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Definition

Original claim [Gurarie ‘93 ‘99, Gurarie & Ludwig ‘02] : SUSY
approach to disordered systems yields c = 0 CFT with a logarithmic
partner for the stress energy tensor T

Chiral case only. In the basis (T , t), L0 has a Jordan cell

L0 =

(

2 1
0 2

)

Global conformal invariance then implies

⟨T (z)T (0)⟩ = 0

⟨T (z)t(0)⟩ =
b

z4

⟨t(z)t(0)⟩ =
� − 2b log z

z4
,

� is irrelevant whereas b is a fundamental number that characterizes
the pair (T , t)

At the time, b was thought of as an “effective central charge”
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Definition

LCFTs are actually characterized by a complicated structure of
indecomposable Virasoro modules

Focus on rank 2 Jordan cells

L0� = h�

L0 = h + �

The associated correlation functions then read

⟨�(z)�(0)⟩ = 0

⟨�(z) (0)⟩ =
�

z2h

⟨ (z) (0)⟩ =
� − 2� log z

z2h

Using Virasoro bilinear form L†
n = L−n, we get � = ⟨ ∣�⟩
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Staggered Virasoro modules and indecomposability parameters

Crucial role in staggered Virasoro modules theory [ Rohsiepe ‘96,
Kytola & Ridout ‘09 ]

P =

 
↙ ↘

� �
↘ ↙
�

Quotient of glueing of two Verma
modules (cf. D. Ridout’s lecture)

� must be singular with
�(z) = A�(z), A = L−n + �(1)L−n+1L−1 + . . . , n = h− h� (PBW
order).

e.g. � = T ,  = t, � = I and A = L−2

Define � through A† (z) = ��(z)

� characterizes uniquely the staggered module

Convenient to work with Virasoro bilinear form L†
n = L−n

⇒ � = ⟨ ∣�⟩ (given that ⟨�∣�⟩ = 1)
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Questions we’d like to answer

How to compute these (hopefully physically relevant) numbers ?
It would also be nice to get a physical intuition of their meaning !

Can we measure some of them on concrete lattice models (as for
the central charge and the critical exponents) ? Which observables
are they related to ?
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b b b b bb bb b b b b

bb bb b b b bb b b b b

b b b b b b b b b b

bb b b bb b b b b b b

b bb b b b b b bb b b



Indecomposability parameters OPE argument Lattice models Numerical methods and results Conclusion

A simple general formula from OPEs :
log CFTs as limits of ordinary CFTs
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Motivations

Indecomposability parameters are most likely relevant for “physics”
(∼ logarithmic structure constants). How can we calculate these
numbers ?

There exist many methods to compute indecomposability
parameters (Fusion algorithm, differential equations, null vector
equations, SLE . . .).

Unfortunately, these methods may be quite cumbersome . . .

⇒ Need of a simple explicit formula for the values of �

⇒ Idea : LCFT = limit of usual (non log) CFTs

c = 1−
6

x(x + 1)

hr ,s =
[r(x + 1)− sx ]

2
− 1

4x(x + 1)



Indecomposability parameters OPE argument Lattice models Numerical methods and results Conclusion

c → 0 catastrophe

c → 0 catastrophe and b number [Cardy ‘01, Gurarie & Ludwig ‘02, . . .]

Conformal invariance enforces

Φh(z)Φh(0) ∼
C I
ΦΦ

z2h

[

1 +
2h

c
z2T (0) + . . .

]

+ . . .

Suppose there is another field with conformal weight h→ 2 as c → 0
(�1,5 for percolation and �3,1 for polymers)

Φh(z)Φh(0) ∼
C I
ΦΦ

z2h

[

1 +
2h

c
z2T (0) + . . .

]

+
CΦ15

ΦΦ

z2h−h1,5

[Φ1,5(0) + . . . ] .

Then introduce a new field t(z) through

Φ1,5(z) =
C I
ΦΦ

CΦ15

ΦΦ

(

2h ⟨T ∣T ⟩

cb(c)
t(z)−

2h

c
T (z)

)

Where b(c) = − ⟨T ∣T⟩
h1,5−2

and ⟨T ∣T ⟩ = c
2
.
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c → 0 catastrophe

The OPE then becomes well defined at c = 0

Φh(z)Φh(0) ∼
C I
ΦΦ

z2h

[

1 +
h

b
z2(T (0) log z + t(0)) + . . .

