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OUTLINE

e Free Dirac electrons subject to random-gauge and mass disorder

e formulate quenched disorder-average via super-symmetry method:
N electrons and N super-partners (bosons)

e package the fermions and bosons together into super-currents

JA =) = whye
e The currents are elements of gl(N|N)
e Analyse tensor product of two currents,

OAB _ JAJ‘B

e Indecomposable representations of g/(N|N) = logarithmic operators
e Logarithmic pair in a disordered system: (M*, 1)

(M*(2)M®(0)) =0

(L MP(0)) = kP (1 =235+ /|
(LA(2)LP(0)) = kB 8K*Alog|z/al/|z*

e 4-point functions of currents



Disordered electrons

e Dirac-electrons, given by N Grassmanian fields y“(x), and y“(x),
and their conjugate fields y'(x), and ¥ (x) with action

S h = = Z/l/fa A) Yo+, (9 +A) §' +m y +m*y, g

e The expectation value of an observable &' is defined by the
Grassmanian path integral
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e disorder averages over random m(x), A(
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e but one has to average:
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e What to do with the denominator?



The super-symmetry method
e introduce N bosonic fields 3, “super-partners” of the y’s

mA— Z/llja l/ja+llja (8+A)l/ja+ml/jal/ja+m l/jal/ja

£ X, B (04 2) B4 B @+ M) B+ BB+ BB

e path integral now runs over fermions and bosons.
e partition function becomes 2 = (1) = 1.

(0)

e disorder average simplifies [—] = (0).
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e Package together into a super-field ¥*(x) = (B¢(x), y*(x)), etc., with

double index (a,g(a)), with grade g(a) = {(1) fe(?ifign
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The disorder-averaged action

e Action
S =S+ S+ Sa

Fy= [Wiow+ w0
m__ Iriaga b _ TARNT L2 pa(_ 1\2(b)
% A/Z(‘Pa‘l’ ) (w2) A/z(l?: )(\Pb(j; )(—1)
— ——;lQ//lfBQP4FQ43 - SN
I =1 / (PP (wg\yb) = -1 / JBIARap

e Free theory expectation values: <‘P“(z)‘PZ(w)> =
e defines current algebra

a 8(“)
O Oy
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Theory, -functions
The theory is defined by the two g/(N|N) invariant interactions

1nt——7L/<I>zz )L/CI)ZZ

D(z,2) = I ) P@)Kpa ,  Kpa = (—1)P% 55
. 3 1 .
D(z,7) = JA( )JB( Z)KBa Kpa = _EfBCDfDCA = 5555
The operator-product expansions are )
CI)(Z7Z)(D(070) — _Z_Z(i)(()?O)

®(z,7)P(0,0) =0

D(z,7)P(0,0) =0
The B-functions are 19

Br(A,A) = a—l 0 (to all orders)

B; (A, 1) ;:g‘—az DA2—4kA% +

A is an exactly marginal perturbation: Conformal sector

WARNING: Use traceless observables < connected expectations.
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Composite operators and representation theory

e consider operators of the form J4J/?
e group theoretically: tensor product of two adjoints
(Gotz, Quella, Schomerus, 2005)

Holl - n(GheGd) o 0o

e T, ((5,5)) is the symmetric part

272
e the antisymmetric part has indecomposable representation
indec .
Tl | /2[1]\ |
3] 3]
N S
310]

e we will see later: the renormalization group operator % maps the
left [3] to the right [3]:
01
#~(a0)

e 2% has Block-Jordan form



Indecomposable representations = Block-Jordan form
= logarithms

Suppose the renormalization group acts as follows

#(ar) ==(00) (un)

This implies the following correlation functions

(M (z)MP(0)) = k*° é

b

A B _ . AB Y
<L (Z)M (O)> = K \Z’4

_ KABc+8b7Llog|z/a|
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An Excursion: Conserved Currents
e Current conservation in conformal coordinates reads
oA +0J4=0.

This remains correct for the interacting theory.
e However the curl of the current gets corrected,

- _ 20
A— A:—
)" —dJ 14+ Ak

MA = J_EJDfDEA .

MA

This is proven by contracting 9/ — dJ* versus ¢*=®  and noting
that one gets back either dJ4 — 9J* or M* times ! 2,

e M4 is sometimes termed the Maurer-Cartan form.



