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Renormalization of pinned elastic systems: how does it work beyond one loop ?
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We study the field theories for pinned elastic systems at equilibrium and at depinning. Their
β-functions differ to two loops by novel “anomalous” terms. At equilibrium we find a roughness ζ =
0.20829804ǫ + 0.006858ǫ2 (random bond), ζ = ǫ/3 (random field). At depinning we prove two-loop
renormalizability and that random field attracts shorter range disorder. We find ζ = ǫ

3
(1+0.14331ǫ),

ǫ = 4− d, in violation of the conjecture ζ = ǫ/3, solving the discrepancy with simulations. For long
range elasticity ζ = ǫ

3
(1 + 0.39735ǫ), ǫ = 2 − d, much closer to the experimental value (≈ 0.5 both

for liquid helium contact line depinning and slow crack fronts) than the standard prediction 1/3.

The aim of this Letter is to report progress on a concep-
tual issue and, as a byproduct, to resolve a longstanding
discrepancy between theory and numerical simulations
or experiments. The issue is whether it is possible to
construct a field theory of disordered elastic systems, at
equilibrium and at depinning, renormalizable beyond one
loop as for standard critical phenomena. A discrepancy
exists at present between the value for the roughness ex-
ponent ζ predicted by theory (ζ = ǫ/3 exactly) and sim-
ulations as well as experiments on wetting and on cracks.

Numerous experimental systems can indeed be mod-
elled as elastic objects pinned by random impurities, with
specific features. Interfaces in magnets [1] experience
either random bond RB (i.e. short range) disorder or
random field RF (i.e. long range) disorder. Charge den-
sity waves (CDW) or the Bragg glass in superconduc-
tors [2] are periodic objects. The contact line of liq-
uid helium meniscus on a rough substrate is governed
by long range elasticity and so are slowly propagating
cracks [3–6]. They can all be parametrized by a height
(or displacement) field u(x) (x being the d-dimensional
internal coordinate of the elastic object), with in some
cases N > 1 components. The roughness exponent ζ:

|u(x) − u(x′)|2 ∼ |x − x′|2ζ (1)

is measured in experiments for systems at equilibrium
(ζeq) or driven by a force f . Other exponents describe the
velocity near the depinning threshold fc, v ∼ (f − fc)

β ,
the scaling of the dynamical response, t ∼ xz , and the
local velocity correlation length ξ ∼ (f − fc)

−ν .
The study of pinned elastic systems, among a broader

class of disordered models (e.g. random field spin mod-
els), is notably difficult due to dimensional reduction DR
which renders naive perturbation theory useless [1,7]. In-
deed to any order in the disorder at zero temperature
T = 0, any physical observable is found to be identi-

cal to its (trivial) average in a Gaussian random force
(Larkin) model. A bold way out of this puzzle was pro-
posed by Fisher [8] within a one-loop renormalization
group analysis of the interface problem in d = 4 − ǫ. He
noted that the coarse grained disorder correlator becomes

non-analytic beyond the Larkin scale Lc, yielding large
scale results distinct from naive perturbation theory. An
infinite set of operators become relevant in d < 4, pa-
rameterized by the second cumulant R(u) of the random
potential, i.e. V (x, u)V (x′, u′) = δx−x′R(u−u′). Explicit
solution of the one-loop Functional RG equation (FRG)
for R(u) gives several non trivial attractive fixed points
(FP) to O(ǫ) proposed in [8] to describe RB, RF dis-
order and in [2], periodic systems (RP) such as CDW
or vortex lattices. All these FP exhibit a “cusp” singu-
larity as R∗′′(u) − R∗′′(0) ∼ |u| at small |u|. Large N
and variational methods [11,2] confirmed the picture and
the cusp was interpreted in terms of shocks in the renor-
malized force [12]. A FRG was also developed to one
loop [9,10] to describe the driven dynamics just above
depinning f = f+

c , the cusp being linked to the thresh-
old fc ∼ |∆′(0+)|. Surprisingly, the flow equation for
the correlator ∆(u) of the force F (x, u) is, to one loop,
identical to the one of the statics (with ∆(u) = −R′′(u)).
Extension to temperature T > 0 yielded rounding of the
cusp in a layer u ∼ T and the celebrated creep law [13].

