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e!ective ion concentration close to the 
surface, this crucially helps to transduce the 
ion channel’s sensitivity to the nanowire.

"is step having been made, a number 
of formidable challenges remain to make 
the ion-channel-based biointerface a 
reality. In their experiment, Misra and 
co-workers used two simple peptide pores, 
which are commonly used as ‘test devices’. 
It will be quite challenging to incorporate 
‘real’ ion channels with more versatile 
functions into the lipid membrane coating 
the nanowires. "is would truly result in 
new ion-channel-based biosensors that 

combine the extraordinary biochemical and 
electronic sensitivities of their components. 
For neuroprosthetics, however, it will 
also be important to make information 
transfer bidirectional, that is, to controllably 
transfer electronic to ionic or chemical 
signals. Furthermore, at present it is 
unclear how such devices would be made to 
function in vivo. 
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at the Technical University Munich, James-Franck-
Straße, D-854748 Garching, Germany.  
e-mail: simmel@ph.tum.de

References
1. Gibson, W. Neuromancer (Ace, 1984).
2. Gibson, W. Count Zero (Ace, 1986).
3. Gibson, W. Mona Lisa Overdrive (Ace, 1988).
4. Misra, N. et al. Proc. Natl Acad. Sci. USA  

106, 13780–13784 (2009).
5. Sigworth, F. J. Nature 423, 21–22 (2003).
6. Fromherz, P., O!enhausser, A., Vetter, T. & Weis, J. Science  

252, 1290–1293 (1991).
7. Fromherz, P. & Stett, A. Phys. Rev. Lett. 75, 1670–1673 (1995).
8. Peitz, I., Voelker, M. & Fromherz, P. Angew. Chem. Int. Ed.  

46, 5787–5790 (2007).
9. Cornell, B. A. et al. Nature 387, 580–583 (1997).
10. Patolsky, F., Zheng, G. & Lieber, C. M. Nanomedicine  

1, 51–65 (2006).
11. Patolsky, F. et al. Science 313, 1100–1104 (2006).

There is no end to the list of remarkable 
quantum phases of matter that can 
emerge if simple building blocks are 

endowed with just the right interactions and 
are cooled to low enough temperatures. In 
many cases, the essence of such phases can 
be captured by an order parameter. "ink 
of a quantum ferromagnet, for example, 
with the order parameter specifying the 
direction of the magnetization. More 
intricate quantum phases, which can arise 
in frustrated quantum magnets (which 
possess disordered ground states) or in 
systems of strongly correlated electrons or 
cold atoms, lack such telling diagnostics, 
and it becomes something of an art to 
characterize the quantum order that they 
hide. Charlotte Gils and colleagues, writing 
on page 834 of this issue1, show how 
particular quantum phases can be visualized 
as a quantum foam — a surface with 
topology-changing quantum #uctuations on 
all length scales.

"e logic that leads Gils et al. to 
their remarkable physical picture is best 
followed in two steps. First they consider 
so-called topological phases of matter in 
two-dimensional (2D) systems, following 
a microscopic description originally given 
by Michael Levin and Xiao-Gang Wen2. 
"ese topological phases are seemingly 
featureless quantum liquids, lacking any 
form of local order. But their special 
nature manifests itself at the edge of a 
system, where gapless edge modes arise, 
or, for systems de$ned on a surface with 
non-trivial topology, in characteristic 

ground-state degeneracies. "e topological 
order also a!ects the quantum statistical 
properties of defects. Avoiding the 

restrictions for three-dimensional systems, 
where bosonic or fermionic statistics are 
the rule, defects over 2D topological phases 
tend to be anyons. Interchanging anyons 
can lead not only to prefactors of ±1, as 
for bosons and fermions, respectively, but 
to ‘any’ phase or even to matrices acting 
on an internal quantum space. For the 
‘Fibonacci anyons’ (which feature in the 
paper of Gils et al.1) the dimensionality of 
the n-particle internal space is precisely the 
nth element of the Fibonacci sequence (1, 1, 
2, 3, 5, 8, …).

