

Logarithmic CFT in a disordered electronic system

Kay Wiese

LPT, ENS, Paris
with **Andreas A. Ludwig**

Paris, October, 2011

<http://www.phys.ens.fr/~wiese/>

OUTLINE

- Free Dirac electrons subject to random-gauge and mass disorder
- formulate quenched disorder-average via super-symmetry method:
 N electrons and N super-partners (bosons)
- package the fermions and bosons together into super-currents

$$J^A = J^{(\bar{a})} = \Psi_{\bar{a}}^\dagger \Psi^a$$

- The currents are elements of $gl(N|N)$
- Analyse tensor product of two currents,

$$O^{AB} = J^A \bar{J}^B$$

- Indecomposable representations of $gl(N|N) \Rightarrow$ logarithmic operators
- Logarithmic pair in a disordered system: (M^A, L^A)

$$\langle M^A(z) M^B(0) \rangle = 0$$

$$\langle L^A(z) M^B(0) \rangle = \kappa^{AB} k^2 (1 - \frac{\lambda^2 k^2}{2} + \dots) / |z|^4$$

$$\langle L^A(z) L^B(0) \rangle = \kappa^{AB} 8k^2 \lambda \log |z/a| / |z|^4$$

- 4-point functions of currents

Disordered electrons

- Dirac-electrons, given by N Grassmanian fields $\psi^a(x)$, and $\bar{\psi}^a(x)$, and their conjugate fields $\psi_a^\dagger(x)$, and $\bar{\psi}_a^\dagger(x)$ with action

$$\mathcal{S}_{mA} = \frac{1}{2} \sum_{a=1}^N \int_z \psi_a^\dagger (\bar{\partial} + \bar{A}) \psi^a + \bar{\psi}_a^\dagger (\partial + A) \bar{\psi}^a + m \bar{\psi}_a^\dagger \psi^a + m^* \psi_a^\dagger \bar{\psi}^a$$

- The expectation value of an observable \mathcal{O} is defined by the Grassmanian path integral

$$\langle \mathcal{O} \rangle := \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[\psi^\dagger] \mathcal{D}[\bar{\psi}^\dagger] \mathcal{O} e^{-\mathcal{S}_{mA}} ,$$

- disorder averages over random $m(x)$, $A(x)$

$$\overline{(\dots)}^m := \int \mathcal{D}[m] \mathcal{D}[m^*] e^{-\frac{1}{4\lambda} \int_z m m^*} , \quad \overline{(\dots)}^A := \int \mathcal{D}[m] \mathcal{D}[m^*] e^{-\frac{1}{4\tilde{\lambda}} \int_z A \bar{A}}$$

- but one has to average:

$$\overline{\left[\frac{\langle \mathcal{O} \rangle}{\mathcal{Z}} \right]}$$

- What to do with the denominator?

The super-symmetry method

- introduce N bosonic fields β , “super-partners” of the ψ ’s

$$\begin{aligned}\mathcal{S}_{mA} = & \frac{1}{2} \sum_{a=1}^N \int_z \psi_a^\dagger (\bar{\partial} + \bar{A}) \psi^a + \bar{\psi}_a^\dagger (\partial + A) \bar{\psi}^a + m \bar{\psi}_a^\dagger \psi^a + m^* \psi_a^\dagger \bar{\psi}^a \\ & + \frac{1}{2} \sum_{a=1}^N \int_z \beta_a^\dagger (\bar{\partial} + \bar{A}) \beta^a + \bar{\beta}_a^\dagger (\partial + A) \bar{\beta}^a + m \bar{\beta}_a^\dagger \beta^a + m^* \beta_a^\dagger \bar{\beta}^a\end{aligned}$$