Despite these successes, serious difficulties remain.
First, in the last fifteen years since [8], no study has
addressed whether the FRG yields, beyond one loop, a
renormalizable field theory able to predict universal re-
sults [14]. Doubts were even raised [15] about the valid-
ity of the ǫ-expansion beyond the order O(ǫ). Second,
numerous simulations near depinning [9,16–18] seem to
exclude ζ = ǫ/3 argued in [10] to be exact. In the case
of long range elasticity, the prediction ζ = (2 − d)/3 [4]
disagrees with the systematically larger value ζ ≈ 0.55
(d = 1) measured for liquid Helium contact line depin-
ning [3] and for the in plane roughness of slow crack fronts
[6] (see also simulations [19]).

In this Letter, we address these issues both for dynam-
ics and statics. The main difficulty is the non-analytic
nature of the theory (i.e. the fixed point action) at T = 0,
which makes it a priori quite different from conventional
critical phenomena. For depinning, we overcome the
problem and show renormalizability at two-loop order.
As a result we resolve several questions left unclear in
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previous works. We find that (i) quasi-static driven dy-
namics differs from statics at two loops (ii) shorter range
disorder is within the RF universality class and (iii) the
conjecture ζ = ǫ/3 is violated. This last result resolves
the longstanding discrepancy with simulations. In the
case of long range elasticity it yields ζ ≈ 0.5 for d = 1
and may thus explain the high value of ζ found in ex-
periments on cracks and wetting. For the statics we find
ambiguities at T = 0 which we lift using a renormaliz-
ability condition, yielding fixed points and ζeq to O(ǫ2).
This result is also obtained within an independent ex-
act FRG study [20]. The FRG equation for the disor-
der contains new anomalous terms both for statics and
dynamics, which are absent in an analytic theory. Our
predictions for all exponents are shown in Tables I,II.

d ǫ ǫ2 estimate simulation

3 0.33 0.38 0.38±0.02 0.34±0.01 [9]
ζ 2 0.67 0.86 0.82±0.1 0.75±0.02 [16]

1 1.00 1.43 1.2±0.2 1.25±0.05 [16]

3 0.89 0.85 0.84±0.01 0.84±0.02 [9]
β 2 0.78 0.62 0.53±0.15 0.64±0.02 [9]

1 0.67 0.31 0.2±0.2 ≈ 0.3 [16,18]

3 0.58 0.61 0.62±0.01
ν 2 0.67 0.77 0.85±0.1 0.77±0.04 [17]

1 0.75 0.98 1.25±0.3 1±0.05 [18]

3 0.208 0.215 0.215± 0.003 0.22 ± 0.01 [27]
ζeq 2 0.417 0.444 0.438± 0.007 0.41 ± 0.01 [27]

1 0.625 0.687 2/3 2/3

Table I: exponents for depinning and statics (ζeq) as ob-

tained, respectively: from setting ǫ = 4 − d in the one loop

and two loop result, from Padé estimates together with scaling

relations and from numerical works. For ζeq we have improved

the estimate using the exact result ζeq(d = 1) = 2/3.

ǫ ǫ2 estimate ǫ ǫ2 estimate
ζ 0.33 0.47 0.5 ± 0.1 β 0.78 0.59 0.4 ± 0.2
z 0.78 0.66 0.7 ± 0.1 ν 1.33 1.58 2. ± 0.4

Table II: depinning exponents for long range elasticity in

d = 1: ζ is consistent with experiments on contact line depin-

ning (ζ ≈ 0.5 [3]) and cracks (ζ ≈ 0.55 ± 0.05 [6]).

The starting point is the equation of motion:

η∂tuxt = ∂2
xuxt + F (x, uxt) (2)

with friction η and in the case of long range elasticity
we replace (in Fourier) q2uq by |q|uq in the elastic force.

Disorder averaged correlations 〈A[uxt]〉 = 〈A[uxt]〉S and
responses δ〈A[u]〉/δhxt = 〈ûxtA[u]〉S can be computed
from the standard averaged dynamical action:

S =

∫

xt

ûxt(η∂t − ∂2
x)uxt −

1

2

∫

xtt′
ûxtûxt′∆(uxt − uxt′)

Finite temperature is studied adding −ηT
∫

xt û2
xt, driven

dynamics adding −f
∫

xt ûxt and shifting u → u+vt in S.
We study the quasi-static limit v = 0+, as well as equilib-
rium dynamics f = 0 where, via fluctuation dissipation
relations, static quantities can be equivalently computed
using S or the replicated hamiltonian [21].