Topological phases are known to occur 
in fractional quantum Hall systems, where 
electrons are con$ned to a 2D Flatland, 
exposed to a strong perpendicular magnetic 
$eld (of many Teslas) and cooled to low 
temperatures (in the millikelvin range). 
"e magnetic $eld breaks the time-reversal 
symmetry, causing the characteristic edge 
modes to be chiral — that is, having a 
preferred direction and therefore one-way 
tra%c along the edges. But the topological 
phases of Levin and Wen2 are time-reversal 
invariant. It is then natural to visualize 
these states as anyonic quantum liquids 
living on a double sheet, with each sheet 
corresponding to a speci$c chirality of 
edge modes.

In the second step of their analysis, 
Gils et al.1 add a term to the Levin–Wen 
Hamiltonian, which lowers the energy 
of speci$c defects. "e defects can be 
visualized as ‘wormholes’ connecting the 
two sheets (Fig. 1). Driving the strength of 
the extra term to a critical value leads to 

TOPOLOGICAL PHASES

Wormholes in quantum matter
Proliferation of so-called anyonic defects in a topological phase of quantum matter leads to a critical state that can 
be visualized as a ‘quantum foam’, with topology-changing fluctuations on all length scales.
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Figure 1 | Topology matters. a, For the topology 
of a 2D surface, all that counts is the number of 
incontractible loops. b, A defect in a chiral 2D 
topological quantum liquid can be pictured as a tiny 
current circulating in an incontractible loop around 
a hole, creating a ‘chimney’. c, When there are two 
sheets connected by such chimneys, proliferation 
of these wormholes drives a topological phase to a 
critical point, visualized as a quantum foam.
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Physics in the plane:
From condensed matter to string theory
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Spontaneous symmetry breaking
• ground state has less symmetry than high-T phase

• Landau-Ginzburg-Wilson theory

• local order parameter

Topological quantum liquids

Topological order
• ground state has more symmetry than high-T phase

• degenerate ground states 

• non-local order parameter

• quasiparticles have fractional statistics = anyons

cosmic microwave 
background
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Topological quantum liquids

• Gapped spectrum
• No broken symmetry

• Degenerate ground state on torus

• Fractional statistics of excitations

• Hilbert space split into topological sectors
No local matrix element mixes the sectors
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Topological order

quantum Hall liquids magnetic materials

2a

time reversal symmetry

broken invariant
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Quantum phase transitions

topological order
λ

λc

some other (ordered) state

no local order parameter 
↓

no Landau-Ginzburg-Wilson theory

How can we describe these phase transitions?

complex field theoretical framework 
↓

doubled (non-Abelian) Chern-Simons theories

Liquids on surfaces can provide a “topological framework”.

time-reversal invariant systems

http://www.kitp.ucsb.edu/~trebst/
http://www.kitp.ucsb.edu/~trebst/


© Simon Trebst

The toric code in a magnetic field
A first example
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The toric code
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A. Kitaev, Ann. Phys. 303, 2 (2003).
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Toric code and the transverse field Ising model
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Phase diagram
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Excitations: condensation vs. confinement

topological phase
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Splitting the topological degeneracy

δE ∝ L
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ST et al., Phys. Rev. Lett. 98, 070602 (2007). 
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Phase diagram
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Toric code: phase transitions

wavefunction
deformations |ψ�

toric code paramagnet

Fradkin & Shenker (1979)
ST et al. (2007)

Tupitsyn et al. (2008)
Vidal, Dusuel, Schmidt (2009)

z = 1

3D Ising
universality

RG flow

H
Hamiltonian
deformations

Ardonne, Fendley, Fradkin (2004)
Castelnovo & Chamon (2008)