- path integral now runs over **fermions** and **bosons**.
- partition function becomes $\mathcal{Z} = \langle 1 \rangle = 1$.
- disorder average simplifies $\overline{\left[\frac{\langle O \rangle}{\mathcal{Z}} \right]} = \overline{\langle O \rangle}$.
- Package together into a super-field $\Psi^a(x) = (\beta^a(x), \psi^a(x))$, etc., with double index $(a, g(a))$, with *grade* $g(a) = \begin{cases} 0 & \text{boson} \\ 1 & \text{fermion} \end{cases}$

$$\mathcal{S}_{mA} = \frac{1}{2} \sum_{a=1}^N \sum_{g(a)=0}^1 \int_z \Psi_a^\dagger (\bar{\partial} + \bar{A}) \Psi^a + \bar{\Psi}_a^\dagger (\partial + A) \bar{\Psi}^a + m \bar{\Psi}_a^\dagger \Psi^a + m^* \Psi_a^\dagger \bar{\Psi}^a$$

The disorder-averaged action

- Action

$$\mathcal{S} = \mathcal{S}_0 + \mathcal{S}_m + \mathcal{S}_A$$

$$\mathcal{S}_0 = \frac{1}{2} \int_z \Psi_a^\dagger \bar{\partial} \Psi^a + \bar{\Psi}_a^\dagger \partial \bar{\Psi}^a$$

$$\begin{aligned} \mathcal{S}^m &= -\lambda \int_z (\bar{\Psi}_a^\dagger \Psi^a) (\Psi_b^\dagger \bar{\Psi}^b) = -\lambda \int_z (\underbrace{\bar{\Psi}_a^\dagger \bar{\Psi}^b}_{\bar{J}_{(a)}^{(b)}}) (\underbrace{\Psi_b^\dagger \Psi^a}_{J_{(b)}^{(a)}}) (-1)^{g(b)} \\ &= -\lambda \int_z \bar{J}^B J^A \kappa_{AB} \end{aligned}$$

$$\mathcal{S}^A = -\tilde{\lambda} \int_z (\bar{\Psi}_a^\dagger \bar{\Psi}^a) (\Psi_b^\dagger \Psi^b) = -\tilde{\lambda} \int_z \bar{J}^B J^A \tilde{\kappa}_{AB}$$

- Free theory expectation values: $\langle \Psi^a(z) \Psi_b^\dagger(w) \rangle = \frac{\delta_b^a \delta_{g(b)}^{g(a)}}{z-w}$.
- defines current algebra

$$J_{(\bar{a})}(z_1) J_{(\bar{b})}(z_2) = -k \frac{\kappa_{(\bar{a})(\bar{b})}^{(\bar{a})(\bar{b})}}{z_{12}^2} + \frac{1}{z_{12}} J_{(\bar{c})}(z_2) f_{(\bar{c})}^{(\bar{a})(\bar{b})}$$

$$\begin{aligned} f_C^{AB} &= f_{(\bar{c})}^{(\bar{a})(\bar{b})} = \delta_{\bar{b}}^a \delta_c^b \delta_{\bar{a}}^{\bar{c}} - (-1)^{g(A)g(B)} \delta_{\bar{a}}^b \delta_c^a \delta_{\bar{b}}^{\bar{c}} \\ \kappa^{AB} &= \kappa_{(\bar{a})(\bar{b})}^{(\bar{a})(\bar{b})} = (-1)^{g(\bar{a})} \delta_{\bar{a}}^b \delta_{\bar{b}}^a \end{aligned}$$

Theory, β -functions

The theory is defined by the two $gl(N|N)$ invariant interactions

$$\mathcal{S}_{\text{int}} = -\lambda \int_z \Phi(z, \bar{z}) - \tilde{\lambda} \int_z \tilde{\Phi}(z, \bar{z})$$

$$\Phi(z, \bar{z}) = J^A(z) \bar{J}^B(\bar{z}) \kappa_{BA} , \quad \kappa_{BA} = (-1)^{g(\bar{b})g(a)} \delta_b^{\bar{a}} \delta_a^{\bar{b}}$$

$$\tilde{\Phi}(z, \bar{z}) = J^A(z) \bar{J}^B(\bar{z}) \tilde{\kappa}_{BA} , \quad \tilde{\kappa}_{BA} = -\frac{1}{2} f_B^{CD} f_{DCA} = \delta_b^{\bar{b}} \delta_a^{\bar{a}}$$