It is useful to first study naive perturbation theory,
in an analytic ∆(u) i.e. in its derivatives ∆(n)(0), using
the diagrammatic rules of Fig. 1. Since at each vertex
there are one conservation rule for momentum and two
for frequency we consider both unsplitted (local x) and
splitted (bilocal t, t′) vertices (and splitted a, b vertices in
the statics). T = 0 power counting yields

∫

t
ûu ∼ xd−2

and u ∼ xζ , where ζ = O(ǫ = 4 − d) has to be deter-
mined. For an analytic ∆(u) the perturbation expansion
of any (analytic) observable yields identical results [22]
as setting ∆(u) ≡ ∆(0) and one obtains the incorrect
DR roughness ζ = ǫ/2. Temperature is formally irrel-
evant and must be scaled [23] as T = T̃Λ−2+ǫ−2ζ with
the UV cutoff Λ (and fixed dimensionless T̃ ). By power
counting the only superficially UV divergent irreducible
vertex functions (IVF) are found to involve only one or
two response fields û (at T > 0 each T̃ comes with a
required Λ2−d factor to compensate the divergence [23]).
The statistical tilt symmetry uxt → uxt + const. (see
e.g. [9,10]) further restricts the needed counterterms at
f = fc to only one for η and one for the full function
∆(u). The one loop (D) and two loops (A,B,C) dia-
grams which correct the disorder at T = 0 are shown in
Fig. 1 (unsplitted). The splitted graphs corresponding
to A in the statics (and which do not vanish or cancel in
what follows) are shown in Fig. 2. The dynamical dia-
grams are obtained from the static ones by adding one
external û on each connected component (e.g. b generates
b1, . . . , b6). To escape triviality at T = 0 we must now
develop perturbation theory in a non-analytic interaction
∆(u) (or R(u)), a non trivial extension of conventional
field theory. Let us illustrate the new rules. Derivation

...

(i) ...

D

C B

(ii)

(iii)

E

A

G

F

FIG. 1. (i) diagrammatic rules for the statics: replica prop-
agator 〈uaub〉0 ≡ Tδab/q2, unsplitted vertex, equivalent split-
ted vertex −

∑

ab

1

2T2 R(ua − ub). (ii) dynamics: response
propagator 〈ûu〉0 ≡ Rq,t−t′ , unsplitted vertex, splitted vertex
− 1

2
ûxtûxt′∆(uxt − uxt′) and temperature vertex. Arrows are

along increasing time. An arbitrary number of lines can enter
these functional vertices. (iii) unsplitted diagrams to one loop
D, with inserted counterterm G and two loop A,B,C,E,F.
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a
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cb d e f

4b 6b
5b

a1 1c f1
i1

b2

a2
1e

FIG. 2. (a-f): the six splitted (static) diagrams correspond-
ing to two loop A diagram. Below: the corresponding non
vanishing diagrams in the dynamics. The last one is the only
non trivial C diagram (see text).

by extracting a leg from a vertex can be done as usual
only for a vertex evaluated at a generic u (e.g. graphs
bi in Fig 2). If it is evaluated at u = 0 (e.g. graph
e1), one must expand ∆(u) in powers of |u|, i.e. ∆(u) =
∆(0)+∆′(0+)|u|+∆′′(0+)u2/2+ . . . and carefully apply
Wick’s rules. The result is that the above diagrammatic
rules (Fig. 1,2) can still be used except that the values
of the diagrams are different. The graphs of Fig. 2 cor-
respond to performing four Wick contractions and some
end up in evaluating non trivial averages of e.g. sign or
delta functions. For instance e1, which vanishes in the
analytic theory since ∆′(0) = 0, now reads:

e1 = ∆′(0+)2∆′′(u)

∫

ti>0,ri

Rr1,t1Rr1,t2Rr3−r1,t3Rr3,t4Fri,ti
,

where Fri,ti
= 〈sgn(X)sgn(Y )〉, X = ur1,−t3 −ur1,−t4−t1 ,

Y = u0,−t4 − u0,−t3−t2 , computed with Gaussian aver-
ages. The limit T → 0 at v = 0 yields 〈sgn(X)sgn(Y )〉 =
2
π asin(〈XY 〉/

√

〈X2〉〈Y 2〉)), and a complicated T = 0
expression for e1 in the statics [24]. The opposite
limit v → 0 at T = 0 corresponds to depinning, with
〈sgn(X)sgn(Y )〉 → sgn(t4 + t1 − t3)sgn(t3 + t2 − t4), and
more generally to ∆(n)(ut −ut′) → ∆(n)(v(t− t′)) in any
vertex evaluated at u = 0.