Our explicit example for a logarithmic pair

By explicit calculations, one finds that
e the image of the renormalization-group operator # is the
Maurer-Cartan form
M = fEJDfDEA .
ldea:
o M* ~ 9J4 — 3J" is not renormalized, due to the sum over grades
In the running index.
e insert a factor of (—1)9rade of running index o rastrict to grade 0
e The preimage is an equivalence class. Through experimentation one
finds that one representative is
[A = JEIPbpg"
beg = 896288 — (—1)lW+11s(B) a5 5e
e An alternative is ) ) )
bes' =2 30, 0805; — 815 5580 5
e The relation between these two definitions is
bes” + fos® = bes



Prediction from OPE for 2-point function was

(M (2)M®(0)) = «** %

(LYz)M"(0)) = k** %
L AB c+8bAlog|z/al

2|*

(L*(z)L%(0))
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Explicit calculation to 2-loop order gives :

(MA(2)MP(0)) = K %

k? A2k?
(LYz)M"(0)) = k** EL (1 -t )
0+ 8k*Alog|z/al
[

(L*(z)L%(0)) = k**

The even objects have correlation functions

(0:20:(0) = iz

(0-(0-(0) = 5

Re-exponentiation of logs has been checked to higher-loop order.




Replica: HOW TO? (1)

e 1-loop order: ®® only generates o:

e & leads to cancelations:

e Supersymmetry (Bosons — fermions):

{ #—e~(N-N)=0

E Y
e can also be achieved with N = 0 replica.

e But this is not enough structure for M4 and L.
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Replica: HOW TO? (2)
O i I A iy R S

b
e First cancelation:

B - W -0

e Second cancelation: loop, N physical and N ghost species, N+N — 0

—0 0 -=>- N N

e Now define (traceless) 14, via a graded sum

A=Y (1) | TR —""'__>b] ZZ[;"_i _"m_?b

> ——->-) —ee->-

¢ loop changes

—2N |
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4-point functions in psi(N|N) via SUSY current algebra
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B C

4-point functions in ps/(N|N) at 3 loop
e index-choice {(1,2),(2,1),(3,4),(4,3)} gives

1 kK (1+2A%%K?
(JATBICIPY = { ( ) A |
2122237234241 1-6
1-6
_212]{2(1_42‘16) [ln‘9’2_|_( )ln]1—9]2] —|—0(7L4)}
e index-choice {(1,2),(2,3),(3,4),(4,1)} - '
1
(NDI5T) = 5= {k(1+12k2)(1—9) |
{12434 | o
21,3 9) ) 2 )
—A%k’ (1—Ak) [ (1—6)7In =8 +1n|0|
1-6

+27L3k2ﬂ(2—9) [ln(@é) ln<

5 > +2Li,(0) —2Lix(6)

1-6
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Constraints on the 4-point function .

index choice 1 ~
(IBISIRY 0 = 7 (6,6) O O
21> %4 2 0
index choice 1 ~
JAJB € gpyindex choice 2 _, 70,6
< o2l 4> 212223734241 (6.6)

Constraints .&;

e Exchange of points 1 and 2: .#(V(9) =.Z((6~)
e For psl(1]1), /2% — 0.

<Jl<a1>J2<%s>J3<ai>J§1a>> 2 [ L 212]

(1=A%2)% 21,23, 21423
61 K2
: . 1 2 1 _
e since valid forall N, . Z(0)—(6—1)>.% ) T) = (1_12]{2)29(2—9)

Constraints .%,

e cyclic rotation invariance: .7 (0) = #? (;%)
e group theory (1-60).7(1—-0)—F? () +6.79(6) =0
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Beyond 3-loop order: reconstruction procedure

e 4-point function is function of cross-ratio { = 124
223214
1

7(8,)
{12423K34Z14

e take one anti-holomorphic derivative

1 1 1
0 (FIEI) = (-2
12423434214 \ <12 <14

(JPZIS T =

e (partially) reconstruct .Z (¢, )

_ _L(C,
780 =a@)+ L=
e interesting because o: kills one integration:

|
azljlb(ZI,Zl)q)(Z%ZZ) — aZ
<1 —X2

= 6%(z1 —22)¥’(20,22) + . ..

P (22,2) + -
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4-th order
F(C,0) = a(C)+1?(C)ln(§§)+c(§)ln((1+5)(1+C))
4
G

+d(8) [In(1+&)(1+ &) In2+2Lir (1+&) —2Lia (1+¢)

S S




Conclusion

e electrons with random-gauge and random-mass disorder have
a conformal sector, whose group-theoretical representation is
psl(N|N)

e there are logarithmic operators in this sector. We have identified a
logarithmic pair L* and M“.

e explicit results for the 4-point functions (JJJJ) (3-loop order), and
(JJJJY, (JJJT) (2-loop order)

e this allows to analyze the operator content in the different channels,
and to check conjectures on the structure of the 4-point functions.

e calculations can also be done with replicas, even bosonic replicas.
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