IS THE TUTTE 5-FLOW CONJECTURE ALMOST FALSE?

Jesper Lykke Jacobsen, École Normale Supérieure, Paris Work done in collaboration with Jesús Salas

ANY PLANAR MAP IS 4-COLOURABLE

VERTEX COLOURING

- Every planar graph admits a 4-vertex colouring
 - Conjectured by Augustus de Morgan (23 Oct. 1852)
 - Proved by K.I. Appel and W. Haken (July 1976)
- Quantitative version [Birkhoff 1912]
 - Chromatic polynomial $\chi_G(Q)$ = number of colourings
 - Polynomial in Q, hence can consider $Q \in \mathbb{R}$ or $Q \in \mathbb{C}$

CHROMATIC POLYNOMIAL

- Let G = (V, E) be any planar graph
- [Birkhoff-Lewis 1946]: $\chi_G(Q) \neq 0$ for $Q \in [5, \infty)$
- Conjecture [Birkhoff-Lewis]: $\chi_G(Q) \neq 0$ for $Q \in [4, \infty)$
- [Beraha-Kahane 1979]: Complex roots accumulate at Q = 4
 - "Is the four-colour conjecture almost false?"
- [Royle 2008]: Real roots accumulate at Q = 4

NOWHERE ZERO FLOW

- Let G = (V, E) be an *arbitrary* bridgeless graph
- Nowhere zero Q-flow: Map $\phi: E \mapsto \mathbb{Z}_Q \setminus \{0\}$
 - The flow variables are conserved "mod Q" at vertices
 - Edge orientation is assumed, but is immaterial
- Flow polynomial $\Phi_G(Q)$ = number of nowhere zero Q-flows
- In planar case, obviously $\chi_{G^*}(Q) = Q \Phi_G(Q)$ [bijection!]

RELATION TO THE POTTS MODEL

- Potts model partition function: $Z_G(Q, v) = \sum v^{|A|} Q^{k(A)}$
 - Here $v = e^{K} 1$, and k(A) =#connected components

•
$$\Phi_G(Q) = \sum_{A \subseteq E} (-1)^{|E| - |A|} Q^{c(A)}$$

Follows since total # Q-flows = Q^{c(E)}, with c(E) the cyclomatic number, then exclusion-inclusion of zero edges. Then use k(A) = |V| - |A| + c(A) to obtain:

$$\Phi_G(Q) = (-1)^{|E|} Q^{-|V|} Z_G(Q, v = -Q)$$

 $\chi_G(Q) = Z_G(Q, -1)$

RESULTS ON THE FLOW POLYNOMIAL

- Let G be any bridgeless graph
- [Seymour 1981]: $\Phi_G(6) > 0$.
- Conjecture [Tutte 1954]: $\Phi_G(5) > 0$.
- Conjecture [Welsh]: $\Phi_G(Q) \neq 0$ for $Q \in (4, \infty)$. (False!)
- Conjecture [Haggard-Pearce-Royle]: $\Phi_{-}(O) = (O \cap C) = O = (F \cap C)$
 - $\Phi_G(Q) \neq 0 \text{ for } Q \in (5, \infty) . (False!)$

• Q: Is there any upper limit on real flow roots?

WILLIAM THOMAS TUTTE (1917-2002)

• Broke the German army's "Fish" code at Bletchley Park (1941)

• A contribution to the theory of chromatic polynomials (1954)

• A census of planar maps (1963)

GENERALISED PETERSEN GRAPHS

- Large real flow roots have been found in the family G(n,k) .
- G(16, 6) gives roots $Q_1 \approx 4.0252$ and $Q_2 \approx 4.2331$
 - Welsh conjecture proved wrong [Royle et al, 2010]

REPRESENTATION AS LAYERED STRUCTURE

• G(n,4)

TRANSFER MATRIX CONSTRUCTION (1)