The operator-product expansions are

$$\Phi(z, \bar{z}) \Phi(0, 0) = -\frac{2}{z\bar{z}} \tilde{\Phi}(0, 0)$$

$$\Phi(z, \bar{z}) \tilde{\Phi}(0, 0) = 0$$

$$\tilde{\Phi}(z, \bar{z}) \tilde{\Phi}(0, 0) = 0$$

The β -functions are

$$\beta_{\lambda}(\lambda, \tilde{\lambda}) := \frac{L\partial}{\partial L} \lambda = 0 \quad (\text{to all orders})$$

$$\beta_{\tilde{\lambda}}(\lambda, \tilde{\lambda}) := \frac{L\partial}{\partial L} \tilde{\lambda} = 2\lambda^2 - 4k\lambda^2 + \dots$$

λ is an exactly marginal perturbation: Conformal sector

WARNING: Use traceless observables \Leftrightarrow connected expectations.

Composite operators and representation theory

- consider operators of the form $J^A \bar{J}^B$
- group theoretically: tensor product of two adjoints
(Götz, Quella, Schomerus, 2005)

$$[\frac{1}{2}] \otimes [\frac{1}{2}] = \pi_g \left(\left(\frac{1}{2}, \frac{1}{2} \right) \otimes \left(\frac{1}{2}, \frac{1}{2} \right) \right) \oplus [0] \oplus \pi_{\frac{1}{2} \otimes \frac{1}{2}}^{\text{indec}}$$

- $\pi_g \left(\left(\frac{1}{2}, \frac{1}{2} \right) \right)$ is the symmetric part
- the antisymmetric part has indecomposable representation

$$\pi_{\frac{1}{2} \otimes \frac{1}{2}}^{\text{indec}} : \begin{array}{ccc} & 2[1] & \\ \nearrow & & \searrow \\ [\frac{1}{2}] & & [\frac{1}{2}] \\ \searrow & & \nearrow \\ & 3[0] & \end{array}$$

- we will see later: the renormalization group operator \mathcal{R} maps the left $[\frac{1}{2}]$ to the right $[\frac{1}{2}]$:

$$\mathcal{R} \sim \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

- \mathcal{R} has Block-Jordan form

Indecomposable representations = Block-Jordan form ⇒ logarithms

Suppose the renormalization group acts as follows

$$\mathcal{R} \begin{pmatrix} L^A \\ M^A \end{pmatrix} = -4\lambda \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} L^A \\ M^A \end{pmatrix}.$$

This implies the following correlation functions

$$\langle M^A(z)M^B(0) \rangle = \kappa^{AB} \frac{d}{|z|^4}$$

$$\langle L^A(z)M^B(0) \rangle = \kappa^{AB} \frac{b}{|z|^4}$$

$$\langle L^A(z)L^B(0) \rangle = \kappa^{AB} \frac{c + 8b\lambda \log|z/a|}{|z|^4}$$

An Excursion: Conserved Currents

- Current conservation in conformal coordinates reads

$$\partial \bar{J}^A + \bar{\partial} J^A = 0 .$$

This remains correct for the interacting theory.

- However the curl of the current gets corrected,

$$\bar{\partial} J^A - \partial \bar{J}^A = \frac{2\lambda}{1+\lambda k} M^A$$
$$M^A := \bar{J}^E J^D f_{DE}^{\quad A} .$$

This is proven by contracting $\bar{\partial} J^A - \partial \bar{J}^A$ versus $e^{\lambda \int_z \Phi(z)}$, and noting that one gets back either $\bar{\partial} J^A - \partial \bar{J}^A$ or M^A times $e^{\lambda \int_z \Phi(z)}$.

- M^A is sometimes termed the Maurer-Cartan form.