Fendley (2008)

z ~ 2 2D Ising
universality

“conformal QCP”
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Quantum double models
for time-reversal invariant systems
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Time-reversal invariant liquids

chiral excitations

✗

✗ “flux” excitations
non-chiral

anyonic liquid L

anyonic liquid L̄
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The skeleton lattice

anyonic liquid
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The skeleton lattice

anyonic liquid

skeleton
lattice
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Abelian liquids → loop gas / toric code

1
11

Semion fusion rules
loop gas

s× s = 1

1
s s

Abelian liquids → loop gas / toric code
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Flux excitations

anyonic liquid

flux through 
“hole”

flux through 
“tube”

skeleton
lattice
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Extreme limits

no flux through “holes”
↓

close holes
↓

“two sheets” 

The “two sheets” ground state exhibits topological order.
 In the toric code model this is the flux-free, loop gas ground state
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Extreme limits

no flux through “tubes”
↓

pinch off tubes
↓

“decoupled spheres” 

The “decoupled spheres” ground state exhibits no topological order.
 In the toric code model this is the paramagnetic state.
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Semions (Abelian): 
Toric code in a magnetic field / loop gas with loop tension            .Je/Jp

Connecting the limits: a microscopic model

H = −Jp

�

plaquettes p

δφ(p),1 − Je

�

edges e

δ�(e),1

Varying the couplings             we can connect the two extreme limits.Je/Jp
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The quantum phase transition

vary loop tension Je/Jp

“two sheets”
topological order

“decoupled spheres”
no topological order
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The quantum phase transition

“two sheets”
topological order

“decoupled spheres”
no topological order

topology fluctuations
on all length scales

“quantum foam”

continuous transition
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Universality classes (semions)

Ardonne, Fendley, Fradkin (2004)
Castelnovo & Chamon (2008)

Fendley (2008)

z ~ 2 2D Ising
universality

wavefunction
deformations |ψ�

toric code paramagnet

Fradkin & Shenker (1979)
ST et al. (2007)

Tupitsyn et al. (2008)
Vidal, Dusuel, Schmidt (2009)
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RG flow

H
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The non-Abelian case

τ τ
τ

τ τ
1 1

11

Fibonacci anyon fusion rules τ × τ = 1 + τ
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Non-abelian liquids → string net

τ τ
τ

τ τ
1 1

11

Fibonacci anyon fusion rules τ × τ = 1 + τ
string net

Non-abelian liquids → string net
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The quantum phase transition

vary string tension Je/Jp

“two sheets”
topological order

“decoupled spheres”
no topological order
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One-dimensional analog
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A continuous transition

• A continuous quantum phase transition connects 
the two extremal topological states.

• The transition is driven by topology fluctuations 
on all length scales.

• The gapless theory is exactly sovable.
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Phase diagram

c = 14/15
exactly solvable

c = 7/5
exactly solvable

non-Abelian
topological phase

non-Abelian
topological phase

critical phase
c = 7/5

Jp

Jr
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Gapless theory & exact solution

(1, 1)

(1, τ)

(τ, 1)
(τ, τ)1 τ

The gapless theory is a CFT with                   .c = 14/15

The Hamiltonian maps onto 
the Dynkin diagram D6

The operators in the Hamiltonian form a
Temperley-Lieb algebra

(Xi)2 = d · Xi XiXi±1Xi = Xi [Xi, Xj ] = 0
|i− j| ≥ 2for

d =
�

2 + φ
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Dressed flux excitations
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Back to two dimensions
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Summary

•  A “topological” framework for the description 
of topological phases and their phase transitions.

• Unifying description of loop gases and string nets.

• Quantum phase transition is driven by fluctuations of topology.

• Visualization of a more abstract mathematical description, 
namely doubled non-Abelian Chern-Simons theories.

• The 2D quantum phase transition out of 
a non-Abelian phase is still an open issue: 
A continuous transition in a novel universality class?
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