]

+ . . . ,

One can show that L0t = 2t + T at c = 0, correlation functions can also
be calculated in a similar fashion.
This yields

bpercolation = − lim
c→0

c/2

h1,5 − 2
= −

5

8

bpolymers = − lim
c→0

c/2

h3,1 − 2
=

5

6
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explicit formulas for �

For a LCFT with c = 1− 6

x0(x0+1) . Let x = x0 + �,

n = (h − h�)∣�=0

� = − lim
�→0

⟨�∣�⟩

h − h� − n
= −

d
d� ⟨�∣�⟩

∣

∣

�=0

d
d�(h − h�)

∣

∣

�=0
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Generalization to a more complicated case

One can get rid of similar ill-defined terms in more complicated
cases with the very same argument

Logarithms come out naturally in this approach, and this yields
explicit formulas for �

For a LCFT with c = 1− 6

x0(x0+1) . Let x = x0 + �,

n = (h − h�)∣�=0

� = − lim
�→0

⟨�∣�⟩

h − h� − n
= −

d
d� ⟨�∣�⟩

∣

∣

�=0

d
d�(h − h�)

∣

∣

�=0

This is a 0

0
limit

One needs to properly identify the conformal weights h� and h in
the spectrum (quite easy)
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Example

Application to Symplectic fermion theory [Kausch ‘95]
General structure of the Jordan cells

L0�
(j) = h1,1+2j�

(j)

L0 
(j) = h1,1+2j 

(j) + �(j)

�(j) = Aj�
(j)

A
†
j  

(j) = �1,1+2j�
(j)

associated with the staggered structure

Pj =

 (j)

↙ ↘
�(j) �(j)

↘ ↙
�(j)

This OPE formula allows us to conjecture the general expression

�1,1+2j = − lim
x→1

〈

�∣A†A∣�
〉

h1,1+2j − h1,1+2(j−1) − (j − 1)
= −

[(2j − 3)!]2

4j−2
(j − 1)
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Lattice models, indecomposability and scaling limit
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Temperley-Lieb algebra

The Temperley-Lieb algebra is behind all the models we shall
consider

[ei , ej ] = 0 (∣i − j ∣ ≥ 2)

e2

i = (q + q−1)ei

eiei±1ei = ei
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Temperley-Lieb algebra

The Temperley-Lieb algebra is behind all the models we shall
consider

[ei , ej ] = 0 (∣i − j ∣ ≥ 2)

e2

i = (q + q−1)ei

eiei±1ei = ei

Algebra of diagrams with

ei = . . .
i i+1

. . . .

Standard (cell) modules Vj : V2 = { },
V1 = { , , }, and V0 = { , }.

In a given module, we define our models by
Transfer Matrix T =

∏

i even (1 + ei)
∏

i odd (1 + ei)
Hamiltonian H = −

∑

i ei
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XXZ Spin chain

6-Vertex or XXZ representation ℋXXZ = (ℂ2)⊗2N

Representation of the TL algebra on this space

ei = I⊗ I⊗ ⋅ ⋅ ⋅ ⊗

⎛

⎜

⎜

⎝

0 0 0 0
0 q−1 −1 0
0 −1 q 0
0 0 0 0

⎞

⎟

⎟

⎠

⊗ ⋅ ⋅ ⋅ ⊗ I,

The Hamiltonian reads

H =
1

2

2N−1
∑

i=1

(

�x
i �

x
i+1 + �y

i �
y
i+1

+
q + q−1

2
�z

i �
z
i+1

)

+
q − q−1

4
(�z

1 − �
z
2N)

Uq(sl2) symmetry [H ,Uq(sl2)] = 0
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TL←→ Virasoro

This XXZ spin chain at q = e
i�

x+1 corresponds to a (L)CFT with
central charge c = 1− 6

x(x+1) in the scaling limit
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Excitations over the groundstate (vacuum) of the Hamiltonian
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Scaling limit

TL←→ Virasoro

This XXZ spin chain at q = e
i�

x+1 corresponds to a (L)CFT with
central charge c = 1− 6

x(x+1) in the scaling limit

Excitations over the groundstate (vacuum) of the Hamiltonian
correspond to critical exponents. In the scaling limit, we have the
correspondence (TL) Vj −→ Vh1,1+2j

/Vh1,−1−2j
(Virasoro), which is

generically irreducible

The standard TL module Vj has a structure that mimics that of
Vh1,1+2j

/Vh1,−1−2j
on the Virasoro side
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turns out to be convenient to study the representation theory of the
symmetry algebra of our model.
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To understand the Jordan cell structure of the Hamiltonian H , it
turns out to be convenient to study the representation theory of the
symmetry algebra of our model.

