ON GENUS ONE MIRROR SYMMETRY

Gerard Freixas i Montplet C.N.R.S. – Institut de Mathématiques de Jussieu - Paris Rive Gauche

Based on joint work with D. Eriksson and C. Mourougane

Séminaire Darboux January 2020 CY MANIFOLDS

•000

Calabi-Yau manifolds

CY MANIFOLDS

Let X be a connected compact Kähler manifold of dimension n. We say that X is a Calabi-Yau (CY) manifold if:

X has a nowhere vanishing holomorphic differential form, i.e. the canonical bundle is trivial:

$$K_X = \wedge^n \Omega_X \simeq \mathcal{O}_X$$
.

 \triangleright for 0 , there are no non-trivial global holomorphicp-forms:

$$H^0(X, \Omega_X^p) = 0$$
, or equivalently $H^p(X, \mathcal{O}_X) = 0$.

A Calabi-Yau manifold is automatically algebraic and projective.

In any given Kähler cohomology class $\nu \in H^{1,1}_{\mathbb{D}}(X)$, there exists a unique Ricci flat Kähler metric.

CY MANIFOLDS

The infinitesimal deformations of the complex structure of X are parametrized by $H^1(X, T_X)$. This has dimension $h^{n-1,1}$:

$$H^1(X, T_X) \simeq H^1(X, T_X \otimes K_X) \simeq H^1(X, \Omega_X^{n-1}).$$

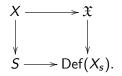
The deformations of X are unobstructed. There is an open neighborhood of 0, $\operatorname{Def}(X) \hookrightarrow H^1(X, T_X)$ and a local universal deformation of X over $\operatorname{Def}(X)$:

$$\mathfrak{X} \longrightarrow \mathsf{Def}(X), \quad \mathfrak{X}_0 \simeq X.$$

If we fix a polarization L, there is a quasi-projective coarse moduli space \mathcal{M} of (X,L). In a neighborhood of the point corresponding to (X,L), \mathcal{M} is a quotient of $\mathsf{Def}(X)$ by a finite group.

Let $X \to S$ be a morphism of complex manifolds, with Calabi-Yau fibers.

For every $s \in S$, after possibly shrinking S around s, there is a Cartesian diagram



We say that the family $X \to S$ is maximal if the morphism $S \to \text{Def}(X_s)$ is a local biholomorphism.

MIRROR FAMILIES

Let X be a CY manifold of dimension n.

Mirror symmetry predicts the existence of a *mirror family* of CY *n*-folds $\varphi \colon \mathcal{X}^{\vee} \to \mathbf{D}^{\times}$:

- $ightharpoonup \mathbf{D}^{ imes} = (\mathbb{D}^{ imes})^d$ is a punctured multi-disc, $d = h^{n-1,1}(\mathcal{X}_q^{\vee})$.
- $ightharpoonup \varphi \colon \mathcal{X}^{\vee} \to \mathbf{D}^{\times}$ is maximal.
- ▶ the monodromy T on $R^n \varphi_* \underline{\mathbb{C}}$ is maximal unipotent (MUM): if d=1, this means

$$(T-1)^n \neq 0$$
 and $(T-1)^{n+1} = 0$.

▶ mirror Hodge numbers: $h^{p,q}(X) = h^{n-p,q}(\mathcal{X}_q^{\vee})$.

Informally:

 $\varphi \colon \mathcal{X}^{\vee} \to \mathbf{D}^{\times} \iff$ cusp in a moduli space of CY varieties.

There should also exist a bihomolorphic map, called *mirror map*,

$$au : \mathbf{D}^{\times} \longrightarrow \mathcal{H}_X := H^{1,1}_{\mathbb{R}}(X)/H^{1,1}_{\mathbb{Z}}(X) + i\mathcal{K}_X,$$

where \mathcal{K}_X is the Kähler cone of X, which relates the variation of complex structures of $\mathcal{X}^{\vee} \to \mathbf{D}^{\times}$ and the Kähler "moduli" of X.

When $d=1, \tau$ can be identified with a multi-valued function of the form

$$au(q) = rac{1}{2\pi i} rac{\int_{\gamma_1} \eta}{\int_{\gamma_0} \eta} \in \mathbb{H},$$

where η is a local holomorphic basis of $\varphi_* K_{\mathcal{X}^{\vee}/\mathbf{D}^{\times}}$ and γ_0 , γ_1 are well-chosen homology *n*-cycles (Morrison):

- $T\gamma_0 = \gamma_0.$ $T\gamma_1 = \gamma_1 + \gamma_0.$

Mirror symmetry (rough version)

Variation of Hodge structures on $R^n \varphi_* \mathbb{C}$ close to 0.

