Nikolay Gromov Based on work with V.Kazakov, Z.Tsuboi

Y-SYSTEM AND QUASI-CLASSICAL STRINGS

PHYSICS IN THE PLANE: FROM CONDENSED MATTER TO STRING THEORY

Introduction AdS/CFT correspondence

Local operators \Leftrightarrow String states

Introduction AdS/CFT duality

SU(N) Super Yang-Mills :

 $\lambda =$

$$S = \frac{1}{g_{YM}^2} \int d^4x \operatorname{tr} \left\{ \frac{1}{2} F_{\mu\nu}^2 + (D_\mu \Phi_i)^2 - \frac{1}{2} [\Phi_i, \Phi_j]^2 + \text{fermions} \right\}$$

$$g_{YM}^2 N \qquad \text{`t Hooft coupling}$$

Anomalous dimensions of YM = spectrum of 2D integrable field theories

Symmetry: psu(2,2|4)

$\frac{Introduction}{AdS_5 \times S^5 \text{ super string}}$

10d super string action is a super coset model

 $\frac{PSU(2,2|4)}{SP(2,2) \times SP(4)}$

Metsaev, Tseytlin

su(2,2|4) algebra is spanned by 8x8 matrix

$$M = \left(\frac{A \mid B}{C \mid D}\right)$$

A and D belong to u(2,2) and u(4) and the fermionic fields B and C obey

$$C = B^{\dagger} \left(\begin{array}{cc} \mathbb{I}_{2 \times 2} & 0\\ 0 & -\mathbb{I}_{2 \times 2} \end{array} \right)$$

Introduction $AdS_5 \times S^5$ super string

su(2,2|4) algebra enjoys the Z_4 automorphism

$$\Omega \circ M = \begin{pmatrix} EA^{T}E & -EC^{T}E\\ EB^{T}E & ED^{T}E \end{pmatrix}, E = \begin{pmatrix} 0 & -1 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & 0 & -1\\ 0 & 0 & 1 & 0 \end{pmatrix}$$

any algebra element can be split into

$$\sum_{i=0}^{3} M^{(i)}$$
, where $\Omega \circ M^{(n)} = i^n M^{(n)}$

then the action reads

$$S = \frac{\sqrt{\lambda}}{4\pi} \int \operatorname{str} \left(J^{(2)} \wedge *J^{(2)} - J^{(1)} \wedge J^{(3)} \right)$$

where $J = -g^{-1}dg$

$\frac{Introduction}{AdS_5 \times S^5 \text{ super string}}$

In some particular parameterization the bosonic part of the action is

$$S_b = \frac{\sqrt{\lambda}}{4\pi} \int_0^{2\pi} d\sigma \int d\tau h^{\mu\nu} (\partial_{\mu} u \cdot \partial_{\nu} u - \partial_{\mu} v \cdot \partial_{\nu} v)$$

With a constraints

$$1 = u_6^2 + u_5^2 + u_4^2 + u_3^2 + u_2^2 + u_1^2$$
$$1 = v_6^2 + v_5^2 - v_4^2 - v_3^2 - v_2^2 - v_1^2$$

$$S_{f} = \frac{\sqrt{\lambda}}{8\pi} \int d^{2}\sigma \sqrt{h}h^{\mu\nu} \operatorname{tr}_{4} \left[V \partial_{\mu} \bar{V} \left(\theta \partial_{\nu} \bar{\theta} - \partial_{\nu} \theta \,\bar{\theta} \right) + U \partial_{\mu} \bar{U} \left(\partial_{\nu} \bar{\theta} \,\theta - \bar{\theta} \partial_{\nu} \theta \right) \right]$$
$$\pm i \frac{\sqrt{\lambda}}{8\pi} \int d^{2}\sigma \,\epsilon^{\mu\nu} \operatorname{tr}_{4} \left[V \partial_{\mu} \bar{\theta}^{t} \bar{U} \partial_{\nu} \bar{\theta} + \partial_{\mu} \theta U \partial_{\nu} \theta^{t} \bar{V} \right] + \mathcal{O}(\theta^{4})$$

Introduction Classical integrability

Motion of the string:

$$\partial^2 u_a + (\partial u_b \partial u^b) u_a = 0$$

Infinitely many Integrals of motion:

$$\Omega(x,\tau) = \operatorname{Pexp} \oint_{\gamma(\tau)} A_{\sigma}(x) d\sigma \ , \ x \in C$$