Let us focus on the XXZ case. When q is generic, we have the
decomposition on 2N sites

ℋ∣Uqsl2
=

N
⊕

j=0

djVj
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N
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(2j + 1)Vj
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Schur-Weyl duality and algebraic structure

To understand the Jordan cell structure of the Hamiltonian H , it
turns out to be convenient to study the representation theory of the
symmetry algebra of our model.

Let us focus on the XXZ case. When q is generic, we have the
decomposition on 2N sites

ℋ∣Uqsl2
=

N
⊕

j=0

djVj

ℋ∣TLq(2N) =

N
⊕

j=0

(2j + 1)Vj

For q root of unity, we can deduce which indecomposable TLq(2N)
modules occur in the decomposition using the indecomposable
structure of V⊗2N

1

2

for Uqsl2 (cf. lectures of A. Gaynutdinov, G.

Lehrer . . .)
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Bimodule

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bcbc

bcbc

Uqsl2321

1

2

3

4

5

Vir(TLq)

[Read & Saleur ‘07]
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Scaling limit

The indecomposable diamond TL modules ‘tend’ to several
staggered Virasoro modules in the limit

�j

↙ ↘
�j1 �j2

↘ ↙
�j

=⇒

�h1,1+2j

↙ ↘
�h1,1+2j1

�h1,1+2j1

↘ ↙
�h1,1+2j
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Scaling limit

The indecomposable diamond TL modules ‘tend’ to several
staggered Virasoro modules in the limit

�j

↙ ↘
�j1 �j2

↘ ↙
�j

=⇒

�h1,1+2j

↙ ↘
�h1,1+2j1

�h1,1+2j1

↘ ↙
�h1,1+2j

In particular the lattice Jordan cells for H become L0 logarithmic
pairs

⇒ We know exactly from the representation theory of associative
algebras the structure of the TL modules (and of the Jordan cells)
on the lattice (finite size). The TL indecomposable modules mimic
the staggered Virasoro modules that occur in the continuum limit.
We can thus study the lattice models as ‘regularizations’ of LCFTs
built out of such staggered modules. Most of the continuum
features can be recovered in finite size (subquotient structure,
fusion rules, . . .) and we’ll see that this is also true for
indecomposability parameters.
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Measure of indecomposability
parameters from lattice models
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From lattice Jordan cells to the continuum

Finite size Jordan cells in the Hamiltonian become L0 Jordan cells in
the scaling limit.

Identify Jordan cells in the spectrum

H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

E0

E1

E2 1
E2

E3

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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From lattice Jordan cells to the continuum

Finite size Jordan cells in the Hamiltonian become L0 Jordan cells in
the scaling limit.

Identify Jordan cells in the spectrum

H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

E0

E1

E2 1
E2

E3

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We normalize our states {
∣

∣�(L)
〉

,
∣

∣ (L)
〉

} to prepare the comparison
with CFT

H (L) − E0(L)1 =
�vF

L

(

h(L) 1

0 h(L)

)

,

with h(L) = L
�vF

(E (L)− E0(L)).
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Lattice scalar product

We need somewhat to measure
〈

 (L)∣�(L)
〉

. . .

. . .but we need a “scalar product” which goes to Virasoro bilinear
form in the continuum limit

In our XXZ case, treat q as a formal parameter
∣�⟩ = ∣↑↑↓↓⟩+ q ∣↑↑↑↑⟩ has norm ⟨�∣�⟩ = 1 + q2.

H is hermitian for this scalar product : L
†
0
= L0

Note that H is obviously not hermitian for the canonical inner
product over ℂ

OK, so let’s compute
〈

 (L)∣�(L)
〉

then . . .
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∣

∣�(L)
〉

corresponds
precisely to � = A� in the continuum limit.This is non trivial
because ⟨�∣�⟩ = 0.