Curve counting invariants in X.

For instance, the mirror symmetry conjecture at genus 0 predicts that the Yukawa coupling of the mirror family has a holomorphic series expansion in $\tau \in \mathcal{H}_X$, whose coefficients are given by genus zero Gromov–Witten invariants of X.

In this talk we discuss a mirror symmetry conjecture at genus one, where the role of the Yukawa coupling is played by a functorial lift of the Grothendieck-Riemann-Roch theorem.

Let X be a compact complex manifold.

Let E be a holomorphic vector bundle on X.

Recall the Hirzebruch–Riemann–Roch theorem (HRR):

$$\sum_{q} (-1)^q \dim H^q(X, E) = \int_X \operatorname{ch}(E) \operatorname{td}(T_X).$$

The cohomology groups $H^q(X, E)$ can be realized as Dolbeault cohomology:

$$H^q_{\overline{\partial}}(X,E) = \frac{\ker\left(\overline{\partial} \colon A^{0,q}(E) \to A^{0,q+1}(E)\right)}{\operatorname{Im}\left(\overline{\partial} \colon A^{0,q-1}(E) \to A^{0,q}(E)\right)}.$$

The Grothendieck-Riemann-Roch theorem (GRR) is a variant of HRR in an algebraic and relative setting.

Let $f: X \to S$ be a projective submersion of complex connected algebraic manifolds.

Let E be a vector bundle on X.

THEOREM (GROTHENDIECK-RIEMANN-ROCH)

The following equality holds in $CH^{\bullet}(S)_{\mathbb{Q}}$:

$$\operatorname{ch}(Rf_*E) = f_*\left(\operatorname{ch}(E)\operatorname{td}(T_{X/S})\right).$$

In particular, for the determinant of cohomology:

$$c_1(\det Rf_*E) = f_*\left(\operatorname{ch}(E)\operatorname{td}(T_{X/S})\right)^{(1)}$$
 in $\operatorname{CH}^1(S)_{\mathbb Q} \simeq \operatorname{Pic}(S)_{\mathbb Q}.$

When $s\mapsto \dim H^q(X_s,E_{|_{X_s}})$ is constant for all q, the cohomology spaces $H^q(X_s,E_{|_{X_s}})$ organize into holomorphic vector bundles R^qf_*E . Then

$$\operatorname{ch}(Rf_*E) = \sum_q (-1)^q \operatorname{ch}(R^q f_*E)$$

and

$$\det Rf_*E = \bigotimes_q (\wedge^{\max} R^q f_*E)^{(-1)^q}.$$

For instance, this is the case of Hodge bundles, i.e. when we take $E=\Omega^p_{X/S}$.

Assume now that the fibers X_s are Calabi–Yau (CY).

Define the virtual vector bundle

$$D\Omega_{X/S}^{\bullet} = \bigoplus_{p} (-1)^p p \Omega_{X/S}^p.$$

Hence

$$\det Rf_*D\Omega_{X/S}^{ullet} = igotimes (\det R^q f_*\Omega_{X/S}^p)^{(-1)^{p+q}p}$$

is a weird combination of determinants of Hodge bundles.

For this datum, GRR simplifies to:

$$c_1(\det Rf_*D\Omega_{X/S}^{\bullet}) = \frac{\chi}{12}c_1(f_*K_{X/S}) \quad \text{in} \quad \mathsf{CH}^1(S)_{\mathbb{Q}} \simeq \mathsf{Pic}(S)_{\mathbb{Q}},$$

with $\chi = \chi(X_s)$ the topological Euler characteristic of the fibers.

DEFINITION (BCOV LINE BUNDLE)

The BCOV line bundle on S is defined by

$$\lambda_{BCOV}(f) = \det Rf_* D\Omega_{X/S}^{\bullet}$$

$$= \bigotimes_{p} (\det R^q f_* \Omega_{X/S}^p)^{(-1)^{p+q}p}.$$

It commutes with arbitrary base change.