Flat connection (on eq. of motion):

Bena, Polchinski, Roiban; Kazakov, Marshakov, Minahan, Zarembo;

$$A(x) = J^{(0)} + \frac{x^2 + 1}{x^2 - 1} J^{(2)} - \frac{2x}{x^2 - 1} * J^{(2)}$$

Eigenvalues = integrals of motion

 $\Omega(x) \rightarrow (\lambda_1(x), \lambda_2(x), \lambda_3(x), \lambda_4(x) | \mu_1(x), \mu_2(x), \mu_3(x), \mu_4(x))$

Introduction Classical intgrability

According to Beisert, Kazakov, Sakai and Zarembo, we can map a classical string motion to an 8-sheet Riemann surface

$$\{e^{i\hat{p}_1}, e^{i\hat{p}_2}, e^{i\hat{p}_3}, e^{i\hat{p}_4} | e^{i\tilde{p}_1}, e^{i\tilde{p}_2}, e^{i\tilde{p}_3}, e^{i\tilde{p}_4}\}$$

Eigenvalues of a monodromy matrix

$$p_i^+ - p_j^- = 2\pi n_{ij} \ , \ x \in \mathcal{C}_n^{ij}$$
 $\oint_{\mathcal{C}_n^{ij}} p_i(z) dz = rac{4\pi}{\sqrt{\lambda}} N_{ij}$

Introduction Integrability in 2D

Operator corresponding to an integral of motion

$$\widehat{C}_n|k\rangle = \omega_n(k)|k\rangle$$

Between in and out states

$$_{out}\langle p_1,\ldots,p_m|\hat{C}_n|k_1,\ldots,k_{m'}\rangle_{in}$$

The outgoing momenta are constrained:

$$A_n = \sum_i \omega_n(k_i) = \sum_i \omega_n(p_i) \ , \ n = 1, \dots$$

The only solution:

$$m = m' \quad \{k_i\} = \{p_i\}$$

• For spectral density we need finite volume

$$\textcircled{} \longrightarrow \longleftarrow \textcircled{} \textcircled{} \longrightarrow \textcircled{} \longrightarrow$$

 $\Psi(x_1+L, x_2, \ldots) = e^{ip_1L}S(p_1, p_2) \ldots S(p_1, p_n)\Psi(x_1, x_2, \ldots)$

From periodicity of the wave function

$$e^{ip_iL} = \prod_{j=1}^M S(p_i, p_j)$$

Introduction Asymptotic spectrum

 \overline{g}

Beisert, Staudacher; Beisert, Hernandez, Lopez; Beisert,Eden,Staudacher

1

 $x_{4,k}^{-}$

Integrability in $\mathcal{N} = 4$ SYM

$\mathcal{O}_i(x) = \mathrm{tr}\Phi_1\Phi_2\Phi_1\Phi_1\Phi_1\Phi_2\Phi_2\Phi_1\Phi_1\Phi_1$

 $\mathcal{O}_i^{\mathrm{ren}} = Z_{ij}(\Lambda) \mathcal{O}_j^{\mathrm{bare}}$ $\Gamma = Z^{-1} \frac{dZ}{d \log \Lambda}$ - Mixing matrix – integrable Hamiltonian

At one loop:

$$\left(\frac{u_j + i/2}{u_j - i/2}\right)^L = -\prod_{k=1}^M \frac{u_j - u_k + i}{u_j - u_k - i}$$
$$e^{ip_i L} = \prod_{j=1}^M S(p_i, p_j)$$

[Minahan, Zarembo 2002&2008]

$$\gamma = \sum_{k=1}^{M} \frac{g}{u_k^2 + 1/4}$$

Finite size spectrum

Introduction Some 2D Integrable models

$$\frac{Y_{a,s}^+Y_{a,s}^-}{Y_{a+1,s}Y_{a-1,s}} = \frac{(1+Y_{a,s+1})(1+Y_{a,s-1})}{(1+Y_{a+1,s})(1+Y_{a-1,s})}$$

...Bazhanov, Lukyanov, Zamolodchikov,...Destri de Vega,P.Dorey, Toteo...Bytsko ,Teschner....

Introduction Y-system for AdS/CFT

 $E = \sum_{a=1}^{\infty} \int_{-\infty}^{\infty} \frac{du}{2\pi i} \frac{\partial \epsilon_a}{\partial u} \log \left(1 + Y_{a,0}(u) \right) + \sum_{a} \epsilon_j(u_{4,j})$ $Y_{1,0}(u_{4,j}) = -1$

Quasiclassical quantization From the algebraic curve

Quasi-classical quantization Quantization of the curve

For any given classical solution

We can compute the first quantum correction to the energy (and any other conserved charge) by deforming in an appropriate way its algebraic curve!