Our explicit example for a logarithmic pair

By explicit calculations, one finds that

- the image of the renormalization-group operator \mathcal{R} is the Maurer-Cartan form

$$M^A := \bar{J}^E J^D f_{DE}^{A}.$$

Idea:

- $M^A \sim \partial \bar{J}^A - \bar{\partial} J^A$ is not renormalized, due to the sum over grades in the running index.
- insert a factor of $(-1)^{\text{grade of running index}}$ or restrict to grade 0
- The preimage is an equivalence class. Through experimentation one finds that one representative is

$$L^A := \bar{J}^E J^D b_{DE}^{A}.$$

$$b_{CB}^{A} := \delta_c^a \delta_{\bar{a}}^{\bar{b}} \delta_b^{\bar{c}} - (-1)^{[g(A)+1]g(B)} \delta_b^a \delta_c^{\bar{b}} \delta_{\bar{a}}^{\bar{c}}$$

- An alternative is

$$\tilde{b}_{CB}^{A} := 2 \left[\delta_{g(b)}^0 \delta_c^a \delta_{\bar{a}}^{\bar{b}} \delta_b^{\bar{c}} - \delta_0^{g(\bar{b})} (-1)^{g(A)g(B)} \delta_b^a \delta_c^{\bar{b}} \delta_{\bar{a}}^{\bar{c}} \right]$$

- The relation between these two definitions is

$$b_{CB}^{A} + f_{CB}^{A} = \tilde{b}_{CB}^{A}$$

Prediction from OPE for 2-point function was

$$\langle M^A(z) M^B(0) \rangle = \kappa^{AB} \frac{d}{|z|^4}$$

$$\langle L^A(z) M^B(0) \rangle = \kappa^{AB} \frac{b}{|z|^4}$$

$$\langle L^A(z) L^B(0) \rangle = \kappa^{AB} \frac{c + 8b\lambda \log|z/a|}{|z|^4}$$

Explicit calculation to 2-loop order gives :

$$\langle M^A(z)M^B(0) \rangle = \kappa^{AB} \frac{0}{|z|^4}$$

$$\langle L^A(z)M^B(0) \rangle = \kappa^{AB} \frac{k^2}{|z|^4} \left(1 - \frac{\lambda^2 k^2}{2} + \dots \right)$$

$$\langle L^A(z)L^B(0) \rangle = \kappa^{AB} \frac{0 + 8k^2 \lambda \log |z/a|}{|z|^4}$$

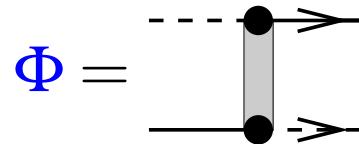
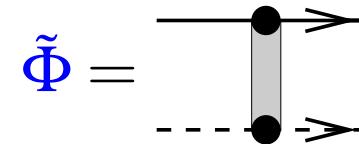
The even objects have correlation functions

$$\langle O_+(z)O_+(0) \rangle = \frac{1}{|z|^{4+2\lambda}}$$

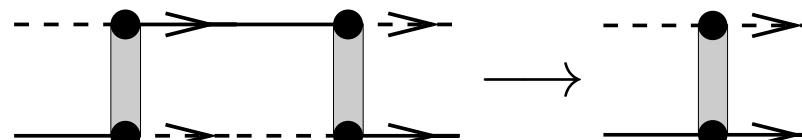
$$\langle O_-(z)O_-(0) \rangle = \frac{1}{|z|^{4-2\lambda}}$$

Re-exponentiation of logs has been checked to higher-loop order.

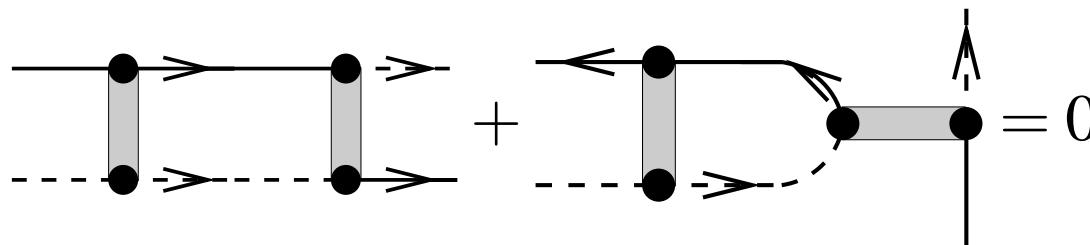
Replica: HOW TO? (1)