COROLLARY (OF GRR)

There exists an isomorphism of \mathbb{Q} -line bundles on S

$$\lambda_{BCOV}(f)^{\otimes 12} \stackrel{\sim}{\longrightarrow} (f_* K_{X/S})^{\otimes \chi}.$$

But: there are as many as $H^0(S, \mathcal{O}_S^{\times})$ such isomorphisms.

THEOREM (ERIKSSON, FRANKE)

There exists a canonical isomorphism of \mathbb{Q} -line bundles

GRR:
$$\lambda_{BCOV}(f)^{\otimes 12} \stackrel{\sim}{\to} (f_* K_{X/S})^{\otimes \chi}$$
,

commuting with arbitrary base change. If $f: X \to S$ is defined over Q, GRR is defined over Q as well.

The arithmetic Riemann–Roch theorem of Gillet–Soulé provides a weak variant, enough for most purposes:

- natural isomorphism up to a constant of norm one.
- isometry for auxiliary hermitian structures (Quillen metric).
- \triangleright over \mathbb{Q} , the constant is necessarily ± 1 .
- compatible with Eriksson–Franke.

Let X be a Calabi–Yau manifold, and $\varphi \colon \mathcal{X}^{\vee} \to \mathbf{D}^{\times}$ its conjectural mirror family.

DEFINITION

Define the formal generating series of genus one Gromov–Witten invariants of \boldsymbol{X} by

$$F_1(\tau) = -\frac{1}{24} \int_X c_{n-1}(X) \cap 2\pi i \tau + \sum_{\beta} \mathsf{GW}_1(X,\beta) e^{2\pi i \langle \beta,\tau \rangle},$$

where

- $\vdash \tau \in \mathcal{H}_X$.
- ▶ $\beta \in H_2(X, \mathbb{Z})$ runs over curve classes.
- ▶ $GW_1(X, \beta)$ = genus one Gromov–Witten invariant of class β .

CONJECTURE (OPTIMISTIC FUNCTORIAL BCOV)

Let X and $\varphi \colon \mathcal{X}^{\vee} \to \mathbf{D}^{\times}$ be mirrors as above.

Assume that φ can be extended over an algebraic base.

Let $\tau \colon \mathbf{D}^{\times} \to \mathcal{H}_X$ be the mirror map.

Then:

- there exist canonical trivializations of $\lambda_{BCOV}(\varphi)$ and $\varphi_* K_{\mathcal{X}^{\vee}/\mathbf{D}^{\times}}$.
- in these trivializations, GRR can be identified to a holomorphic function in $q \in \mathbf{D}^{\times}$ of the form

$$\mathsf{GRR}(q) = \exp\left((-1)^n F_1(\tau(q))\right)^{24}.$$

The conjecture is optimistic in that:

- we might need to impose further conditions on the Hodge numbers of X (e.g. $h^{p,q} = 0$ outside the central cross).
- the usual MUM condition might not be sufficient.
- it could be that the predicted formula for GRR only holds up to a constant.

An alternative would be a conjecture for $d \log GRR$. This still captures the genus one enumerative invariants.

THE BCOV INVARIANT

Let $f: X \to S$ be a family of Calabi–Yau manifolds as before.

Recall the canonical GRR isomorphism of \mathbb{Q} -line bundles

GRR:
$$\lambda_{BCOV}(f)^{\otimes 12} \stackrel{\sim}{\longrightarrow} (f_* K_{X/S})^{\otimes \chi}$$
.

To attack the functorial BCOV conjecture we need methods of explicitly computing GRR.

Idea:

- introduce natural hermitian metrics on $\lambda_{BCOV}(f)$ and $f_*K_{X/S}$ (Hodge theory).
- compute the norm of GRR with respect to these metrics.
- how? Arithmetic Riemann–Roch of Gillet–Soulé.

We endow the line bundle $f_*K_{X/S}$ with the L^2 (or Hodge) metric:

$$h_{L^2,s}(\alpha,\beta) = \frac{i^{n^2}}{(2\pi)^n} \int_{X_s} \alpha \wedge \overline{\beta},$$

for α, β are local sections of $f_*K_{X/S}$.

The normalization $(2\pi)^n$ is standard in Arakelov geometry.