$\mathcal{E} = \mathcal{E}_{cl} + \mathcal{E}_0 + \mathcal{O}(1/\sqrt{\lambda})$

Quasi-classical quantization

Consider some classical solution:

We can excite it by a small extra cut:

The action variables are known to be:

$$\oint_{\mathcal{C}_n^{ij}} p_i(z) dz = \frac{4\pi}{\sqrt{\lambda}} N_{ij} \implies \text{Spectrum of excitations is quantized}$$

Quasi-classical quantization 1-loop energy shift

For the harmonic oscillator we have

$$E = \hbar \omega \left(N + \frac{1}{2} \right)$$

So far we understood how to get

$$\mathcal{E}_n^{ij} = \mathcal{E}_{p_2}^{p_1} - \mathcal{E}_{p_2}^{p_2}$$

Now we can compute shift of the energy level due to the zero point energies

$$\mathcal{E}_0 = \frac{1}{2} \sum_{n=-\infty}^{\infty} \sum_{ij} (-1)^F \mathcal{E}_n^{ij}$$

Frolov, Tseytlin

Quasi-classical quantization 1-loop energy shift

For the harmonic oscillator we have

We can rewrite the sum as an integral

$$\frac{1}{2} \sum_{(\mathbf{ij})} \sum_{n} (-1)^{F_{\mathbf{ij}}} \omega(x_n^{(\mathbf{ij})}) = \int_{-1}^{1} \frac{dz}{2\pi} \frac{z}{\sqrt{1-z^2}} \partial_z \mathcal{N}_*$$

Where $\mathcal{N}_* \equiv \sum_{i=1,2} \sum_{j=3,4} \log \frac{(1-\mu_i/\lambda_j)(1-\lambda_i/\mu_j)}{(1-\mu_i/\mu_j)(1-\lambda_i/\lambda_j)}$

Poles can be only at the specia points of the curve

$$p_{\mathbf{i}}(x_n^{\mathbf{ij}}) - p_{\mathbf{j}}(x_n^{\mathbf{ij}}) = 2\pi n$$

For bosons

$$\lambda_{\mathbf{i}} = \lambda_{\mathbf{j}} , \ \mu_{\mathbf{i}} = \mu_{\mathbf{j}}$$

For fermions

 $\lambda_{\mathbf{i}} = \mu_{\mathbf{j}}$

One-loop spectrum from Y-system

At strong coupling:

$$T_{a,s} = \begin{cases} (-1)^{(a+1)s} \left(\frac{x_3 x_4}{y_1 y_2 y_3 y_4}\right)^{s-a} \frac{\det \left(S_i^{\theta_{j,s+2}} y_i^{j-4-(a+2)\theta_{j,s+2}}\right)_{1 \le i,j \le 4}}{\det \left(S_i^{\theta_{j,0+2}} y_i^{j-4-(0+2)\theta_{j,0+2}}\right)_{1 \le i,j \le 4}} &, a \ge |s| \\ \frac{\det \left(Z_i^{(1-\theta_{j,a})} x_i^{2-j+(s-2)(1-\theta_{ja})}\right)_{1 \le i,j \le 2}}{\det \left(Z_i^{(1-\theta_{j,0})} x_i^{2-j+(0-2)(1-\theta_{j,0})}\right)_{1 \le i,j \le 2}} &, s \ge +a \end{cases}$$

Hirota equation:

$$T_{a,s}^{2} = T_{a+1,s}T_{a-1,s} + T_{a,s+1}T_{a,s-1}$$
$$Y_{a,s} = \frac{T_{a+1,s}T_{a-1,s}}{T_{a,s+1}T_{a,s-1}}$$

General solution is given by characters With 8-paramiters (from V.Kazakov's talk) $(x_1, x_2, x_3, x_4 | y_1, y_2, y_3, y_4)$