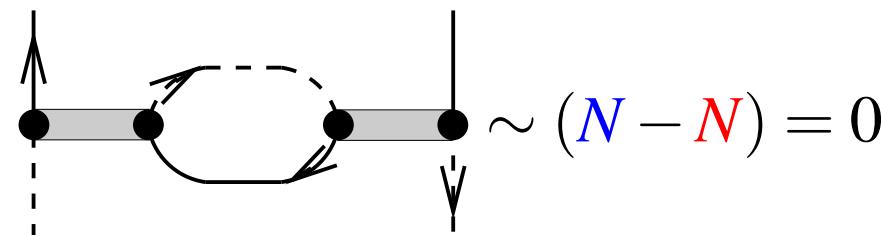
- 1-loop order: $\Phi\Phi$ only generates $\tilde{\Phi}$:



- $\tilde{\Phi}$ leads to cancellations:



- Supersymmetry (Bosons – fermions):



- can also be achieved with $N = 0$ replica.
- But this is not enough structure for M^A and L^A .

Replica: HOW TO? (2)

$$M^A = J^E \bar{J}^D f_{DE}^A = \sum_b \left[\begin{array}{c} \text{Diagram with 2 black dots in a box, output } b \\ \text{Diagram with 1 black dot in a box, output } b \end{array} - \begin{array}{c} \text{Diagram with 2 black dots in a box, output } b \\ \text{Diagram with 1 black dot in a box, output } b \end{array} \right], \quad \Phi = \begin{array}{c} \text{Diagram with 1 black dot in a box, output } b \\ \text{Diagram with 1 black dot in a box, output } b \end{array}$$

- First cancelation:

$$\begin{array}{c} \text{Diagram with 2 black dots in a box, output } b \\ \text{Diagram with 1 black dot in a box, output } b \end{array} - \begin{array}{c} \text{Diagram with 1 black dot in a box, output } b \\ \text{Diagram with 2 black dots in a box, output } b \end{array} = 0$$

- Second cancelation: loop, N physical and \bar{N} ghost species, $N + \bar{N} \rightarrow 0$

$$\Phi M^A \rightarrow \begin{array}{c} \text{Diagram with 1 black dot in a box, output } b \\ \text{Diagram with 1 black dot in a box, output } b \end{array} \sim \left[\underbrace{\sum_{b=1}^N}_{N} + \underbrace{\sum_{b=N+1}^{N+\bar{N}}}_{\bar{N}} \right] \begin{array}{c} \text{Diagram with 2 black dots in a box, output } b \\ \text{Diagram with 1 black dot in a box, output } b \end{array} \rightarrow 0$$

