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BOUNDARY CONDITIONS 
AND RENORMALISATION

Renormalisation group: Flow from one critical point to 
another upon changing the bulk coupling constant(s)

Right at bulk critical point: Flow from one RG invariant 
boundary condition to another upon changing the surface 
coupling constant(s)

In two dimensions: Conformal field theory (CFT)

How to characterise conformally invariant boundary 

conditions in two dimensional statistical models?
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CLASSIFICATION OF CIBC 
IN TWO DIMENSIONS

Many statistical models (Ising, 3-state Potts,...) are 
described by unitary minimal CFT

Finite number of fundamental local operators (primaries)

All critical exponents are known (Kac table)

CIBC means no energy-momentum flow across boundary

                                                                                                 [Cardy]1-to-1 correspondence between CIBC and primaries
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OUTLINE OF RESULTS

Continuous families of CIBC in non-unitary CFT

Simple and well-known models: Potts and O(n)

The CIBC have a clear geometrical meaning, in terms of 
loops, clusters, and domain walls

Exactly known critical exponents and partition functions

Geometrical applications: fractal dimensions, crossing 
probabilities
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Q-STATE POTTS MODEL

Two geometrical interpretations: spins and FK clusters/loops

Both make sense also for Q non-integer (non-unitary case)

H = −J

�

�ij�

δσi,σj with σi = 1, 2, . . . , Q
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FORTUIN-KASTELEYN 
CLUSTER EXPANSION

We have                                                       with 

 To compute Z, expand out: 

 Let the v-terms define an edge subset 

 This gives

 Here            is the number of connected components

 Indeed        is only a parameter, hence can take 

eJδ(σi,σj) = 1 + vδ(σi,σj) v = eJ − 1

�

�ij�

�
1 + vδ(σi, σj)

�

A ⊆ �ij�

Z(Q, v) =
�

A⊆�ij�

Qk(A)v|A|

Q ∈ RQ

k(A)
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O(N) LOOP MODEL

Expands as

              : Ising model

              : Self-avoiding walk

“Dilute” critical point at 

Z = tr




�

�ij�

(1 + xSα
i S

α
j )



 with α = 1, 2, . . . , n

Z =
�

loops

xlengthn#loops

x = xc

n = 1

n → 0
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THE NEW CIBC

Define models on annulus, giving modified weight to loops 
touching one or the other boundary, or both:

Weight also depends on whether the loop encircles the hole

CIBC for any real value of these 7 different boundary weights
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LINK WITH LATTICE 
ALGEBRAS

Loops obtained from the Temperley-Lieb (TL) algebra

Distinguishing boundary-touching loops is natural within 
the one- and two-boundary extensions of the TL algebra 
[Martin-Saleur, de Gier-Nichols,...]

The correct parameterisation of the loop weights follow from 
representation theory for these algebras
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PARAMETERISATION 
OF THE RESULTS (CFT)

Bulk loops:

Corresponding Coulomb gas coupling: 

Central charge: 

Critical exponents from Kac formula:

n = 2 cos γ

g = 1± γ/π

c = 1− 1

6
(
√
g − 1/

√
g)2

hr,s =

�
(gr−s)2−(g−1)2

4g , g ≥ 1 (Dilute O(n))
(r−gs)2−(1−g)2

4g , g < 1 (Dense O(n) or Potts)
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TWO-BOUNDARY 
PARTITION FUNCTION

On               annulus, setting 

Loops touching one boundary:

...and both:  

Continuum-limit partition function in dense/Potts case:

T × L q = exp(−πT/L)

Z =
q−c/24

�∞
p=1(1− qp)

� ∞�

n=−∞
qhr12−2n,r12 +

�

�1,�2=±1

∞�

k=1

D(�1,�2)
k

∞�

n=0

qh�1r1+�2r2−1−2n,�1r1+�2r2−1+k

�

n1 =
sin

�
(r1 + 1)γ

�

sin(r1γ)

n12 =
sin

�
(r1 + r2 + 1− r12)

γ
2

�
sin

�
(r1 + r2 + 1 + r12)

γ
2

�

sin(r1γ) sin(r2γ)
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DILUTE MODEL WITH 
SURFACE ANISOTROPY

Two types of boundary loops, with weights        and

Surface interaction with anisotropy parameter       :

Surface monomers must have type-dependent weight

Integrable choice leading to anisotropic special transition

n1 n− n1

∆
B

ou
nd

ar
y

Hs = −Js

�

�ij�s



(1 +∆)
n1�

α=1

S
α
i S

α
j + (1−∆)

n�

β=n1+1

S
β
i S

β
j




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SURFACE ANISOTROPY:
THE PHASE DIAGRAM

First found in epsilon expansion [Diehl-Eisenriegler]
Anisotropy

Isotropic coupling

SpOrd

w2

w1

AS1

AS2

Ordinary transition

Extraordinary transition

Extraordinary transition

∆

Js
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APPLICATION TO ISING 
CROSSING EVENTS

Probability  (         clusters crossing the                annulus)

J > Jc :

J = Jc :

J < Jc :

≥ 1 T × L

Pc(τ) =
η(iτ)η(iτ/12)2

η(iτ/2)2η(iτ/6)
with τ = T/L
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CROSSING EVENTS IN 
PERCOLATION

Probabilities for      clusters wrapping the annulus, refined 
according to whether they touch no/one/both rims

For instance, in a square geometry:

Result without refinement: [Cardy]

j
�

α,β P
αβ
j P++

j P−+
j = P+−

j P−−
j

0 0.636454001888

1 0.361591025956 0.277067148156 0.041313949815 0.0018959781702

2 0.001954814340 0.001895978170 0.000029339472 0.0000001572261

3 0.000000157814 0.000000157226 0.000000000294 0.0000000000002

j
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POTTS DOMAIN WALLS

Expand               in powers of       . Makes sense even for 

Let     clusters propagate in     , starting at O. Write                       . 
The first cluster contributes to     . Each remaining cluster is     
in       (resp. in      ) if the cluster on its left has a different      
(resp. the same) colour.

ZPotts eJ Q /∈ N

H� � = �1 + �2
�1

�1 �2

(a) (b)
(�1, �2) = (1, 2) (�1, �2) = (3, 0)

h1+2(�1−�2),1+4�1

Critical exponent:
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