Generating functional for the asymptotic solution (from V.Kazakov's talk)

$$\begin{split} &\sum_{s=0}^{\infty} \mathbf{T}_{1,s}^{\mathrm{R}} \left(u + i \frac{1-s}{2} \right) D^{s} = \left[1 - \mathbf{T}_{1,1}^{\mathrm{R},1} D \right] \cdot \left[1 - \mathbf{T}_{1,1}^{\mathrm{R},2} D \right]^{-1} \cdot \left[1 - \mathbf{T}_{1,1}^{\mathrm{R},3} D \right]^{-1} \cdot \left[1 - \mathbf{T}_{1,1}^{\mathrm{R},4} D \right] \ , \qquad D = e^{-i\partial_{u}} \\ &\mathbf{T}_{1,1}^{\mathrm{R},1}(u) = \frac{Q_{1}^{-}}{Q_{1}^{+}} \prod_{j=1}^{K_{4}} \frac{1 - 1/(x^{+}x_{4,j}^{-})}{1 - 1/(x^{+}x_{4,j}^{+})} \frac{x^{-} - x_{4,j}^{-}}{x^{-} - x_{4,j}^{+}}, \qquad \mathbf{T}_{1,1}^{\mathrm{R},2}(u) = \frac{Q_{1}^{-}Q_{2}^{++}}{Q_{1}^{+}Q_{2}} \prod_{j=1}^{K_{4}} \frac{x^{-} - x_{4,j}^{-}}{x^{-} - x_{4,j}^{+}}, \\ &\mathbf{T}_{1,1}^{\mathrm{R},3}(u) = \frac{Q_{2}^{--}Q_{3}^{+}}{Q_{2}Q_{3}^{-}} \prod_{j=1}^{K_{4}} \frac{x^{-} - x_{4,j}^{-}}{x^{-} - x_{4,j}^{+}}, \qquad \mathbf{T}_{1,1}^{\mathrm{R},4}(u) = \frac{Q_{3}^{+}}{Q_{3}^{-}} \end{split}$$

In the scaling limit becomes:

$$\sum_{s=0}^{\infty} \mathbf{T}_{1,s}^{\mathsf{R}} D^{s} = \frac{(1-\lambda_{1}D)(1-\lambda_{2}D)}{(1-\mu_{1}D)(1-\mu_{2}D)}$$

$$\begin{split} &\lim_{a \to +\infty} \frac{1}{a} \log \frac{T_{a,s}^g}{\mathbf{T}_{a,s}} = 0 \ , \ s = -2, -1, 0, 1, 2 \\ &\lim_{s \to +\infty} \frac{1}{s} \log \frac{T_{a,s}^g}{\mathbf{T}_{a,s}} = 0 \ , \ a = 1, 2 \\ &\lim_{s \to -\infty} \frac{1}{s} \log \frac{T_{a,s}^g}{\mathbf{T}_{a,s}} = 0 \ , \ a = 1, 2 \end{split}$$

$$T_{a,s}^g = g_2^a T_{a,s}$$

Thus very naturally we have:

 $T_{a,s}=\mathrm{Str}_{a,s}\Omega$

Natural quantum generalization:

$$T_{a,s} = \langle \text{state} | \text{Str}_{a,s} \hat{\Omega} | \text{state} \rangle$$

N.G. 2009 N.G., V.Kazakov, Z.Tsuboi

$$y_i = \lambda_i$$
 , $x_i = \mu_i$, $i = 1, \dots, 4$

1) For a given classical solution we compute

$$\Omega(x,\tau) = \operatorname{Pexp} \oint_{\gamma(\tau)} A_{\sigma}(x) d\sigma \ , \ x \in C$$

2) Diagonalize it

 $\Omega(x) \rightarrow (\lambda_1(x), \lambda_2(x), \lambda_3(x), \lambda_4(x) | \mu_1(x), \mu_2(x), \mu_3(x), \mu_4(x))$ 3) Compute super-character