The line bundle $\lambda_{BCOV}(f)$ has a canonical metric:

by the Hodge decomposition, there is a \mathcal{C}^{∞} isomorphism

$$\lambda_{BCOV}(f)^{\otimes 2} \otimes \overline{\lambda_{BCOV}(f)}^{\otimes 2} \stackrel{\sim}{\longrightarrow} \bigotimes_{k} (\det R^k f_* \underline{\mathbb{C}})^{(-1)^k 2k}.$$

using the lattice of integral cohomology:

$$\bigotimes_{k} (\det R^{k} f_{*}\underline{\mathbb{C}})^{(-1)^{k} 2k} = \bigotimes_{k} (\det R^{k} f_{*}\underline{\mathbb{Z}})^{(-1)^{k} 2k}_{\mathrm{nt}} \otimes \mathbb{C}$$
$$\simeq \underline{\mathbb{C}}.$$

The isomorphism is canonical, since $(\det R^k f_* \mathbb{Z})_{nt}^{\otimes 2} \simeq \mathbb{Z}$ canonically.

ightharpoonup All in all, we have a \mathcal{C}^{∞} isomorphism

$$\lambda_{BCOV}(f)^{\otimes 2} \otimes \overline{\lambda_{BCOV}(f)}^{\otimes 2} \stackrel{\sim}{\longrightarrow} \underline{\mathbb{C}},$$

which actually defines a smooth hermitian metric on $\lambda_{BCOV}(f)^{\otimes 2}$, and hence on $\lambda_{BCOV}(f)$.

Definition (L^2 -BCOV metric)

The above canonical hermitian metric on $\lambda_{BCOV}(f)$ is called the L^2 -BCOV metric, and denoted $h_{L^2,BCOV}$.

Now the BCOV invariant of the family $f: X \to S$ is defined as the norm of GRR with respect to h_{L^2} and $h_{L^2,BCOV}$:

DEFINITION (BCOV INVARIANT)

We define the BCOV invariant of the family $f: X \to S$ as the $\mathcal{C}^\infty(S)$ function

$$s \mapsto au_{BCOV}(X_s) := \frac{\|\operatorname{\mathsf{GRR}}(\theta)\|_{L^2,s}^2}{\|\theta\|_{L^2,BCOV,s}^2},$$

where θ is any local trivialization of $\lambda_{BCOV}(f)$.

RELATION TO HOLOMORPHIC ANALYTIC TORSION

Assume for simplicity that X has a Kähler form ω , whose restriction to fibers is Ricci flat.

With respect to ω , we form the $\overline{\partial}$ -Laplacian $\Delta^{p,q}_{\overline{\partial}_s}$ on $A^{p,q}(X_s)$.

Theorem (Arithmetic Riemann-Roch + ε)

There exists a constant C such that

$$au_{BCOV}(X_s) = C \prod_{p,q} (\det \Delta^{p,q}_{\overline{\partial},s})^{(-1)^{p+q}pq},$$

where det $\Delta_{\overline{\partial}_{S}}^{p,q}$ is the ζ -regularized determinant of $\Delta_{\overline{\partial}_{S}}^{p,q}$.

► The arithmetic Riemann–Roch relationship

$$\|\operatorname{\mathsf{GRR}}\|^2 = C \prod_{p,q} (\det \Delta^{p,q}_{\overline{\partial},s})^{(-1)^{p+q}pq}$$

is a \mathcal{C}^{∞} , spectral evaluation of GRR.

► The original BCOV conjecture was formulated in terms of the function

$$\mathcal{F}_1(s) := rac{1}{2} \log \prod_{p,q} (\det \Delta^{p,q}_{\overline{\partial},s})^{(-1)^{p+q}pq}.$$

Determining the singularities of τ_{BCOV} for degenerations of CY's is central in our approach to the conjecture. This relies on the spectral interpretation.

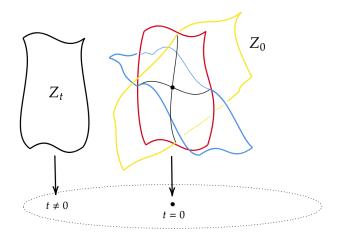
The singularities of τ_{BCOV}

Let $f: Z \to \mathbb{D}$ be a germ of a degeneration of CY manifolds:

- ▶ *f* is a projective morphism of complex manifolds, and it can be extended to a morphism of algebraic varieties.
- ightharpoonup f is a submersion over the punctured disc \mathbb{D}^{\times} , with CY fibers.

Problem: describe the behaviour of $t \mapsto \log \tau_{BCOV}(Z_t)$ as $t \to 0$.

Here is an attempt of picture of a normal crossings degeneration:



The following limit exists:

$$\kappa_f := \lim_{t \to 0} \frac{\log \tau_{BCOV}(Z_t)}{\log |t|^2} \in \mathbb{Q}.$$

We expect that the coefficient κ_f encodes interesting topological invariants.

