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Conformal Field Theory in Statistical Physics

and geometry at criticality



CFT: basic ideas

Starting point: Renormalization Group picture of a statistical model.

Example: Ising model in zero magnetic field.

Tc Temperature

Scaling symmetry at a critical point (RG fixed point).



CFT: basic ideas

f

f What would

it look like?



The CFT toolbox

The rich algebraic structure of CFT (after Belavin, Polyakov,
Zamolodchikov, Kac, Fuchs, Feigin, Rocha-Caridi, . . . ) puts
strong constraints on the possible scaling limits of statistical
models.

Coulomb gas allows to cook up arguments that relate lattice
models to field theory.
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The CFT toolbox

Nice geometrical results have been derived.

exact fractal dimensions of clusters, or cluster boundaries, in
critical percolation, Ising model, SAW,. . . (after Duplantier,
Saleur, . . . )

exact formulae for geometrical observables: Cardy’s formula,
Schramm’s formula, . . .



Some famous achievements of CFT

These geometrical results are exact.

However, the link between field theory and geometrical objects
(such as cluster boundaries) is not straightforward.



The SLE approach

A new approach initiated by Oded Schramm in 2000:

(Stochastic) Schramm-Löwner Evolution

Further developed by Lawler, Schramm & Werner.



What is SLE?

The Löwner part (Löwner chains)

z 7→ g(z)

g(z) =
√

z2 + 1 is a conformal mapping



What is SLE?

The Löwner part (Löwner chains)

Now introduce an infinitesimal version dg(z) and apply it
inductively. The slit is allowed to move continuously: a(t)

a(t)

One can describe a curve by the Löwner chain
gt = dg ◦ dg ◦ dg ◦ · · · ◦ dg
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Now introduce an infinitesimal version dg(z) and apply it
inductively. The slit is allowed to move continuously: a(t)

a(t)

One can describe a curve by the Löwner chain
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gt = dg ◦ dg ◦ dg ◦ · · · ◦ dg



What is SLE?
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Now introduce an infinitesimal version dg(z) and apply it
inductively. The slit is allowed to move continuously: a(t)

a(t)

One can describe a curve by the Löwner chain
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What is SLE?

The Schramm part

if the Löwner trace is an interface in a statistical model at a
critical point then

a(t) should be a Brownian motion

a(t) =
√
κBt

This defines SLEκ.



What is SLE?

SLE is designed to describe geometrical objects in the scaling
limit.

It does not involve field theory: computations with SLE boil
down to stochastic calculus.

SLE allows mathematical proofs of many results obtained
previously by physicists . . .

when the scaling limit of the lattice model is proved to be
conformally invariant (work of Smirnov & al.)
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Lattice Loop Models



What is a lattice loop model?

Boltzmann weight of a configuration

x# links n# loops



Loops in the O(n) model

~Sr

O(n) spins

~Sr ∈ Sn−1 (n-dimensional)
Normalization :

Tr1 = 1

TrSa
r Sb

r = δab

TrSa
r = TrSa

r Sb
r Sc

r = 0

Partition function

Z = Tr
∏
<rr ′>

(
1 + x~Sr .~Sr ′

)

=
∑

loop conf.

x#bondsn#loops
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Scaling Limits of Loop Models



The O(n) loop model −2 < n ≤ 2

Massive Dilute Dense

RG flow:
xxc

Dilute phase Dense phaseMassive phase



The O(n) loop model −2 < n ≤ 2

The dilute point is described by a (non-unitary) conformal field
theory with central charge

c = 1− 6
(g − 1)2

g
1 ≤ g < 2

if the loop fugacity is n = −2 cosπg .
The loops are geometric objects that are conjectured to be
described by SLEκ with κ = 4/g ≤ 4.

The dense phase: same relations but 0 < g ≤ 1.



What is the surface critical behaviour of loop models?



Let us take some ideas from the (spin) O(n) model in d>2.



The O(n) model

O(n) model = a classical lattice spin model for the
para/ferro-magnetic transition with O(n) symmetry.



Surface critical behaviour

Spins at the surface have less neighbours ⇒ harder to order.
If x is just above the critical coupling xc :

Surface Bulk (ordered)

Surface effects are important only within a thin region of width ξ
(bulk correlation length).



Boundary critical behaviour

RG treatment of that model ⇒ introduce a surface coupling y 6= x

Bulk

i
j

coupling E<ij> = −x~Si .~Sj

Surface

i
j

coupling E<ij> = −y~Si .~Sj



Boundary critical behaviour

RG treatment of that model ⇒ introduce a surface coupling y 6= x
Phase diagram:

0

x

y

xc

bulk

disordered

bulk

ordered

Special transition

Extraordinary transitionOrdinary transition
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Anisotropic boundary interaction

Assume that, for some reason, the nearest-neighbour coupling at the
surface is anisotropic.

i
j

n = 3 n1 = 1 ∆ = 0

E<ij> = −y
n∑

α=1

Sαi Sαj

− ∆

n1∑
β=1

Sβi Sβj

Broken symmetry O(n)→ O(n1)× O(n − n1).
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Is the anisotropy a relevant boundary perturbation?

No, not around the ordinary transition.

Yes, around the special and extraordinary
transitions [Diehl & Eisenriegler, 1987].

What about loops in 2D?
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Loops and surface anisotropy

How do we translate the anisotropic surface coupling in terms of the
loops?

?

n

n − n1 n1
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n − n1
white components

n

n − n1 n1



Loops and surface anisotropy

How do we translate the anisotropic surface coupling in terms of the
loops?