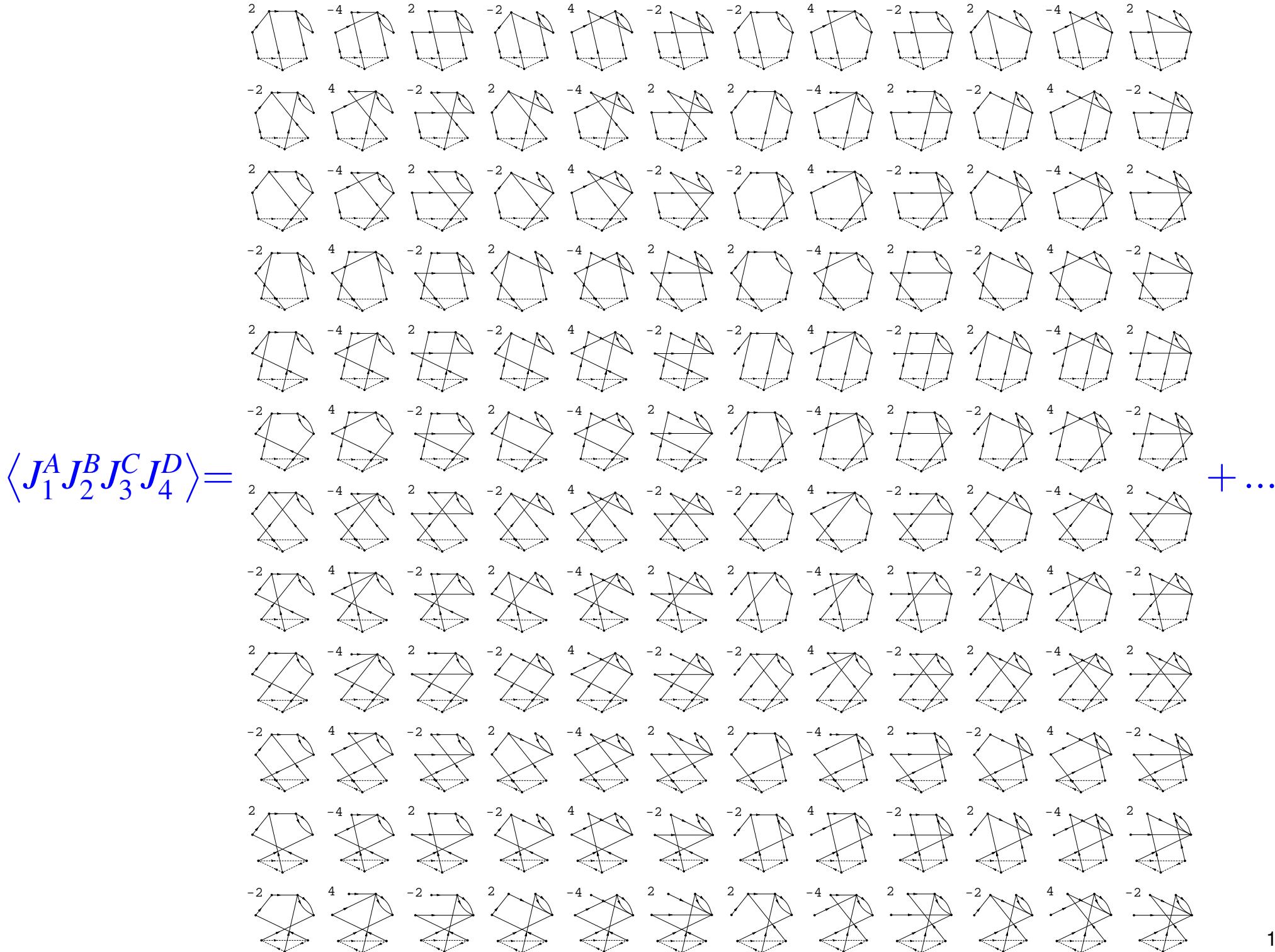
- Now define (traceless) L^A , via a **graded sum**

$$L^A = \sum_b (-1)^{g(b)} \left[\begin{array}{c} \text{Diagram with 2 black dots in a box, output } b \\ \text{Diagram with 1 black dot in a box, output } b \end{array} - \begin{array}{c} \text{Diagram with 1 black dot in a box, output } b \\ \text{Diagram with 2 black dots in a box, output } b \end{array} \right] = \sum_b \left[\begin{array}{c} \text{Diagram with 2 black dots in a box, output } b \\ \text{Diagram with 1 black dot in a box, output } b \end{array} - \begin{array}{c} \text{Diagram with 1 black dot in a box, output } b \\ \text{Diagram with 2 black dots in a box, output } b \end{array} \right]$$

- loop changes

$$\Phi L^A \rightarrow \begin{array}{c} \text{Diagram with 1 black dot in a box, output } b \\ \text{Diagram with 1 black dot in a box, output } b \end{array} \sim \left[\underbrace{\sum_{b=1}^N}_{N} + \underbrace{\sum_{b=N+1}^{N+\bar{N}}}_{-\bar{N}} (-1) \right] \begin{array}{c} \text{Diagram with 2 black dots in a box, output } b \\ \text{Diagram with 1 black dot in a box, output } b \end{array} \rightarrow 2N \begin{array}{c} \text{Diagram with 2 black dots in a box, output } b \\ \text{Diagram with 1 black dot in a box, output } b \end{array}$$