We can compute κ_f when we have a good control on the singularities of the degeneration.

THEOREM (CDG 2018-2019)

If f acquires at most ordinary quadratic singularities, i.e. modelled on $z_0^2 + \ldots + z_n^2 = t$, then:

$$\kappa_f = \begin{cases} \frac{n+1}{24} \ \# \operatorname{sing}(Z_0) & \text{if } n \text{ is even,} \\ -\frac{n-2}{24} \ \# \operatorname{sing}(Z_0) & \text{if } n \text{ is odd.} \end{cases}$$

If $K_Z = \mathcal{O}_Z$ and f is semi-stable, with central fiber $Z_0 = \sum_k D_k$ a reduced NCD, then

$$\kappa_f = \sum_{k>1} (-1)^k \frac{k(k-1)}{24} \chi(D(k)),$$

where
$$D(k) = \bigsqcup_{|J|=k} D_J$$
 and $D_J = D_{j_1} \cap \ldots \cap D_{j_k}$.

The BCOV conjecture for hypersurfaces in $\mathbb{P}^n_{\mathbb{C}}$

In the remaining of the talk, we elaborate on the following:

THEOREM (CDG 2019)

The functorial BCOV conjecture holds, up to a constant, for CY hypersurfaces in $\mathbb{P}^n_{\mathbb{C}}$ and their mirror family.

The 3-dimensional case was obtained by Fang-Lu-Yoshikawa.

First instance of higher dimensional mirror symmetry of BCOV type at genus one.

It builds on our work on the singularities of au_{BCOV} for degenerations of CY's, and some refinements of Schmid's asymptotics of Hodge metrics.

THE MIRROR FAMILY

Let X_{n+1} be a general degree n+1 hypersurface in $\mathbb{P}^n_{\mathbb{C}}$.

A concrete mirror family $f: Z \to \mathbb{D}^{\times}$ (over a small punctured disc) is constructed in three steps:

ightharpoonup for $q \in \mathbb{D}^{\times}$, define a CY hypersurface $X_q \subseteq \mathbb{P}^n_{\mathbb{C}}$ by

$$q\sum_{j=0}^{n}x_{j}^{n+1}-(n+1)\prod_{j=0}^{n}x_{j}=0.$$

▶ kill the symmetries: $Y_a = X_a/G$, where

$$G = \{(\xi_0,\ldots,\xi_n) \in \mu_{n+1}^{\times (n+1)} \mid \prod_j \xi_j = 1\} / \mathsf{diagonal}.$$

 $\triangleright Y_q$ is a mildly singular CY variety, but it admits a natural CY desingularisation $Z_a \to Y_a$. The construction can be done in families, and yields $f: Z \to \mathbb{D}^{\times}$.

The mirror family can be extended to a morphism of projective manifolds $\widetilde{Z} \to \mathbb{P}^1_{\mathbb{C}}$, with some singular fibers:

- ▶ the fibers at $q \in \mu_{n+1}$ have ordinary quadratic singularities (ODP points); each such fiber has a unique singular point.
- ▶ the fiber at q = 0 (MUM point), whose geometry we don't control.

For the BCOV conjecture, we need to canonically trivialize the Hodge bundles $R^q f_* \Omega^p_{Z/\mathbb{D}^\times}$.

Relevant Hodge bundles: $(R^q f_* \Omega^p_{Z/\mathbb{D}^\times})_{\mathsf{prim}}$ with p+q=n-1.

The relevant Hodge bundles have rank one.

Let F_{∞}^{\bullet} be the limiting Hodge filtration and W_{\bullet} the monodromy weight filtration, on $H_{\lim}^{n-1} = \text{Schmid's LMS on } (R^{n-1}f_*\underline{\mathbb{C}})_{\text{prim}}$.

For all k = 0, ..., n - 1,

$$\mathsf{Gr}^W_{2k}\,H^{n-1}_{\mathsf{lim}} = \mathsf{Gr}^k_{F_{\infty}}\,\mathsf{Gr}^W_{2k}\,H^{n-1}_{\mathsf{lim}} \simeq \mathsf{Gr}^k_{F_{\infty}}\,H^{n-1}_{\mathsf{lim}}$$

is 1-dimensional. All the other possible graded pieces are trivial.