$$\begin{split} T_{1,1} &= \left(\lambda_1^3 \left(\lambda_2 - \lambda_3\right) \left(\lambda_2 - \lambda_4\right) + \lambda_2^3 \lambda_3 \lambda_4 - \lambda_3 \lambda_4 \mu_1 \mu_2 \mu_3 + \\ \lambda_1^2 \left(\lambda_2 - \lambda_3\right) \left(\lambda_2 - \lambda_4\right) \left(\lambda_2 - \mu_1 - \mu_2 - \mu_3 - \mu_4\right) - \lambda_3 \lambda_4 \mu_1 \mu_2 \mu_4 - \lambda_3 \lambda_4 \mu_1 \mu_3 \mu_4 - \\ \lambda_3 \lambda_4 \mu_2 \mu_3 \mu_4 + \lambda_3 \mu_1 \mu_2 \mu_3 \mu_4 + \lambda_4 \mu_1 \mu_2 \mu_3 \mu_4 - \lambda_2^2 \lambda_3 \lambda_4 \left(\mu_1 + \mu_2 + \mu_3 + \mu_4\right) + \\ \lambda_2 \left(-\mu_1 \mu_2 \mu_3 \mu_4 + \lambda_3 \lambda_4 \left(\mu_3 \mu_4 + \mu_2 \left(\mu_3 + \mu_4\right) + \mu_1 \left(\mu_2 + \mu_3 + \mu_4\right)\right)\right) + \lambda_1 \\ \left(-\lambda_2^3 \left(\lambda_3 + \lambda_4\right) - \mu_1 \mu_2 \mu_3 \mu_4 + \lambda_3 \lambda_4 \left(\mu_3 \mu_4 + \mu_2 \left(\mu_3 + \mu_4\right) + \mu_1 \left(\mu_2 + \mu_3 + \mu_4\right)\right)\right) + \\ \lambda_2^2 \left(\lambda_4 \left(\mu_1 + \mu_2 + \mu_3 + \mu_4\right) + \lambda_3 \left(\lambda_4 + \mu_1 + \mu_2 + \mu_3 + \mu_4\right)\right) - \\ \lambda_2 \left(-\mu_1 \mu_2 \mu_3 - \mu_1 \mu_2 \mu_4 - \mu_1 \mu_3 \mu_4 - \mu_2 \mu_3 \mu_4 + \\ \lambda_4 \left(\mu_3 \mu_4 + \mu_2 \left(\mu_3 + \mu_4\right) + \mu_1 \left(\mu_2 + \mu_3 + \mu_4\right)\right) + \lambda_3 \\ \left(\mu_2 \mu_3 + \mu_2 \mu_4 + \mu_3 \mu_4 + \mu_1 \left(\mu_2 + \mu_3 + \mu_4\right) + \lambda_4 \left(\mu_1 + \mu_2 + \mu_3 + \mu_4\right)\right)\right) \right) \Big) \Big/ \\ \left(\left(\lambda_1 - \lambda_3\right) \left(\lambda_2 - \lambda_3\right) \left(\lambda_1 - \lambda_4\right) \left(\lambda_2 - \lambda_4\right)\right) \right)$$

For some particular combinations the result is very simple:

$$\prod_{a=1}^{\infty} (1+Y_{a,0})^a = \prod_{i=1,2} \prod_{j=3,4} \frac{(1-\mu_i/\lambda_j)(1-\lambda_i/\mu_j)}{(1-\mu_i/\mu_j)(1-\lambda_i/\lambda_j)}$$

The expression for the energy becomes:

$$E = \sum_{i=1}^{M} \epsilon(u_{4,i}) + \sum_{a=1}^{\infty} \int_{-\infty}^{\infty} \frac{du}{2\pi i} \frac{\partial \epsilon_a}{\partial u} \log\left(1 + Y_{a,0}(u)\right)$$

Coinsides with the expression from the quasi-classical quantization!

$$\frac{1}{2} \sum_{(\mathbf{ij})} \sum_{n} (-1)^{F_{\mathbf{ij}}} \omega(x_n^{(\mathbf{ij})}) = \int_{-1}^{1} \frac{dz}{2\pi} \frac{z}{\sqrt{1-z^2}} \partial_z \mathcal{N}_* \qquad \mathcal{N}_* \equiv \sum_{i=1,2} \sum_{j=3,4} \log \frac{(1-\mu_i/\lambda_j)(1-\lambda_i/\mu_j)}{(1-\mu_i/\mu_j)(1-\lambda_i/\lambda_j)}$$

Numerical solution of Y-system

Numerical solution of Y-system

$$\log Y_n(u) = \int K_{nm}(u, v) \log(1 + Y_m(v)) dv$$
$$+ \Phi_n(u)$$

Bazhanov, Lukyanov, Zamolodchikov, P.Dorey, Totteo

Bombardelli, Fioravanti, R.Tateo N.G., Kazakov, Vieira Arutynov, Frolov

Numerical solution of Y-system

 $\mathcal{O} = tr(ZZWW) - tr(ZWZW)$

- We know the general strong coupling solution of Ysystem
- Also large L and weak coupling solutions are known in general
- More tests should be done
- Application (BFKL, и т.п...)
- YY? Hidden structures in the perturbation theory from the gauge side