4-point functions in $psl(N|N)$ via SUSY current algebra



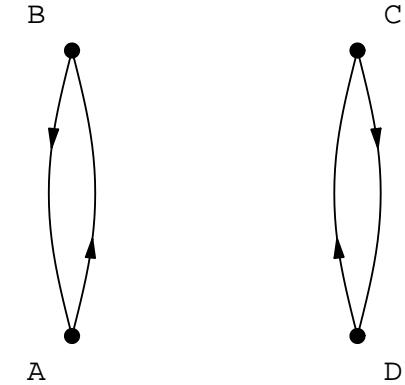
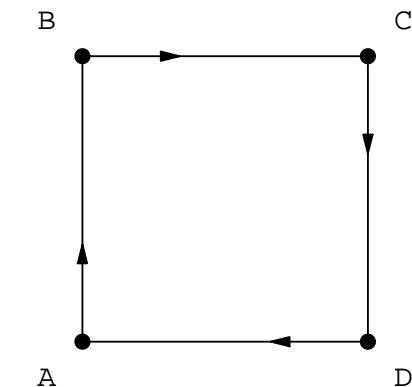
4-point functions in $psl(N|N)$ at 3 loop

- index-choice $\{(1,2), (2,1), (3,4), (4,3)\}$ gives

$$\begin{aligned} \langle J_1^A J_2^B J_3^C J_4^D \rangle = & \frac{1}{z_{12} z_{23} z_{34} z_{41}} \left\{ \frac{k^2 (1 + 2\lambda^2 k^2)}{1 - \theta} \right. \\ & \left. - 2\lambda^2 k^2 (1 - 4\lambda k) \left[\ln |\theta|^2 + \frac{(1 - \theta)}{\theta} \ln |1 - \theta|^2 \right] + O(\lambda^4) \right\} \end{aligned}$$

- index-choice $\{(1,2), (2,3), (3,4), (4,1)\}$

$$\begin{aligned} \langle J_1^A J_2^B J_3^C J_4^D \rangle = & \frac{1}{z_{12}^2 z_{34}^2} \left\{ k (1 + \lambda^2 k^2) (1 - \theta) \right. \\ & - \lambda^2 k^3 (1 - \lambda k) \left[(1 - \theta)^2 \ln \left| \frac{\theta}{1 - \theta} \right|^2 + \ln |\theta|^2 \right] \\ & + 2\lambda^3 k^2 \frac{1 - \theta}{\theta} (2 - \theta) \left[\ln(\theta \bar{\theta}) \ln \left(\frac{1 - \bar{\theta}}{1 - \theta} \right) + 2 \text{Li}_2(\bar{\theta}) - 2 \text{Li}_2(\theta) \right] \\ & \left. + O(\lambda^4) \right\} \end{aligned}$$

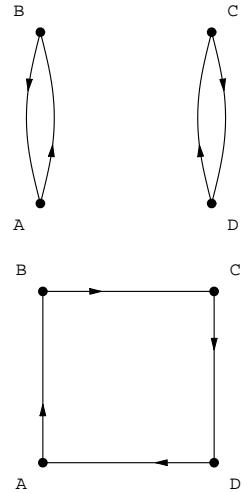


$$\theta := \frac{z_{13} z_{24}}{z_{23} z_{14}}$$

Constraints on the 4-point function

$$\langle J_1^A J_2^B J_3^C J_4^D \rangle^{\text{index choice 1}} =: \frac{1}{z_{12}^2 z_{34}^2} \mathcal{F}^{(1)}(\theta, \bar{\theta})$$

$$\langle J_1^A J_2^B J_3^C J_4^D \rangle^{\text{index choice 2}} =: \frac{1}{z_{12} z_{23} z_{34} z_{41}} \mathcal{F}^{(2)}(\theta, \bar{\theta})$$



Constraints \mathcal{F}_1

- Exchange of points 1 and 2: $\mathcal{F}^{(1)}(\theta) = \mathcal{F}^{(1)}(\theta^{-1})$
- For $\text{psl}(1|1)$, $f_C^{AB} \rightarrow 0$.

$$\left\langle J_1^{\binom{11}{01}} J_2^{\binom{11}{10}} J_3^{\binom{11}{01}} J_4^{\binom{11}{10}} \right\rangle = \frac{k^2}{(1 - \lambda^2 k^2)^2} \left[\frac{1}{z_{12}^2 z_{34}^2} - \frac{1}{z_{14}^2 z_{23}^2} \right]$$