The flag W_{\bullet} hence looks like

$$W_0 = \underbrace{W_1 \subseteq W_2}_{\dim 1} = W_3 \subseteq \ldots \subseteq W_{2n-4} = \underbrace{W_{2n-3} \subseteq W_{2n-2}}_{\dim 1} = H_{\lim}^{n-1}.$$

The monodromy weight filtration on $(H_{n-1})_{lim} \simeq H_{lim}^{n-1}$ has the same structure.

THEOREM

Fix a basis $\gamma_{\bullet} = \{\gamma_k\}_k$ of $(H_{n-1})_{\text{lim}}$ adapted to the weight filtration: $\gamma_k \in W'_{2k} \setminus W'_{2k-2}$.

Then there exists a unique holomorphic trivialization ϑ_{\bullet} of $(R^{n-1}f_*\Omega^{\bullet}_{Z/\mathbb{D}^{\times}})_{\text{prim}}$, adapted to the Hodge filtration, with

$$\int_{\gamma_j} \vartheta_k = \begin{cases} 0 & \text{if } j < k \\ 1 & \text{if } j = k. \end{cases}$$

Here, the convention is $\vartheta_k \in \mathcal{F}^{n-1-k}(R^{n-1}f_*\Omega^{\bullet}_{Z/\mathbb{D}^{\times}})_{\text{prim}}$.

Notice that, up to constants, ϑ_{\bullet} only depends on the weight filtration W_{\bullet} on H_{\lim}^{n-1} .

DEFINITION

We denote by η_k the trivializing section of $(R^k f_* \Omega_{Z/\mathbb{D}^{\times}}^{n-1-k})_{\text{prim}}$ obtained by projecting ϑ_k .

By the theorem and the observation above, the η_k depend only on the limiting mixed Hodge structure, up to constants.

One can actually show that the η_k extend to trivializations of the Deligne extensions of the Hodge bundles.

Let $\|\cdot\|_{L^2}$ be the L^2 norm on $(R^k f_* \Omega_{Z/\mathbb{D}^\times}^{n-1-k})_{\text{prim}}$.

Let $q \mapsto \tau(q)$ be the mirror map and $F_1(\tau)$ the generating series of genus one Gromov–Witten invariants of X_{n+1} .

THEOREM (CDG 2019)

The BCOV invariant of the mirror family $f:Z\to \mathbb{D}^{\times}$ of X_{n+1} has the form

$$au_{BCOV}(Z_q) = C \left| \exp \left((-1)^{n-1} F_1(\tau(q)) \right) \right|^4 \|\Theta\|^2,$$

where

$$\|\Theta\| := \left(\frac{\|\eta_0\|_{L^2}^{\chi(X_{n+1})/12}}{\prod_{k=0}^{n-1} \|\eta_k\|_{L^2}^{(n-1-k)}}\right)^{(-1)^{n-1}}$$

and C is some constant.

- \blacktriangleright extension of the mirror family to $\widetilde{Z} \to \mathbb{P}^1_{\mathbb{C}}$, with controlled singularities except for q = 0 (MUM point).
- one-dimensional parameter space and complete knowledge of its meromorphic functions.
- relation of τ_{BCOV} to Grothendieck-Riemann-Roch (arithmetic Riemann-Roch in a non-arithmetic setting...).
- **behaviour** of τ_{BCOV} for degenerations with ordinary quadratic singularities (ODP points).
- good understanding of the sections of the relevant Hodge bundles (explicit constructions, known divisors).
- \triangleright Zinger's theorem: computation of F_1 in terms of hypergeometric functions.

From Schmid's asymptotics for L^2 metrics, one derives:

COROLLARY

As $\tau \to i\infty$, there is an asymptotic expansion

$$\begin{split} \frac{1}{2}\partial_{\tau}\log\tau_{BCOV}(Z_{q(\tau)}) = &\underbrace{(-1)^{n-1}\partial_{\tau}F_{1}(\tau)}_{holomorphic\ part} \\ &+ \underbrace{\frac{\rho_{\infty}}{\operatorname{Im}\tau}\left(1+O\left(\frac{1}{\operatorname{Im}\tau}\right)\right)}_{real\ analytic\ in\ (\operatorname{Im}\tau)^{-1}}, \end{split}$$

where ρ_{∞} is explicit and depends only on H_{lim}^{n-1} .

Taking $\partial \log$ removes all the indeterminacies, and produces a canonical expression.