S
u

rf
ac

e

Boltzmann weights

Bulk loop weight
n xbulk length

Surface black loop
n xbulk lengthw surface length

Surface white loop
n xbulk lengthw surface length



Surface critical behaviour of the loops

w � 1

w � 1

Ordinary



Surface critical behaviour of the loops

w > w

w � 1

Extraordinary
(black)



Surface critical behaviour of the loops

w > w

w and w
are fine tuned

Anisotropic special
(black)



What is the CFT of the loop anisotropic special (AS) transition?



CFT of the anisotropic special transition

recall that the critical O(n) model is a CFT with

c = 1− 6
(g − 1)2

g
n = −2 cosπg g > 1

boundary-condition-changing operators: B.C.C. (Ord/AS) is
Φr ,r+1 with scaling dimension

hr ,r+1 =
[(g − 1)r − 1]2 − (g − 1)2

4g
n1 =

sin ((r + 1)(1− g)π)

sin (r(1− g)π)

Φr ,r+1

AS Ord



CFT of the anisotropic special transition

the whole spectrum of the theory can be generated by fusion
with operators starting a piece of loop at a boundary point:
Φ2,1

Φr ,r+1

AS Ord
⊗f

Φ2,1

=

Φr+1,r+1

⊕

Φr−1,r+1

one can choose the set of components (black O(n1) or white
O(n − n1)) that correspond to the piece of loop



CFT of the anisotropic special transition

Once this CFT framework is set up, what kind of quantities can we
compute?

A funny result: crossing probability of Ising clusters on an
annulus.

PIsing
c (τ) =

η(iτ)η(iτ/12)2

η(iτ/2)2η(iτ/6)
Pperc

c (τ) =
η(iτ)η(iτ/6)2

η(iτ/2)2η(iτ/3)

(η stands for Dedekind’s eta function, τ = R1/R2 is the aspect ratio)
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We have a consistant CFT framework for the loop AS transition.

Now what about SLE?



recall that

SLE describes
this loop



Anisotropic special transition and SLEκ,ρ

Now, what about the loops at the anisotropic special transition?

Anisotropic special Ordinary

Two distinguished points moving on the boundary
−→ affects the motion of the driving function a(t).

This is SLEκ,ρ [Lawler, Schramm, Werner, 2003].
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Anisotropic special transition and SLEκ,ρ

SLEκ,ρ is a stochastic process defined by

dgt(z) =
2dt

gt(z)− a(t)

da(t) =
√
κdBt +

ρdt

a(t)− gt(x)

κ and ρ correspond to n and n1 in the O(n) model

n = −2 cos
4π

κ

n1 =
sin
(

2ρ+8−κ
κ π

)
sin
(

2ρ+4
κ π

)



Some conjecture for the boundary fractal dimension

Bulk (proved) df = 1 + κ
8

Surface df =
(
1 + ρ

4

) (
2− 8

κ −
4ρ
κ

)
?



Boundaries in conformal loop models: a summary

Continuous set of conformal boundary conditions in loop
models

Consistency of standard CFT concepts (B.C.C operators,
fusion, . . . ) with geometric objects (loops touching the surface)

2D version of the physics of the (anisotropic) special transition,
and exact solution.

Lattice (integrable) models with scaling limits conjectured to
be SLEκ,ρ

Exact relations between the parametrizations

lattice model (n, n1) ↔ CFT (c, hr ,r+1) ↔ SLE (κ, ρ)



Many results have been rederived in the context of random surfaces
and matrix models (J.-E. Bourgine, I. Kostov & K. Hosomichi).

−→ Jean-Emile’s talk this afternoon



Conformal loop models . . . and beyond?



It is great to be able to describe the domain-walls in the Ising
model.

What about the 3-states Potts model?
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Branching domain walls on the lattice

The domain-walls are branching. It is no longer a loop model.



Branching domain-walls on the lattice

The success of loop models comes from the fact that the loop
fugacity n is a real parameter (corresponding to a continuum of
CFTs).

The Q-states Potts model can be defined for continuous Q
(Fortuin & Kasteleyn). What are the domain-walls then?

The Boltzmann weight of the configuration G is

e−K×(total length of G) χĜ (Q)



Branching domain-walls on the lattice

The Q-states Potts model can be defined in terms of its
domain-walls (after Fendley, Read, . . . ):

Pick up any configuration
G of domain-walls on the
lattice

Look at its dual graph Ĝ

Compute the chrompatic
polynomial χĜ (Q)

The Boltzmann weight of the configuration G is

e−K×(total length of G) χĜ (Q)
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The Q-states Potts model can be defined in terms of its
domain-walls (after Fendley, Read, . . . ):

Pick up any configuration
G of domain-walls on the
lattice

Look at its dual graph Ĝ

Compute the chrompatic
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Question: is there a scaling limit? Is it conformally invariant?



Previous results

Previous results (Cardy & Gamsa, Santachiara) suggest that SLE 10
3

appears in the 3-states Potts model.



Branching domain-walls

What about branching interfaces?



New exponents in the Q-states Potts model

For any Q one can compute (numerically) the L1-clusters exponents:

h1,0 h2,0 h3,0

Here the clusters have the same color. In general one finds the O(n)
model 2L1-legs exponent hL1,0.



New exponents in the Q-states Potts model

For any Q one can compute (numerically) the L2-clusters exponents:

h2,4 h3,6 h4,8

Here the successive clusters have different colors. In general the
exponent is hL2,2L2 .



New exponents in the Q-states Potts model

For L1 successive clusters with the same color and L2 successive
ones with different colors the exponent is

hL2−L1,2L2

(here L1 = 2 and L2 = 4)



Conclusion

Boundary conditions in loop models, from the lattice model to
CFT, and their link with SLEκ,ρ.

Domain-walls in the Potts model are not loops. However,
numerical results suggest that some geometrical observables are
conformally invariant. Can we describe branching processes in
CFT/SLE?



Thank you.
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