-edge coupling << 1 / (Time Scale of Experiment)</pre>

Modified (reform) interpretation, can save even-odd effect if

```
qp-qp coupling > T≈ V
and qp-edge coupling << T ≈ V
```


and qp-edge coupling $<< T \approx V$

Prediction 2

Which is lower energy ($|0\rangle$ or $|1\rangle$) depends on the detailed configuration of qps in the dot.

Interference signals can flip by π if a qp moves

"Friedel" oscillations in splitting as a function of distance

Estimate from Trial Wavefunction Monte-Carlo for tunneling (Baraban, Zikos, Bonesteel, Simon):

Two qps a distance d apart (4 qps in the calculation=2 fusion channels)

Prediction 3

$\pm \pi/4$ phase slips – occur with qp/qh addition

Going from even to odd,

if $E_{edge-bulk} >> e^*V$, zero-mode majorana absorbed into edge

Only see phase slip $(\pm \pi / 4)$ from abelian piece of the qp.

$$\psi_{qh/qp} = \sigma e^{\pm i\phi/(2\sqrt{2})}$$

 E_{edge-bulk} ~ e*V, T gives not quite π / 4 and less than full visibility of interference
 Overbosch and Wen; Rosenow, Halperin, Simon, Stern; Bishara and Nayak Expected signatures:

Expected signatures:

Phase slips of π , $\pi/4$, $5\pi/4$,

With (in-) appropriate filtering , one might obtain multiple periods that look a bit like e/2 and e/4.

Simulated Data

Simulated Low Pass Filter

Willett's low pass filter has a time constant of 100 seconds (This is not a complete explanation of Willett's data)

<u>Summary</u>

- "Orthodox" explanation of the even-odd effect for 5/2 interferometer seems impossible
- "Reformed" theory (freezing qubit state) still looks unlikely – coupling to edge too strong.
- Likely in a regime where all couplings are large Expect to always see interference (no even-odd). Expect slips of π (qubit flips) Expect slips $\approx \pm \pi/4$ ($\pm 5 \pi/4$) for qp/qh addition
- Low pass filtering may obscure data

Phase slip measurements may be the cleanest way to demonstrate braiding statistics (7/3 and/or 5/2)

Quantum Hall Interferometry: Status and Outlook

Collaborators: Woowon Kang, Bernd Rosenow

+ Ady Stern, Bert Halperin, Eytan Grosfeld, Curt von Keyserlingk