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BOUNDARY CONDITIONS
AND RENORMALISATION

e Renormalisation group: Flow from one critical point to
another upon changing the bulk coupling constant(s)

e Right at bulk critical point: Flow from one RG invariant
boundary condition to another upon changing the surface
coupling constant(s)

e In two dimensions: Conformal field theory (CFT)

- How to characterise conformally invariant boundary

conditions in two dimensional statistical models?




CLASSIFICATION OF CIBC
IN TWO DIMENSIONS

e Many statistical models (Ising, 3-state Potts,...) are
described by unitary minimal CFT

e Finite number of fundamental local operators (primaries)
e All critical exponents are known (Kac table)
e CIBC means no energy-momentum flow across boundary

'1-to-1 correspondence between CIBC and primaries [Cardy]
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OUTLINE OF RESULTS

e Continuous families of CIBC in non-unitary CFT
e Simple and well-known models: Potts and O(n)

e The CIBC have a clear geometrical meaning, in terms of
loops, clusters, and domain walls

e Exactly known critical exponents and partition functions

e Geometrical applications: fractal dimensions, crossing
probabilities




Q-STATE POTTS MODEL
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e Two geometrical interpretations: spins and FK clusters/loops
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» Both make sense also for ) non-integer (non-unitary case)




FORTUIN-KASTELEYN
CLUSTER EXPANSION

o We have e7°(91:93) =1 4 vé(o;,0;) with v =e’ — 1

e To compute Z, expand out: H (14 vé(0;,05))
(47)
o Let the v-terms define an edge subset A C (ij)

This gives Z(Q,v) = Z QF(A)ylA
AC(ij)
Here k(A) is the number of connected components

Indeed () is only a parameter, hence can take () € R




(N) LOOP MODEL

L5 5 S s wilhtar =1 258~

¥

e Expands as Z = E length  F#loops
loops

) Ising model

e n — 0 : Self-avoiding walk

e “Dilute” critical point at £ = z.




THE NEW CIBC

e Define models on annulus, giving modified weight to loops
touching one or the other boundary, or both:

e Weight also depends on whether the loop encircles the hole

e CIBC for any real value of these 7 different boundary weights




LINK WITH LATTICE
ALGEBRAS

e Loops obtained from the Temperley-Lieb (TL) algebra

e Distinguishing boundary-touching loops is natural within
the one- and two-boundary extensions of the TL algebra
[ Martin-Saleur, de Gier-Nichols,...]

e The correct parameterisation of the loop weights follow from
representation theory for these algebras




PARAMETERISATION
OF THE RESULTS (CFT)

e Bulk loops: n = 2cos~y

e Corresponding Coulomb gas coupling: g = 1 -

1
e Central charge: c=1 — 3 (\/g e 1/\/5)2

e Critical exponents from Kac formula:
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TWO-BOUNDARY
PARTITION FUNCTION

e On T x L annulus, setting ¢ = exp(—nT/L)

sin ((r1 + 1))

Sin(?“l’}/)
sin ((7“1 o S 7“12)%) sin ((7“1 = e dieE 7“12)%)

sin(rq17y) sin(ry7y)

e Loops touching one boundary: n; =

e ...and both: nis =

e Continuum-limit partition function in dense/Potts case:

o (E




DILUTE MODEL WITH
SURFACE ANISOTROPY

e Two types of boundary loops, with weights ;1 and n — n4

e Surface interaction with anisotropy parameter /X

Bl= =ik ) <1+A ZSO‘SO‘ Z 5555>

(i5) s a=1 B=ni+1
e Surface monomers must have type-dependent weight

e Integrable choice leading to anisotropic special transition




SURFACE ANISOTROPY:
THE PHASE DIAGRAM

e First found in epsilon expansion [Diehl-Eisenriegler]
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CROSSING EVENTS IN
PERCOLATION

e Probabilities for j clusters wrapping the annulus, refined
according to whether they touch no/one/both rims

e For instance, in a square geometry:
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Pj

e

Pj_ %

0.636454001888
0.361591025956
0.001954814340
0.000000157814

0.277067148156
0.001895978170
0.000000157226

0.041313949815
0.000029339472
0.000000000294

e Result without refinement: [Cardy]

0.0018959781702
0.0000001572261
0.0000000000002




POTTS DOMAIN WALLS

o Expand Zpuits 1N powers of e’ . Makes sense even for Q ¢ N

o Let ¢ clusters propagate in H, starting at O. Write £ = 1 + 5.
The first cluster contributes to 1. Each remaining cluster is
in £1 (resp.in ¢») if the cluster on its left has a different

(resp. the same) colour.
Critical exponent:
h1+2(e1—eg) 1440,
T—
(a) (b)

(£1,02) = (1,2) (£1,62) = (3,0)