We now focus on depinning at T = 0. Using these rules
we compute in perturbation of ∆ ≡ ∆(u) the contribu-
tions to the disorder IVF to one and two loops:

δ1∆ = −(∆′2 + (∆ − ∆(0))∆′′)I (3)

δ2∆ = ((∆ − ∆(0))∆′2)′′IA (4)

+
1

2
((∆ − ∆(0))2∆′′)′′I2 + ∆′(0+)2∆′′(IA − I2) (5)

with I =
∫

q
1/q4 and IA =

∫

q1,q2

1/q2
1q

4
2(q1 + q2)

2 [25],

whose divergent parts δ1
div∆, δ2

div∆ yield the one loop and
two loop counterterms respectively. These are computed
here adding a mass q2 → q2+m2, using dimensional regu-
larization Imǫ = Nd(

1
ǫ +O(ǫ)), IAm2ǫ = Nd(

1
2ǫ2 + 1

4ǫ) and

absorbing Nd = (d−2)/(4π)d/2Γ(d
2 ) in ∆. (4) comes from

a1+a2+
∑

i bi, the first term in (5) from all graphs C (not
detailed) except graph i1 (shown) which contributes to
the last (anomalous) term in (5), together with e1, f1, c1

(the B contribution vanishes). Inverting the relation be-
tween bare and renormalized disorders yields the β func-
tion β∆ = ∂∆ = ǫ∆ + ǫδ1

div∆ + ǫ(2δ2
div∆ − δ1,1∆) where

the 1/ǫ terms cancel nicely, the hallmark of a renormaliz-
able theory (δ1,1∆ is the counterterm to graph G in Fig.1
and ∂ ≡ −m∂m). We obtain the 2-loop FRG equation:

∂∆(u) = (ǫ − 2ζ)∆(u)+ζu∆′(u)−1

2

[

(∆(u)−∆(0))2
]′′

+
1

2

[

(∆(u)−∆(0))∆′(u)2
]′′

+
1

2
∆′(0+)2∆′′(u). (6)

Computing the other needed counterterm, i.e. the renor-
malized friction ηR = Z−1η0, we obtain the dynamical
exponent z = 2 − ∂ lnZ. The 1/ǫ divergences again can-
cel yielding the finite result z = 2−∆′′(0+)+∆′′(0+)2 +
∆′′′(0+)∆′(0+)(3

2 − ln 2). We stress that (6) cannot be
read at u = 0 [28]. Indeed, it (and the cancellation of
divergent parts) was established only for u 6= 0. To
complete two loop renormalizability we checked that IVF
which are u = 0 quantities are also rendered finite by the
above counterterms. We found that the time dependence
in diagrams cancels by subsets as in [22], i.e. correlations
(already rendered finite by the above procedure) are thus
static for v = 0+ at variance with previous works [9].

For periodic ∆(u) (CDW depinning [10,26]) we find
a fixed point of (6) with ζ = 0 reading (for a period

1) ∆∗(u) = ǫ
36 + ǫ2

108 − ( ǫ
6 + ǫ2

9 )u(1 − u) (0 < u < 1).

This yields the correlations (ux − u0)2 = Ad ln |x| with
Ad = ǫ/18 + 5ǫ2/108, the RP dynamical exponent z =
2− 1

3ǫ− 1
9 ǫ2 and β = z/2 from the scaling relation [9,10]

β = (z − ζ)/(2 − ζ).
∫ 1

0
∆∗ becomes non zero to two

loops, a signature of nonequilibrium effects.
Another single FP is found to describe both random

field and all shorter range disorder, including RB, demon-
strating the instability of the apparent one loop short
range fixed points. It is determined numerically [24] but
ζ is obtained analytically. Integrating (6) over u > 0

yields ∂D = (ǫ − 3ζ)D − ∆′(0+)3 where D =
∫ +∞
0

∆
(only assuming ∆(+∞) = 0). The FP condition then
implies [28] (both for RB and RF):

ζ =
1

3
ǫ + ζ2ǫ

2 =
ǫ

3
(1 +

ǫ

9γ
√

2
) =

ǫ

3
(1 + 0.14331ǫ) , (7)

where we used that at one loop D∗ =
√

6ǫγ∆∗(0)3/2 with

γ =
∫ 1

0
dy

√
y − 1 − ln y = 0.54822 [13]. This demon-

strates a violation of the conjecture of [10]. It reconciles
theory and numerical results as shown in Table I where
the dynamical exponent z = 2− 2