- since valid for all N , $\mathcal{F}^{(1)}(\theta) - (\theta - 1)^2 \mathcal{F}^{(1)}\left(\frac{\theta - 1}{\theta}\right) = \frac{k^2}{(1 - \lambda^2 k^2)^2} \theta(2 - \theta)$

Constraints \mathcal{F}_2

- cyclic rotation invariance: $\mathcal{F}^{(2)}(\theta) = \mathcal{F}^{(2)}\left(\frac{\theta}{\theta - 1}\right)$
- group theory $(1 - \theta) \mathcal{F}^{(2)}(1 - \theta) - \mathcal{F}^{(2)}\left(\frac{1}{\theta}\right) + \theta \mathcal{F}^{(2)}(\theta) = 0$

Beyond 3-loop order: reconstruction procedure

- 4-point function is function of cross-ratio $\zeta = \frac{z_{12}z_{34}}{z_{23}z_{14}}$

$$\langle J_1^A J_2^B J_3^C J_4^D \rangle = \frac{1}{z_{12}z_{23}z_{34}z_{14}} \mathcal{F}(\zeta, \bar{\zeta})$$

- take one anti-holomorphic derivative

$$\partial_{\bar{z}_1} \langle J_1^A J_2^B J_3^C J_4^D \rangle = \frac{1}{z_{12}z_{23}z_{34}z_{14}} \left(\frac{1}{\bar{z}_{12}} - \frac{1}{\bar{z}_{14}} \right) \underbrace{\zeta \frac{\partial}{\partial \bar{\zeta}} \mathcal{F}(\zeta, \bar{\zeta})}_{\mathcal{L}(\zeta, \bar{\zeta})}$$

- (partially) reconstruct $\mathcal{F}(\zeta, \bar{\zeta})$

$$\mathcal{F}(\zeta, \bar{\zeta}) = a(\zeta) + \int d\bar{\zeta} \frac{\mathcal{L}(\zeta, \bar{\zeta})}{\bar{\zeta}}$$

- interesting because $\partial_{\bar{z}}$ kills one integration:

$$\begin{aligned} \partial_{\bar{z}_1} J_1^b(z_1, \bar{z}_1) \Phi(z_2, \bar{z}_2) &= \partial_{\bar{z}_1} \frac{1}{z_1 - z_2} \Psi^b(z_2, \bar{z}_2) + \dots \\ &= \delta^2(z_1 - z_2) \Psi^b(z_2, \bar{z}_2) + \dots \end{aligned}$$

4-th order

$$\begin{aligned}\mathcal{F}(\zeta, \bar{\zeta}) = & a(\zeta) + b(\zeta) \ln(\zeta \bar{\zeta}) + c(\zeta) \ln((1 + \bar{\zeta})(1 + \zeta)) \\ & + d(\zeta) \left[\ln(1 + \zeta)(1 + \bar{\zeta}) \ln \frac{\bar{\zeta}}{\zeta} + 2 \text{Li}_2(1 + \bar{\zeta}) - 2 \text{Li}_2(1 + \zeta) \right] \\ & + \int \frac{1}{\bar{\zeta}} \int \frac{1}{(1 + \bar{\zeta})^2} \int \frac{1}{\bar{\zeta}} \int \frac{\mathcal{K}(\zeta, \bar{\zeta})}{(1 + \bar{\zeta})^2}\end{aligned}$$

Conclusion

- electrons with random-gauge and random-mass disorder have a conformal sector, whose group-theoretical representation is $psl(N|N)$
- there are logarithmic operators in this sector. We have identified a logarithmic pair L^A and M^A .
- explicit results for the 4-point functions $\langle JJJJ \rangle$ (3-loop order), and $\langle JJJ\bar{J} \rangle$, $\langle J\bar{J}J\bar{J} \rangle$ (2-loop order)
- this allows to analyze the operator content in the different channels, and to check conjectures on the structure of the 4-point functions.
- calculations can also be done with replicas, even bosonic replicas.