- Transfer matrices for "horizontal" and "vertical" edges: $H_{ij} = I + v J_{ij}$ and $V_i = vI + D_i$
- Join and detach operators: act on set partitions of 2L points
 J_{ij} = ^{1'}/₁ ··· ^{i'}/_i ··· ^{j'}/_j ··· ^{L'}/_L D_i = ^{1'}/₁ ··· ^{j'}/₁ ··· ^{L'}/_L D_i = ^{1'}/₁ ··· ^{j'}/₁ ··· ^{L'}/_L • Generators of associative partition monoid A_L(Q)

TRANSFER MATRIX CONSTRUCTION (2)

- Markov trace construction: $\Phi_{G(nk,k)}(Q) = \text{Tr} (\mathsf{T}_L)^n$
 - Glues top & bottom of diagrams and counts components
 - Decomposition on ordinary matrix traces

$$\operatorname{Tr} \mathsf{O}_{L} = \sum_{\ell=0}^{L} \sum_{\lambda \in S_{\ell}} \alpha_{\ell,\lambda} \operatorname{tr}_{\ell,\lambda} \mathsf{O}_{L}, \qquad Y(\lambda) = (\lambda_{1}, \lambda_{2}, \dots, \lambda_{\ell})$$
$$\alpha_{\ell,\lambda} = \frac{\dim \lambda}{\ell!} \prod_{i=0}^{\ell-1} (Q - i - \lambda_{\ell-i}), \qquad \dim \lambda = \frac{\ell!}{\prod_{x \in Y(\lambda)} h_{x}}$$

STATE SPACE

- The factor $P_L = \prod_{i=0}^L V_i$ in the transfer matrix is a projector that annihilates states with unmarked singletons
- Representations $A_{k+1}^{(\ell)}$ are partitions with ℓ marked distinguishable points and no unmarked singletons $\operatorname{card} A_k^{(\ell)} = k! [z^k] (e^z - 1)^{\ell} \exp(e^z - 1 - z)$
- Sumrule:

$$\sum_{\ell}^{k} \frac{1}{\ell!} \left(\sum_{\lambda \in S_{\ell}} \alpha_{\ell,\lambda} \dim \lambda \right) \operatorname{card} A_{k}^{(\ell)} = (Q-1)^{k}$$

COMPUTATION OF P(119,7)

- Naive transfer matrix has dimension 10 480 142 147.
- Using the state space decomposition, we have to compute traces of matrices with dimension up to 11 816.

 $\Phi_{G(119,7)} = (Q-1)(Q-2)(Q-3)P_{117}(Q)$ $P_{117}(Q) = Q^{117} - 351Q^{116} + 61191Q^{115} - \dots$

• $\Phi_{G(119,7)} = 0$ for $Q_1 \approx 5.00002$ and $Q_2 \approx 5.16534$

• The [Haggard-Pearce-Royle] conjecture is false!

BERAHA-KAHANE-WEISS THEOREM

• Suppose (as is the case here): $Z(Q) = \sum_{k=1}^{\infty} \alpha_k(Q) \lambda_k(Q)^n$ • Two ways of having limiting points of Z(Q) = 0:

M

- (a) Two dominant eigenvalues are equimodular
 - Leads to continuous curve of limiting points
- (b) One dominant eigenvalue whose amplitude vanishes
 - Leads to isolated limiting point

PHASE DIAGRAM AND TUTTE'S CONJECTURE

Zeros Petersen k = 6

- When $Q < Q_c$, the ℓ sector is dominant for $2(\ell - 1) < Q < 2\ell$
- For $k \ge 6$ we have $Q_c > 5$ $\mathfrak{F}_{43,(3)}(Q) = \frac{1}{8}Q(Q-1)(Q-5)$ $\mathfrak{F}_{43,(3)}(Q) = \frac{1}{8}Q(Q-1)(Q-5)$
- Hence isolated limiting point in Q = 5
- [JJ-Salas 2010]: Tutte conjecture "almost false".