9ǫ+ǫ2( ζ2

3 − ln 2
54 − 5

108 ) =
2 − 2

9ǫ − 0.04321ǫ2 as well as β obtained via the scaling
relation, β = 1 − 1

9 ǫ − 0.040123ǫ2, are also given.
The case of long range elasticity is obtained chang-

ing q2 + m2 →
√

q2 + m2 in all propagators, shifting the
upper critical dimension to duc = 2. It yields a renormal-
izable theory, with ǫ = 2−d and a two loop beta function
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[24] obtained by multiplying all O(∆3) terms in (6) by
4 ln 2. This yields ζ = ǫ

3 (1 + 4 ln 2
9γ

√
2
ǫ) = ǫ

3 (1 + 0.39735ǫ),

i.e. a strong deviation from ǫ/3 (see Table II), and
z = 1 − 2

9ǫ + ǫ2( 4 ln 2
27γ

√
2
− π+20 ln 2

108 ) = 1 − 2
9ǫ − 0.1133ǫ2.

We now turn to the statics, using replicas. In the T = 0
limit, the FRG beta function at which we arrive [24]:

∂R = (ǫ − 4ζeq)R + ζequR′ +
1

2
R′′2 − R′′(0)R′′

+
1

2
(R′′ − R′′(0))R′′′2 − λR′′′(0+)2R′′ (8)

has a new “anomalous” term ∝ λ. The other part, i.e.
(8) with λ = 0 (from graphs a, b and repeated one loop
counterterm - B graphs cancel in the sum) could as well
be obtained for an analytic R(u), as in [14], which by
itself would be inconsistent since the FP is non-analytic.
Ambiguities arise only at two loops (not at one loop since
R′′(0) = R′′(0+)), in the graphs e, f in Fig. 2 which cor-
rect R(u) determining λ, since some vertices are evalu-
ated at u = 0. However we have shown that the theory
can be renormalizable in the usual sense only if:

λ = 1/2 . (9)

Indeed, the form of the repeated one loop counterterm
(i.e. to G in Fig.1) δ1,1R = [(R′′ − R′′(0))R′′′2 + (R′′ −
R′′(0))2R′′′′ − R′′′(0+)2R′′]I2 which is non ambiguous

because δ1R(u) is twice differentiable at u = 0, im-

poses the coefficient of the ambiguous term e + f of
δ2R implying (9). Interestingly, this value of λ is also
the only one which prevents the occurrence of a further
problem in the two loop FRG, the supercusp [29]. In-
deed, e.g. in the periodic case, the FP of (8) is R∗(u) =

const. − ( ǫ
72 + ǫ2

108 )u2(1 − u)2 + ǫ2

432 (2λ − 1)u(1 − u) and
possesses a stronger singularity than at one loop, since
R∗′ is discontinuous. Thus, unless λ = 1/2, one has
∫ 1

0 R′′ = 2R′(0+) 6= 0, i.e. a violation of potentiality (as
naturally occurs above in the driven dynamics). The λ =

1/2 theory yields Ad = ǫ
18 + 7ǫ2

108 for one component Bragg

glass (and
∫ 1

0 ∆∗=0 as natural), ζeq = ǫ/3 for RF disor-
der and, via numerics, ζeq = 0.20829804ǫ+0.006858ǫ2 for
RB disorder. The corresponding extrapolations (Table I)
improve the predictions compared to the one loop result.

Methods aiming at deriving a FRG equation, i.e. com-
puting λ, beyond (physical) renormalizability or poten-
tiality requirements, are explored in [24]. An alternative
exact FRG method, based on multilocal expansion, also
provides [20] a procedure to lift the u = 0 vertex ambigu-
ities at T = 0, and yields (8) with λ = 1/2 and universal
coefficients. λ = 1/2 is also recovered [20] at T > 0 where
it is easy to see how, at large scale where the running
temperature T̃l flows to 0, anomalous terms as in (8) are
generated, e.g. from a graph E of Fig. 1 (proportional to
T̃lR

′′′′(0)R′′(u)) since the thermal boundary layer analy-
sis at one loop [13] yields T̃lR

′′′′(0) → R′′′(0+)2.
In summary, by finding a way to cope with the diffi-

culties related to non-analyticity at T = 0 in the FRG,

we obtained the exponents characterizing depinning and
statics of pinned elastic systems to next order in ǫ = 4−d.
We predict that similar anomalous terms arise in other
disordered systems where dimensional reduction fails,
e.g. random field spin models.
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