For c = 0 and the stress energy tensor, trousers trick [Dubail,
Jacobsen, Saleur ‘10]

In the general case, this is achieved using a Virasoro algebra
“regularization” on the lattice [Koo & Saleur ‘93]

L
(2N)
n ∕=0

=
L

�

[

−
1

vF

L−1
∑

i=1

(ei − e∞) cos

(

ni�

L

)

+
1

v2

F

L−2
∑

i=1

[ei , ei+1] sin

(

ni�

L

)

]
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For c = 0 and the stress energy tensor, trousers trick [Dubail,
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In the general case, this is achieved using a Virasoro algebra
“regularization” on the lattice [Koo & Saleur ‘93]

L
(2N)
n ∕=0

=
L

�

[

−
1

vF

L−1
∑

i=1

(ei − e∞) cos

(

ni�

L

)

+
1

v2

F

L−2
∑

i=1

[ei , ei+1] sin

(

ni�

L

)

]

We can construct A(L) on the lattice. We expect the state A(L)
∣

∣�(L)
〉

to correspond to the operator � = A� in the limit L→∞.
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Lattice �(L)’s

Let’s sum up :

Using exact diagonalization methods, find a Jordan basis for the
first few excitations of H on L = 2N sites.

Identify a Jordan cell in the spectrum of H and normalize the states
to compare with CFT.

Also identify the state
∣

∣�(L)
〉

and normalize it such that
〈

�(L)∣�(L)
〉

= 1 for the lattice scalar product.

Using Virasoro generators on the lattice, construct the operator A(L).

Compute �(L) =

∣

∣

〈

 (L)∣A(L)�(L)
〉∣

∣

2

〈

 (L)∣�(L)
〉
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Some results

Numerics for the Symplectic fermion theory

L = 2N �1,5 �1,7 �1,9

8 -0.937759 -13.3574
10 -0.959708 -14.8908 -1518.37
12 -0.971844 -15.7936 -1805.43
14 -0.979236 -16.3612 -2013.66
16 -0.984064 -16.7384 -2157.86
18 -0.987388 -17.0006 -2262.59
20 -0.989771 -17.1898 -2340.51
22 -0.991539 -17.3304 -2399.80
24 -2445.81
∞ -1.0000 ± 0.0002 -18.0(0) ± 0.05 -27(00) ± 25

Exact −1 −18 −2700
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Some results

Some results (cont’d)

Percolation (q = e
i�/3)

L �1,4 L �1,5

7 -0.471874 8 -0.609088
9 -0.476386 10 -0.605858
11 -0.479983 12 -0.606403
13 -0.482724 14 -0.607775
15 -0.484837 16 -0.609226
17 -0.486503 18 -0.610561
19 -0.487845 20 -0.611738
21 -0.488946 22 -0.612764
∞ -0.5000 ± 0.0001 ∞ -0.6249 ± 0.0005

Exact -1/2 Exact -5/8 = 0.625
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Some results

A example of new result : Logarithmic Ising model (q = e
i�/4)

L0 =

(

5/2 1
0 5/2

)

, �(z) = (L−2 −
3

4
L2

−1)�(z).

L = 2N �1,5

8 -1.26986
10 -1.29548
12 -1.31743
14 -1.33489
16 -1.34876
18 -1.35993
20 -1.36905
22 -1.37663
∞ -1.4582(8) ± 0.0001

Exact −35/24 ≃ −1.4583

�1,5 = − lim
�→0

〈

�(2)∣�(2)
〉

h1,5 − h1,3 − 2
= −

35

24
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Conclusion

Indecomposability parameters are crucial in the Virasoro staggered
modules theory

and they should also be relevant for physics !

We found a simple ‘physical’ way to understand how they are fixed
in a given theory

Concrete lattice models mimic the indecomposability that occurs in
the continuum, and indecomposability parameters can be measured
directly on finite size systems

Open questions :

It would be very interesting to extend all these results to the bulk
(Vir ⊗ V̄ir)

Geometrical/physical observables involving these numbers ? ? ?
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Conclusion

Thank you !


